Refine
Document type
- Conference Proceeding (12)
- Article (peer-reviewed) (4)
- Part of a Book (1)
- Doctoral Thesis (1)
Language
- English (18)
Keywords
- Blockchain (8)
- Machine learning (4)
- Maintenance (3)
- Peer-reviewed conference (3)
- Smart contracts (3)
- Cybersecurity (2)
- Industry 4.0 (2)
- Künstliche Intelligenz (2)
- Verifiability (2)
- XAI (2)
The importance of machine learning (ML) has been increasing dramatically for years. From assistance systems to production optimisation to healthcare support, almost every area of daily life and industry is coming into contact with machine learning. Besides all the benefits ML brings, the lack of transparency and difficulty in creating traceability pose major risks. While solutions exist to make the training of machine learning models more transparent, traceability is still a major challenge. Ensuring the identity of a model is another challenge, as unnoticed modification of a model is also a danger when using ML. This paper proposes to create an ML Birth Certificate and ML Family Tree secured by blockchain technology. Important information about training and changes to the model through retraining can be stored in a blockchain and accessed by any user to create more security and traceability about an ML model.
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.
In modern industrial production lines, the integration and interconnection of various different manufacturing components, like robots, laser cutting machines, milling machines, CNC-machines, etc. allows for a higher degree of autonomous production on the shop floor. Manufacturers of these increasingly complex machines are beginning to equip their business models with bidirectional data flows to other factories. This is creating a digital, cross-company shop floor infrastructure where the transfer of information is controlled by digital contracts. To establish a trusted ecosystem, the new technology "blockchain" and a variety of technology stacks must be combined while ensuring security. Such blockchain-based frameworks enable bidirectional trust across all contract partners. Essential data flows are defined by specific technical representation of contract agreements and executed through smart contracts.This work describes a platform for rapid cross-company business model instantiation based on blockchain for establishing trust between the enterprises. It focuses on selected security aspects of the deployment- and configuration processes applied by the industrial ecosystem. A threat analysis of the platform shows the critical security risks. Based on an industrial dynamic machine leasing use case, a risk assessment and security analysis of the key platform components is carried out.
Formal Description of Use Cases for Industry 4.0 Maintenance Processes Using Blockchain Technology
(2019)
The digital transformation of companies is expected to increase the digital interconnection between different companies to develop optimized, customized, hybrid business models. These cross-company business models require secure, reliable, and traceable logging and monitoring of contractually agreed information sharing between machine tools, operators, and service providers. This paper discusses how the major requirements for building hybrid business models can be tackled by the blockchain for building a chain of trust and smart contracts for digitized contracts. A machine maintenance use case is used to discuss the readiness of smart contracts for the automation of workflows defined in contracts. Furthermore, it is shown that the number of failures is significantly improved by using these contracts and a blockchain.
In recent years, both the Internet of Things (IoT) and blockchain technologies have been highly influential and revolutionary. IoT enables companies to embrace Industry 4.0, the Fourth Industrial Revolution, which benefits from communication and connectivity to reduce cost and to increase productivity through sensor-based autonomy. These automated systems can be further refined with smart contracts that are executed within a blockchain, thereby increasing transparency through continuous and indisputable logging. Ideally, the level of security for these IoT devices shall be very high, as they are specifically designed for this autonomous and networked environment. This paper discusses a use case of a company with legacy devices that wants to benefit from the features and functionality of blockchain technology. In particular, the implications of retrofit solutions are analyzed. The use of the BISS:4.0 platform is proposed as the underlying infrastructure. BISS:4.0 is intended to integrate the blockchain technologies into existing enterprise environments. Furthermore, a security analysis of IoT and blockchain present attacks and countermeasures are presented that are identified and applied to the mentioned use case.
Digital transformation strengthens the interconnection of companies in order to develop optimized and better customized, cross-company business models. These models require secure, reliable, and trace- able evidence and monitoring of contractually agreed information to gain trust between stakeholders. Blockchain technology using smart contracts allows the industry to establish trust and automate cross- company business processes without the risk of losing data control. A typical cross-company industry use case is equipment maintenance. Machine manufacturers and service providers offer maintenance for their machines and tools in order to achieve high availability at low costs. The aim of this chapter is to demonstrate how maintenance use cases are attempted by utilizing hyperledger fabric for building a chain of trust by hardened evidence logging of the maintenance process to achieve legal certainty. Contracts are digitized into smart contracts automating business that increase the security and mitigate the error-proneness of the business processes.