Refine
Document type
Has full text
- No (10)
Keywords
- Fuzzy logic (2)
- Industry 4.0 (2)
- Android (1)
- Artificial neural network (1)
- Artificial neural networks (1)
- Cloud (1)
- Data acquisition (1)
- Decision support systems (1)
- Digital twin (1)
- Distributed monitoring system (1)
The rise of digital twins in the manufacturing industry is accompanied by new possibilities, like process automation and condition monitoring, real time simulations and quality and maintenance prediction are just a few advantages which can be realized. This paper takes a novel approach by extracting the fundamental knowledge of a data set from a production process and mapping it to an expert fuzzy rule set. Afterwards, new fundamental augmented data is generated by exploring the feature space of the previously generated fuzzy rule set. At the same time, a high number of artificial neural network (ANN)models with different hyperparameter configurations are created.
The best models are chosen, in line with the idea of survival of the fittest, and improved with the additional training data sets, generated by the fuzzy rule simulation. It is shown that ANN models can be improved by adding fundamental knowledge represented by the discovered fuzzy rules. Those models can represent digitized machines as digital twins. The architecture and effectiveness of the digital twin is evaluated within an industry 4.0 use case.
ARTHUR – Distributed Measuring System for Synchronous Data Acquisition from Different Data Sources
(2023)
In industrial manufacturing lines, different machines are well orchestrated and applied for their well-defined purpose. As each of these machines must be monitored and maintained in the first place, there are scenarios in which a Data Acquisition system brings enormous benefits. Since the cost of such professional systems is often not appropriate or feasible for research projects or prototyping, a proof of concept is often achieved by applying end-user hardware. In this work, a distributed measurement system for supporting the collection of data is described with respect to AI-based projects for research and teaching. ARTHUR (meAsuRing sysTem witH distribUted sensoRs) is arbitrarily expandable and has so far been used in the field of data acquisition on machine tools. Typical measured values are Accoustic Emission values, force plates X-Y-Z force values, simple PLC switching signals, OPC-UA machine parameters, etc., which were recorded by a wide variety of sensors. The overall ATHUR system is based on Raspberry Pis and consists of a master node, multiple independent measurement worker nodes, a streaming system realized with Redis, as well as a gateway that stores the data in the cloud. The major objectives of the ARTHUR system are scalability and the support for low-cost measuring components while solely applying open-source software. The work on hand discusses the advantages and disadvantages regarding the hard- and software of this TCP/IP-based system.
On the way to the smart factory, the manufacturing companies investigate the potential of Machine Learning approaches like visual quality inspection, process optimisation, maintenance prediction and more. In order to be able to assess the influence of Machine Learning based systems on business-relevant key figures, many companies go down the path of test before invest. This paper describes a novel and inexpensive distributed Data Acquisition System, ARTHUR (dAta collectoR sysTem witH distribUted sensoRs), to enable the collection of data for AI-based projects for research, education and the industry. ARTHUR is arbitrarily expandable and has so far been used in the field of data acquisition on machine tools. Typical measured values are Acoustic Emission values, force plate X-Y-Z force values, simple SPS signals, OPC-UA machine parameters, etc. which were recorded by a wide variety of sensors. The ARTHUR system consists of a master node, multiple measurement worker nodes, a local streaming system and a gateway that stores the data to the cloud. The authors describe the hardware and software of this system and discuss its advantages and disadvantages.
Evolutionary strategy is increasingly used for optimization in various machine learning problems. It can scale very well, even to high dimensional problems, and its ability to globally self optimize in flexible ways provides new and exciting opportunities when combined with more recent machine learning methods. This paper describes a novel approach for the optimization of models with a data driven evolutionary strategy. The optimization can directly be applied as a preprocessing step and is therefore independent of the machine learning algorithm used. The experimental analysis of six different use cases show that, on average, better results are attained than without evolutionary strategy. Furthermore it is shown, that the best individual models are also achieved with the help of evolutionary strategy. The six different use cases were of different complexity which reinforces the idea that the approach is universal and not depending on specific use cases.