Laparoscopic Tool Classification in Gynaecological Images Using Convolutional Neural Network and Attention Modules
Author: | Tamer Abdulbaki AlshirbajiORCiDGND, Nour A. JalalORCiDGND, Herag ArabianORCiDGND, Paul D. DochertyORCiDGND, Hisham ElMoaqet, Thomas Neumuth, Knut MöllerORCiDGND |
---|---|
URN: | https://urn:nbn:de:bsz:fn1-opus4-112151 |
DOI: | https://doi.org/10.1016/j.ifacol.2024.11.068 |
ISSN: | 2405-8963 |
Parent Title (English): | IFAC-PapersOnLine |
Subtitle (English): | 12th IFAC Symposium on Biological and Medical Systems BMS 2024, September 11-13, 2024, Villingen-Schwenningen, Germany |
Document Type: | Article (peer-reviewed) |
Language: | English |
Year of Completion: | 2024 |
Release Date: | 2024/12/19 |
Tag: | Peer-reviewed conference Attention module; Convolutional neural network (CNN); Deep learning; Gynaecological procedures; Laparoscopic images; Surgical tool classification |
Volume: | 58.2024 |
Issue: | 24 |
First Page: | 386 |
Last Page: | 390 |
Open-Access-Status: | Open Access |
Diamond | |
Licence (German): | ![]() |