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Abstract: Emotional intelligence strives to bridge the gap between human and machine interactions.
The application of such systems varies and is becoming more prominent as healthcare services seek
to provide more efficient care by utilizing smart digital health apps. One application in digital health
is the incorporation of emotion recognition systems as a tool for therapeutic interventions. To this
end, a system is designed to collect and analyze physiological signal data, such as electrodermal
activity (EDA) and electrocardiogram (ECG), from smart wearable devices. The data are collected
from different subjects of varying ages taking part in a study on emotion induction methods. The
obtained signals are processed to identify stimulus trigger instances and classify the different reaction
stages, as well as arousal strength, using signal processing and machine learning techniques. The
reaction stages are identified using a support vector machine algorithm, while the arousal strength
is classified using the ResNet50 network architecture. The findings indicate that the EDA signal
effectively identifies the emotional trigger, registering a root mean squared error (RMSE) of 0.9871.
The features collected from the ECG signal show efficient emotion detection with 94.19% accuracy.
However, arousal strength classification is only able to reach 60.37% accuracy on the given dataset.
The proposed system effectively detects emotional reactions and can categorize their arousal strength
in response to specific stimuli. Such a system could be integrated into therapeutic settings to monitor
patients’ emotional responses during therapy sessions. This real-time feedback can guide therapists
in adjusting their strategies or interventions.

Keywords: digital health; electrocardiogram (ECG); electrodermal activity (EDA); emotion detection;
heart rate variability (HRV); machine learning; mental well-being

1. Introduction

The use of artificial intelligence (AI) in daily activities has become mainstream in
recent years. Advances in technology have paved the way for computationally powerful
machine learning models to cement the foundations for the future of the industrial and
healthcare domains. The adoption of AI in the health sector holds a lot of potential, from
patient diagnostics to health monitoring and, in some cases, treatment itself [1].

Emotional intelligence strives to bridge the gap between human and machine interac-
tions. The application of such systems varies and is becoming more prominent as healthcare
services work to provide more efficient care through the utilization of smart digital health
apps. One application in digital health is for the incorporation of emotion recognition
systems as a tool for therapeutic interventions. Emotion classification is currently being
developed as a component in a closed-loop system [2] designed to aid in the therapeutic
intervention of people with autism spectrum disorder (ASD).
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ASD is a neuro-developmental condition that affects a person’s social skills by im-
pairing their interaction, communication, behaviors, and interests [1,3,4]. The condition
often results in more health problems due to isolation and unemployment (or reduced
employment), which can lead to depression and anxiety [4]. Estimates reveal that 1 out of
59 people are affected by ASD, thus comprising ~1~2% of the general population [4,5].

Emotions can be identified by three main components: 1—facial expressions; 2—speech
and voice patterns; and 3—physiological signals. Emotion recognition perception is dis-
tributed as 55% facial, 35% speech, and 10% physiological signals [6]. Although facial
expressions and speech patterns hold the majority for emotion determination, limited
access to these data in real time in daily life makes them less convenient than physiological
signals. Physiological signals can be accessed through electronic wearable devices (EWD),
such as smart watches, which are increasingly prevalent and are directly associated with
health management [7]. Equally, screen time, including smart phone, TV, and computer us-
age, stands at 28.5 ± 11.6 h a week [8]. Even if a small portion of screen time is allocated to
using a health app, the data collected would still be fewer than the level of data from EWDs.
Physiological signals often used to measure emotional and cognitive reactions include
electrodermal activity (EDA) and electrocardiogram (ECG) [9–11]. Hence, physiological
signals were selected for emotion detection in this study.

For electrodermal activity, the parameters of the frequency of non-specific skin conduc-
tance responses (NS.SCR) and the skin conductance level (SCL) are frequently used. This is
one of the most common measures used in psychophysiology and includes a wide range
of applications, such as emotional reactions, attention examination, and the processing of
information. EDA is measured by applying a small current through a pair of electrodes
that are placed on the surface of the skin [12]. Two mechanisms contribute to the EDA
measurement: 1—sweat secretion and 2—selective membrane activity in the epidermis.
The more sweat produced, the more conductive the path becomes; as a result, the resistance
decreases and therefore a change is observed in the EDA.

