Volltext-Downloads (blau) und Frontdoor-Views (grau)

Laparoscopic Tool Classification in Gynaecological Images Using Convolutional Neural Network and Attention Modules

Metadaten
Author:Tamer Abdulbaki AlshirbajiORCiDGND, Nour A. JalalORCiDGND, Herag ArabianORCiDGND, Paul D. DochertyORCiDGND, Hisham ElMoaqet, Thomas Neumuth, Knut MöllerORCiDGND
URN:https://urn:nbn:de:bsz:fn1-opus4-112151
DOI:https://doi.org/10.1016/j.ifacol.2024.11.068
ISSN:2405-8963
Parent Title (English):IFAC-PapersOnLine
Subtitle (English):12th IFAC Symposium on Biological and Medical Systems BMS 2024, September 11-13, 2024, Villingen-Schwenningen, Germany
Document Type:Article (peer-reviewed)
Language:English
Year of Completion:2024
Release Date:2024/12/19
Tag:Peer-reviewed conference
Attention module; Convolutional neural network (CNN); Deep learning; Gynaecological procedures; Laparoscopic images; Surgical tool classification
Volume:58.2024
Issue:24
First Page:386
Last Page:390
Open-Access-Status: Open Access 
 Diamond 
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International