Refine
Year of publication
Document type
- Conference Proceeding (116)
- Article (peer-reviewed) (21)
- Contribution to a Periodical (9)
- Report (8)
- Part of a Book (7)
- Book (1)
Keywords
- Cloud computing (27)
- Security (20)
- Industry 4.0 (16)
- Blockchain (9)
- Privacy (8)
- Audit (7)
- Cloud Computing (7)
- Monitoring (7)
- Machine learning (6)
- PaaS (6)
Nowadays, machine learning projects have become more and more relevant to various real-world use cases. The success of complex Neural Network models depends upon many factors, as the requirement for structured and machine learning-centric project development management arises. Due to the multitude of tools available for different operational phases, responsibilities and requirements become more and more unclear. In this work, Machine Learning Operations (MLOps) technologies and tools for every part of the overall project pipeline, as well as involved roles, are examined and clearly defined. With the focus on the inter-connectivity of specific tools and comparison by well-selected requirements of MLOps, model performance, input data, and system quality metrics are briefly discussed. By identifying aspects of machine learning, which can be reused from project to project, open-source tools which help in specific parts of the pipeline, and possible combinations, an overview of support in MLOps is given. Deep learning has revolutionized the field of Image processing, and building an automated machine learning workflow for object detection is of great interest for many organizations. For this, a simple MLOps workflow for object detection with images is portrayed.
In recent years, both the Internet of Things (IoT) and blockchain technologies have been highly influential and revolutionary. IoT enables companies to embrace Industry 4.0, the Fourth Industrial Revolution, which benefits from communication and connectivity to reduce cost and to increase productivity through sensor-based autonomy. These automated systems can be further refined with smart contracts that are executed within a blockchain, thereby increasing transparency through continuous and indisputable logging. Ideally, the level of security for these IoT devices shall be very high, as they are specifically designed for this autonomous and networked environment. This paper discusses a use case of a company with legacy devices that wants to benefit from the features and functionality of blockchain technology. In particular, the implications of retrofit solutions are analyzed. The use of the BISS:4.0 platform is proposed as the underlying infrastructure. BISS:4.0 is intended to integrate the blockchain technologies into existing enterprise environments. Furthermore, a security analysis of IoT and blockchain present attacks and countermeasures are presented that are identified and applied to the mentioned use case.
While the number of devices connected together as the Internet of Things (IoT) is growing, the demand for an efficient and secure model of resource discovery in IoT is increasing. An efficient resource discovery model distributes the registration and discovery workload among many nodes and allow the resources to be discovered based on their attributes. In most cases this discovery ability should be restricted to a number of clients based on their attributes, otherwise, any client in the system can discover any registered resource. In a binary discovery policy, any client with the shared secret key can discover and decrypt the address data of a registered resource regardless of the attributes of the client. In this paper we propose Attred, a decentralized resource discovery model using the Region-based Distributed Hash Table (RDHT) that allows secure and location-aware discovery of the resources in IoT network. Using Attribute Based Encryption (ABE) and based on predefined discovery policies by the resources, Attred allows clients only by their inherent attributes, to discover the resources in the network. Attred distributes the workload of key generations and resource registration and reduces the risk of central authority management. In addition, some of the heavy computations in our proposed model can be securely distributed using secret sharing that allows a more efficient resource registration, without affecting the required security properties. The performance analysis results showed that the distributed computation can significantly reduce the computation cost while maintaining the functionality. The performance and security analysis results also showed that our model can efficiently provide the required security properties of discovery correctness, soundness, resource privacy and client privacy.