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Abstract —The British Geological Survey (BGS) holds much 
information on the depth of the rockhead surface (the transition 
between Quaternary and Bedrock geological units) in the UK. 
This information has been extracted from more than one million 
borehole paper logs and has been used to create the BGS 
rockhead surface model. A difficulty arises when different 
interpretations of the rockhead depth from the paper logs are 
introduced into the database, and a selection as to which 
interpretation to use needs to be made. Here, we outline the 
application of machine learning (ML) methodologies in 
automatising the selection of one rockhead interpretation per 
borehole based on previous decisions and therefore saving a 
huge amount of manual checking work. This reduces the 
selection process from weeks to minutes. The outcomes were 
quality controlled with subset examples where results were 
known. This showed that using just 5% of the complete data, the 
resulting error was less than 10%. The final results showed that 
in 5 out of 100 conflicting cases, the ML algorithm favours a 
different interpretation than that selected by a geologist. This is 
an acceptable rate because only 5% of the entire set of boreholes 
have more than one interpretation. 
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I. INTRODUCTION  
Boreholes provide one of the most important sources of 

information on the geology and structure of the subsurface. 
Together with information for surface outcrops, they provide 
the information upon which we base our interpretation of the 
geology, from where we create geological maps and 3D 
geological models ([5], [6], [7], [9]). Boreholes are essential 
to the majority of geological disciplines including 
environmental monitoring, resource evaluation and waste 
management. However, certain aspects of the subsurface 
geology proved by a borehole cannot simply be derived from 
the log. A prominent example is the contact between the 
bedrock (pre-Quaternary) and superficial (Quaternary) 
deposits, which is called geological rockhead surface (Fig. 1; 
[9]). The bedrock is normally the pre-Quaternary succession 
and generally comprises fully-consolidated lithotypes. By 
contrast, superficial deposits are usually of Quaternary age, 
and are typically unconsolidated due to their lack of burial 
(Fig. 1). Quaternary deposits are of particular societal 
importance as they influence our environment and landscape. 

 
 

Fig. 1. TD boreholes are boreholes proving the existence of superficial 
deposits but not reaching Bedrock (green). RH boreholes that reach Bedrock 
and prove the existence of the Rockhead surface (brown). Point at which the 
RH borehole crosses the rockhead surface as per the database.  

Assuming that the solid geology has been penetrated, in 
analogue or digital borehole data, the depth to rockhead is 
frequently difficult to identify. In practice, geologists use a 
number of criteria to identify the depth to rockhead from 
borehole logs. Distinguishing the position of the rockhead 
surface when modelling is problematical if several geologists 
have made different interpretations, and a decision between 
the different depths is required.  

The British Geological Survey (BGS) has developed a 
raster model, the Superficial Deposit Thickness Model 
(SDTM), to show the thickness variations of the 
Quaternary/Superficial Deposits throughout Great Britain 
(Fig. 2; [8]).  For vertical (non-deviated) boreholes, the depth 
of bedrock is precisely equivalent to the thickness of the 
Quaternary deposits. In the SDTM, this parameter was used to 
derive the thickness of Superficial Deposits throughout the 
whole country. In [10] borehole data was used besides other 
information to train a machine learning (ML) model to obtain 
a global model for bedrock depth. 



 

 
Fig. 2. Cut out of the Superficial Thickness Model. 

II. USING BOREHOLES TO MODEL THE ROCKHEAD SURFACE 
The BGS maintains a collection of over one million 

borehole paper logs from all forms of drilling and site 
investigations, and significant numbers of new records are 
added every year (Fig. 3; [3]). Boreholes range from one metre 
to several kilometres deep; one of the earliest is from 370 AD, 
but the majority of them postdate 1950. The borehole paper 
logs are produced from the observations of geologists or 
surveyors of the rock samples extracted. These paper logs are 
then interpreted by BGS geologists, who classify the different 
rock units and enter them into a relational database 
management system (RDBMS) called Borehole Geology. 

 
Fig. 3. Cumulative curve of the number of boreholes interpretations being 
added to the borehole geology database since its creation in 1985. 

