Refine
Document type
- Conference Proceeding (10)
- Part of a Book (2)
- Article (peer-reviewed) (1)
Has full text
- No (13)
Is part of the Bibliography
- Yes (13)
Keywords
- Industry 4.0 (5)
- Distributed data validation network (2)
- Industrial internet of things (2)
- Internet of things (2)
- Anomaly detection (1)
- Attribute certificate (1)
- Autorisierung (1)
- Big data (1)
- Blockchain (1)
- Cloud-edge computing (1)
Machine learning applications, like machine condition monitoring, predictive maintenance, and others, become a state of the art in Industry 4.0. One of many machine learning algorithms are decision trees for the decision-making process. A new approach for creating distributed decision trees, called node based parallelization, is presented. It allows data to be classified through a network of industrial devices. Each industrial device is responsible for a single classification rule. Also, nodes that react incorrectly, for example, due to an attack, are taken into account using a variety of methods to remain the decision-making process correct and robust.
In Industry 4.0 machine learning approaches are a state-of-the art for predictive maintenance, machine condition monitoring, and others. Distributed decision trees are one of the learning algorithms for such applications. A new approach of node based parallelization for the construction is presented and allows to classify data through a network of nodes. Attacks on the nodes are discussed based on different attack scenarios and attack classifications are presented. A thorough analysis of protection measurements is given, such that classification is not maliciously modified by an attacker. Different countermeasures are proposed and analyzed. A quorum-based system allows for a good balance between computational overhead and robustness of the algorithm.
Distributed machine learning algorithms that employ Deep Neural Networks (DNNs) are widely used in Industry 4.0 applications, such as smart manufacturing. The layers of a DNN can be mapped onto different nodes located in the cloud, edge and shop floor for preserving privacy. The quality of the data that is fed into and processed through the DNN is of utmost importance for critical tasks, such as inspection and quality control. Distributed Data Validation Networks (DDVNs) are used to validate the quality of the data. However, they are prone to single points of failure when an attack occurs. This paper proposes QUDOS, an approach that enhances the security of a distributed DNN that is supported by DDVNs using quorums. The proposed approach allows individual nodes that are corrupted due to an attack to be detected or excluded when the DNN produces an output. Metrics such as corruption factor and success probability of an attack are considered for evaluating the security aspects of DNNs. A simulation study demonstrates that if the number of corrupted nodes is less than a given threshold for decision-making in a quorum, the QUDOS approach always prevents attacks. Furthermore, the study shows that increasing the size of the quorum has a better impact on security than increasing the number of layers. One merit of QUDOS is that it enhances the security of DNNs without requiring any modifications to the algorithm and can therefore be applied to other classes of problems.
Digital transformation strengthens the interconnection of companies in order to develop optimized and better customized, cross-company business models. These models require secure, reliable, and trace- able evidence and monitoring of contractually agreed information to gain trust between stakeholders. Blockchain technology using smart contracts allows the industry to establish trust and automate cross- company business processes without the risk of losing data control. A typical cross-company industry use case is equipment maintenance. Machine manufacturers and service providers offer maintenance for their machines and tools in order to achieve high availability at low costs. The aim of this chapter is to demonstrate how maintenance use cases are attempted by utilizing hyperledger fabric for building a chain of trust by hardened evidence logging of the maintenance process to achieve legal certainty. Contracts are digitized into smart contracts automating business that increase the security and mitigate the error-proneness of the business processes.