ECG is one of the most widely used non-invasive clinical diagnostic tools, providing a
clear observation of the heart’s electrical behavior [13]. ECG records the electrical activity
transmitted through the body by means of electrodes attached to the skin. Another relatively
simple derivation option is the use of a chest belt. This electrical activity is the result of
the heart’s depolarization to induce contraction at each beat [14]. The measurements are
analyzed through the QRS wave complex, and subsequently the heart rate (HR) is derived
from peak to peak, e.g., RR interval, of the ECG recording across a specific time frame. The
use of ECG monitoring has increased in recent years, thanks in part to the advancement of
wearable devices, such as smart watch technology or fitness trackers, and people’s often
high adherence to their use for the monitoring of daily activity and workout routines in a
lifestyle focused on well-being and healthy aging.

The data used in this article were collected from a separate collaborative study con-
ducted on emotion induction methods’ influence on recognition [15]. The ground truth,
defined as the subjectively perceived valence and arousal of each emotional category, was
assessed using the self-assessment manikin (SAM) [15,16]. The data were gathered from
EDA and ECG sensors attached to the non-dominant hand (thenar and hypothenar) and
chest, respectively.

In this study, the EDA—more specifically, the SCL—and ECG signals, i.e., HR and
heart rate variability (HRV) were analyzed for emotional stimulus trigger marks and
assessed for the different emotional reaction stages and intensity of arousal using signal
processing and machine learning techniques. Features of interest, required for the machine
learning algorithm, were extracted from the data by applying different signal processing
methods. To evaluate the outcome of the predictions, different evaluation criteria were
used. The aim of this study was to disclose the effectiveness of physiological signals—in
this case, EDA and ECG—in characterizing emotional stimuli reactions and identifying
their stages and arousal strength.
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The paper is organized with the following structure. Section 2 describes the methods
used, data description, signal processes, network architecture, and analysis criteria. Key
results are highlighted in Section 3, with their respective discussions rendered in Section 4.
The conducted ablation studies are mentioned in Section 5, and a conclusion is drawn in
Section 6.

Related Work

The challenges of detecting and recognizing human emotions have yielded different
approaches and techniques, with a recent trend towards machine learning strategies to solve
the problem. A recent search for “emotion recognition facial” and “emotion recognition
physiological signal” on PubMed revealed the concentration of research works towards
facial recognition (4825 articles), rather than physiological signals (191 articles), for emotion
recognition, with a ratio of ~25:1 over the last 5 years [17].

In Kakuba S. et al. (2022) [18], an attention-based multi-learning model (ABMD) utiliz-
ing residual dilated causal convolution (RDCC) blocks and dilated convolution (DC) with
multi-head attention is proposed for emotion recognition from speech patterns, achieving
95.83% on the EMODB dataset, with notable robustness in distinguishing the emotion
of happiness. In Yan Y. et al. (2022) [19], an AA-CBGRU network model is proposed for
speech emotion recognition that combines spectrogram derivatives, convolutional neu-
ral networks with residual blocks, and BGRU with attention layers, showing improved
weighted and unweighted accuracy on the IEMOCAP sentiment corpus. In Khaireddin Y.
et al. (2021) [20], a popular VGG network architecture was deployed with fine hyperparam-
eter tuning to achieve state of the art results on the FER2013 [21] dataset. A shallow dual
network architecture was introduced in Mehendale N. (2020) [22], with one framework
removing background noise while the second generated point landmark features, achiev-
ing recognition accuracies of up to 96% on a combined dataset. Zhao X. et al. (2017) [23]
proposed a novel peak-piloted GoogleNet [24] network architecture in which the peak and
non-peak emotional reaction was considered from an image sequence, with tests on the
OULU-CASIA [13] database achieving up to 84.59% accuracy.