From the Borehole Geology database, information is 
extracted about the depth of bedrock to create the BGS 
national rockhead surface model. However, individual 
geologists have different interpretations of the depth of 
bedrock, resulting in multiple interpretations for the same 
borehole. This may be due to several reasons, including the 
continuously evolving knowledge of the geology of an area, 
variations in expertise of log interpretation, the differing 
complexities of geology area-by-area and different 
interpretations of what has been written on the logs. Of the 
approximately 800k borehole records in the Borehole 
Geology database, around 40% have duplicate interpretations. 

Some interpretations are the same, and some differ by several 
metres and some interpretations, lack a value for the depth of 
bedrock altogether, due to human error. 

The proportion of multiple interpretations being 
substantially high, and the increasing rate at which new 
borehole interpretations are being entered into the database 
(an average of 15k interpretations a year) makes it impossible 
to continue the screening manually.  

    In summary, the manual selection of interpretations of 
rockhead in boreholes requires a vast amount of work. This is 
increasing every year due to the growing number of 
interpretations by different geologists, failure to code the 
rockhead and the ever-increasing addition of new boreholes 
into the database.  In this paper, we use a machine learning 
(ML) approach to automate the manual identification and 
selection process of the rockhead depth in borehole records. 

. 

III. TERMINOLOGY RELATING TO THE MODEL  
Several different interpretations of a borehole log may 

exist in the database. The borehole log contains details such as 
lithology, depth or thickness of the units that were drilled. This 
information is not always entered in the database, however the 
minimum interpretation consists of at least one layer of 
information. Each interpretation will have a terminal depth 
(TD) value, which is the depth at which the borehole ended. 
Some of the interpretations will also have a layer labelled 
‘RH’ to indicate the depth of the rockhead. It is assumed that 
a borehole not labeled with ‘RH’ is entirely composed of 
Superficial Deposits, therefore the TD is selected as a lower 
bound for  RH depth. An interpretation is of type ‘RH’ if an 
RH label exists, and of type ‘TD’ in all other cases. The 
rockhead surface is therefore penetrated in ‘RH’ boreholes 
and not in ‘TD’ boreholes (Fig. 1). A set of interpretations of 
a borehole is termed homogeneous if the interpretations are 
either all type ‘RH’ or all type ‘TD’. A set of interpretations 
which is not homogeneous is termed heterogenous. A set of 
interpretations is called conflicting if it is:  

• heterogenous or  

• homogeneous, and the difference of their depths is  
greater than 50 cm. 

All other sets of interpretations are called non-conflicting. 
Conflicting interpretations are where human intervention is 
necessary: A geologist has to judge, and choose the 
interpretations he/she considers correct. A conflicting set of 
interpretations that has been considered by a geologist is 
called resolved, all other conflicting sets are called 
unresolved. The result of the resolution consists of at least one 
accepted interpretation, and at least one rejected 
interpretation. To guarantee a high quality of the thickness 
model mentioned above, it has to be ensured that only non-
conflicting or accepted interpretations are used. For some 
boreholes, the interpreted rockhead depths may differ only by 
a small amount: a tolerance of 50 cm was chosen to decrease 
the number of interpretations to review. Therefore, several 
accepted interpretations may exist for a single borehole. Not 
only boreholes of type RH, but also those of type TD are of 
some value for the model, since the total depth of a borehole 
is a lower limit of the thickness of Quaternary deposits at this 
point, even if rockhead was not reached.  

 



IV. DATA STRUCTURE AND EXAMPLES 
The borehole data is currently spread across several tables 

in the BGS database, and these contain many attributes 
necessary for the interpretation of a borehole. Some of these 
attributes are explained below: 

• interpretationID: unique identifier of the borehole 
interpretation. Duplicate values do not exist.  

• boreholeID: identifier of the borehole. It is not unique, 
since different interpretations of the same borehole 
may exist in the database. 

• type: type of interpretation with possible values for RH 
and TD. 

• thickness: thickness of the Quaternary deposits in case 
of type RH, or the terminal depth of the borehole in 
case of TD. 

• x, y: coordinates of the borehole according to the 
British National Grid. 

• interpreter: identifier of the geologist who created the 
interpretation. 

• project: identifier of the BGS project under which the 
interpretation was created.   

