Predicting critical machining conditions using time-series imaging and deep learning in slot milling of titanium alloy
Author: | Faramarz Hojati, Bahman AzarhoushangORCiDGND |
---|---|
URN: | https://urn:nbn:de:bsz:fn1-opus4-86213 |
ISBN: | 978-3-00-073638-4 |
Parent Title (English): | The Upper-Rhine Artificial Intelligence Symposium UR-AI 2022 : AI Applications in Medicine and Manufacturing, 19 October 2022, Villingen-Schwenningen, Germany |
Publisher: | Furtwangen University |
Place of publication: | Furtwangen |
Document Type: | Conference Proceeding |
Language: | English |
Year of Completion: | 2022 |
Release Date: | 2022/10/20 |
Tag: | Artificial intelligence; Convolutional neural network; Edge box; Gramian angular field; Slot-milling |
First Page: | 57 |
Last Page: | 63 |
Open-Access-Status: | Open Access |
Licence (German): | Creative Commons - CC BY - Namensnennung 4.0 International |