Refine
Document type
Language
- English (5)
Has full text
- No (5)
Is part of the Bibliography
- Yes (5)
Keywords
- Cloud (1)
- Compliance (1)
- Data acquisition (1)
- Distributed monitoring system (1)
- IoT-cloud integration (1)
- Machine learning (1)
- Mechanical characteristics (1)
- Mechanostimulator (1)
- Stretching experiments (1)
- Young’s modulus (1)
ARTHUR – Distributed Measuring System for Synchronous Data Acquisition from Different Data Sources
(2023)
In industrial manufacturing lines, different machines are well orchestrated and applied for their well-defined purpose. As each of these machines must be monitored and maintained in the first place, there are scenarios in which a Data Acquisition system brings enormous benefits. Since the cost of such professional systems is often not appropriate or feasible for research projects or prototyping, a proof of concept is often achieved by applying end-user hardware. In this work, a distributed measurement system for supporting the collection of data is described with respect to AI-based projects for research and teaching. ARTHUR (meAsuRing sysTem witH distribUted sensoRs) is arbitrarily expandable and has so far been used in the field of data acquisition on machine tools. Typical measured values are Accoustic Emission values, force plates X-Y-Z force values, simple PLC switching signals, OPC-UA machine parameters, etc., which were recorded by a wide variety of sensors. The overall ATHUR system is based on Raspberry Pis and consists of a master node, multiple independent measurement worker nodes, a streaming system realized with Redis, as well as a gateway that stores the data in the cloud. The major objectives of the ARTHUR system are scalability and the support for low-cost measuring components while solely applying open-source software. The work on hand discusses the advantages and disadvantages regarding the hard- and software of this TCP/IP-based system.
On the way to the smart factory, the manufacturing companies investigate the potential of Machine Learning approaches like visual quality inspection, process optimisation, maintenance prediction and more. In order to be able to assess the influence of Machine Learning based systems on business-relevant key figures, many companies go down the path of test before invest. This paper describes a novel and inexpensive distributed Data Acquisition System, ARTHUR (dAta collectoR sysTem witH distribUted sensoRs), to enable the collection of data for AI-based projects for research, education and the industry. ARTHUR is arbitrarily expandable and has so far been used in the field of data acquisition on machine tools. Typical measured values are Acoustic Emission values, force plate X-Y-Z force values, simple SPS signals, OPC-UA machine parameters, etc. which were recorded by a wide variety of sensors. The ARTHUR system consists of a master node, multiple measurement worker nodes, a local streaming system and a gateway that stores the data to the cloud. The authors describe the hardware and software of this system and discuss its advantages and disadvantages.