Table I concerns three boreholes with two interpretations 
per well and some attributes. The interpretations of borehole 
4711 are non-conflicting since they are both of type RH and 
their thicknesses differ by only 34 cm. The interpretations for 
boreholes 4712 and 4713 are by contrast both conflicting: the 
interpretations of borehole 4712 are heterogenous; and 
although the interpretations of borehole 4713 are 
homogeneous their thicknesses differ by more than 50 cm. 
Therefore the interpretations of both these boreholes need 
resolving. 

TABLE I.   

boreholeID interpretationID type thickness 

4711 23 RH 1066 

4711 24 RH 1100 

4712 42 RH 310 

4712 43 TD 310 

4713 78 TD 1256 

4713 79 TD 1200 

 

Fig. 4. Example data from the borehole geology database 

 

V. FEATURE ENGINEERING 
Borehole data with non-conflicting interpretations can be 

used by the SDTM. Boreholes with conflicting interpretations 
require additional processing. The goal is to train a machine 
learning model using interpretations which have already been 
manually reviewed. The model can then be applied to 
interpretations that have not yet been reviewed to predict the 
acceptance decision of the geologist.  

In almost all cases, it is inadvisable to use the set of all 
attributes for a machine learning model. Feature engineering 
describes the process of selecting attributes and deriving new 

attributes from the set of all known existing attributes. We 
show here examples of selecting and deriving features from 
the attributes discussed in the previous section. 

It is unsurprising that some geologists produce 
interpretations which are more reliable than others. Indeed, 
existing data proves that the quality of interpretations are 
heavily dependent on the attributes interpreter and project. We 
nevertheless decided to include none of these attributes in the 
set of features. This is because there are over one hundred 
interpreters and projects in the borehole geology database. The 
standard methodology in machine learning requires one-hot-
encoding, i.e. one additional boolean column per interpreter 
and project, resulting in hundreds of additional columns. This 
increase in dimensionality however results in a substantial 
decrease in information density, which is known as the ‘curse 
of dimensionality’ [1]. We observed the existence of the 
‘curse of dimensionality’ in this case by experiments with 
borehole data: the prediction quality is much better without 
the attributes interpreter and project. 

An additional improvement in quality is obtained if 
conflicting interpretations are grouped by boreholeID and 
groupwise aggregates are computed. In addition to standard 
aggregates like minimum, maximum and average thickness, 
we also included attributes like isHomogeneous, which is 1 
and 0 if the interpretations of the borehole are homogeneous 
and heterogeneous respectively. Aggregates introduced more 
information about the relation between the different 
interpretation of each borehole, which improved prediction 
quality. Table II shows data, which is derived from Table I. 
Borehole 4711 was not included, since it does not contain any 
conflicts. The attribute isAccepted is 0 or 1 depending on the 
result of the manual review of the interpretations. 

We used SQL-scripts to create two new tables with 
selected and derived features: one with already reviewed 
interpretations and another with non-reviewed data, which of 
course does not contain the column isAccepted. 

TABLE II.   

bore
hole 

interpreta
tion type thickness isHomo

genous avg isAccep
ted 

4712 42 RH 310 0 310 1 

4712 43 TD 310 0 310 0 

4713 78 TD 1256 1 1228 0 

4713 79 TD 1200 1 1228 1 

 

Fig. 5. Examples of derived features  

 

VI. MACHINE LEARNING (ML)  
Although the BGS borehole collection includes more than 

one million records, here we only include those which are in 
regions known to be underlain by Quaternary deposits. We 
began with 687 073 interpretations of 527 615 different 
boreholes. For only 5% of the boreholes, conflicting 
interpretations occured. The conflicting interpretations of 
these 22 427  boreholes were already resolved manually, but 
for 3 561 boreholes the interpretations are yet unresolved.  

Before ML was applied to the resolution of unresolved 
interpretations, we ran exhaustive tests on previously resolved 
interpretations in order to understand the quality of the 



predictions of the, so-called, response variable isAccepted. 
Cross-validation is the part of the standard methodology of 
ML. We used 5-fold cross-validation: the set of boreholes is 
split into five almost equal sized parts, resulting in five 
different 80%-20% splits of the data. The largest part of each 
split was used to train the model, the smaller part was used to 
test the model. The predictions of isAccepted are compared to 
the actual values. The average error rate of all five tests is a 
reasonable estimate that can be expected for unresolved 
interpretations where the actual value of isAccepted is 
unknown. 

Gradient boosting is a ML technique, which has been 
successfully used recently. We applied Extreme Gradient 
Boosting [4] with the logistic regression learning objective 
and isAccepted as response variable. Each prediction of 
isAccepted is a number which indicates the probability that an 
interpretation would be accepted by a geologist. From each 
group of interpretations of the same borehole, the one with the 
highest response value is chosen as the interpretation that 
would be accepted by a geologist. Table III contains some 
example data with only four attributes. The isAccepted 
column contains the prediction value created by ML. The 
higher number represents the most likely to be the correct 
interpretation.  

Therefore borehole 4712 would be considered to be of 
type RH with thickness 310 cm, while borehole 4713 would 
be considered to be of type TD with thickness 1200 cm. 

TABLE III.   

bore
hole 

interpreta
tion type thickness isHomo

genous avg isAccep
ted 

4712 42 RH 310 0 310 0.8 

4712 43 TD 310 0 310 0.4 

4713 78 TD 1256 1 1228 0.1 

4713 79 TD 1200 1 1228 0.2 

 

Fig. 6. Sample predictions of the ML algorithm. 

VII. RESULTS 
• We obtained an error rate of 5.3% using 5-fold cross-

validation. This means that in 5 out of 100 conflicting 
cases, the ML algorithm favours a different 
interpretation from that chosen by a geologist. This 
does not necessarily mean that the algorithm’s decision 
is wrong. At least for the SDTM, this is an acceptable 
rate considering  that only  5% of the boreholes  have 
conflicts (section VI). 

• For 5-fold cross-validation, 80% of the manually 
resolved borehole interpretations are considered. We 
observed that the error rate quickly drops when the 
quantitative base of the model decreases. Fig. 7 shows 
that the error rate already drops to under 10% if only 
5% of the resolved interpretations are used. This means 
that only a small proportion of conflicting boreholes 
has to be manually reviewed to obtain acceptable 
results. 

• It is surprising, that the interpretationID has high 
significance. If only these interpretationIDs together 
with the boreholeIDs are used to train the model, an 
error rate of 10% is obtained. The importance of the 

interpretationID can be explained by the way 
information is entered into the database: The 
interpretationID is increased by one with every new 
interpretation. Geologists do not normally enter one 
interpretation at a time, but batches of borehole 
interpretations for a specific project. This means that 
the interpretationID contains hidden information like 
the geologist or the project properties which are 
significant (section V).  

• As outlined in the previous paragraph, the 
interpretationID is a surrogate primary key, which is a 
significant feature for the ML model. However, the 
database may be physically reorganized resulting in 
the primary keys being updated, and therefore the 
interpretationID would lose its significance. In a robust 
database design the primary key should therefore not 
be tainted with any kind of semantics. Although the 
interpretationID is very important, the collection of all 
other features is sufficient for the ML model. Even if 
the interpretationID is omitted from the ML model, 5-
fold cross-validation yields an error rate of 7.7%  
instead of 5.3% (see above) which is still acceptable. 

 
Fig. 7. TD Error rate in dependency of the fraction of used reviewed 
interpretations  

 

VIII.  CONCLUSIONS AND FUTURE WORK 
The ML model developed here has allowed the rapid 

creation of the rockhead surface, and allows the faster addition 
of new borehole data with a calculated risk.  The ML quality 
is comparable with manual data entry, but the former is 
substantially faster and has a very low error rate (Fig. 7). 

As explained in section I, geologists have to label borehole 
records ‘RH’ if rockhead was reached. This label may not 
have been entered or simply be wrong. This for example, 
creates a TD borehole instead of a RH borehole. Boreholes 
like these become an error source when used by the SDTM, 
giving a deeper value for the rockhead.  Borehole logs could 
become simpler and more reliably coded, if the labelling is 
automated with a similar ML approach as the one discussed 
herein. 

 



COMPUTER CODE AVAILABILITY 

The source code for the borehole selection algorithm 
described here is available from the authors and can be 
downloaded from https://github.com/lpiepmeyer/Geology-
Drilling-Log-Classification. 
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