In Kim Y. et al. (2021) [25], a facial image threshing (FIT) machine for autonomous
vehicles’ facial emotion recognition (FER) is introduced, utilizing advanced features from
pre-trained facial recognition and the Xception algorithm, resulting in a 16.95% increase in
validation accuracy and a 5% improvement in real-time testing with the FER 2013 dataset
compared to conventional methods. In Canal F. et al. (2022) [26], a survey was conducted
that reviewed 94 methods from 51 papers on emotion expression recognition from facial
images, categorizing them into classical approaches and neural networks, finding slightly
better precision for the classical methods but with lesser generalization; this work also
evaluated the strengths and weaknesses of popular datasets. In Karnati M. et al. (2023) [27],
a thorough survey of deep learning-based methods for facial expression recognition (FER)
is provided, which discusses their components, performance, advantages, and limitations,
while also examining relevant FER databases and pondering the field’s future challenges
and opportunities.

Although the facial features provide a more distinguishable analysis of the emotional
response of a person, the acquisition of the data is somewhat cumbersome. The relevant
and appropriate feature extraction from facial expressions in images is also disputed. In
particular, it is often not robust to differences in complexion, culture, and ethnicity.

Physiological signals provide more continuous real-time monitoring compared to
facial expressions. In comparable studies [28–35], the impact of using physiological signals
for emotion detection and subsequent recognition is highlighted. Shukla J. et al. (2021) [28]
assessed and evaluated different techniques for EDA signals and determined the optimal
number of features required to yield high accuracy and real-time emotion recognition. A
fine hyperparameter-tuned convolutional neural network was developed in Al Machot F.
et al. (2019) [29] for use in assisted living environments using EDA signals to recognize
emotions. The designed model improved the robustness of two established datasets,
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achieving accuracies of 78% and 82% on the MAHNOB [36] and DEAP [37] datasets,
respectively, for subject-independent recognition. In Veeranki Y. R. et al. (2021) [30],
different time–frequency signal analysis methods are implemented on the EDA signal
and combined with machine learning techniques for emotion recognition, reaching area
under the curve (AUC) accuracies of 71.30% on the DEAP [37] database. In Wenqian L.
et al. (2023) [38], a review was conducted on emotion recognition and judgment using
physiological signals like EEGs, EDA, ECGs, and EMG, discussing their technological
applications and the effects achieved and providing a comparative analysis of different
signal applications, along with considerations for future research.

Heart rate (HR) monitoring, using smart watches, is often applied when following
up on pre-existing health conditions or tracking workout routines for athletes [7]. How-
ever, other applications, such as stress level detection and emotion recognition, are also
studied [31,39]. In Shu L. et al. (2020) [31], HR signals recorded by a smart wearable
device were assessed for the recognition of paired emotions using machine learning models.
The approach achieved accuracy of 84% for three emotional states’ classification, using a
gradient boosted decision tree algorithm on the collected dataset. Zhang Z. et al. (2016) [35]
took a different approach to recognizing emotions, using the accelerometer data from
wearable devices. The results revealed accuracy of 81.2% in classifying three emotional
categories, using a support vector machine (SVM) with a radial basis (RBF) kernel function
as a classifier.

A combination, more commonly known as fusion, of more than one signal for emotion
recognition has also been studied, with promising results. Greco A. et al. (2019) explored
the fusion of both EDA signals and speech patterns to improve arousal level recognition,
yielding a marginal classifier improvement of 11.64% using an SVM classifier with recursive
feature elimination [32]. Du G. et al. (2020) investigated the combination of facial expres-
sions and HR for emotion recognition in gaming environments, increasing the recognition
accuracy by 8.30% [33]. In Fernández-Aguilar L. et al. (2019) [34], the fusion of EDA signals
and HR variability (HRV) was used for emotion classification, achieving 82.37% overall
accuracy for both young and elderly age groups combined, for seven emotion classes, using
an SVM classifier with a quadratic kernel.

Hence, both EDA and ECG signals were used in the present study for emotion iden-
tification and its subsequent arousal level determination. This study was distinct from
prior research as it did not focus on identifying the relative emotional response but rather
the ability to identify the physiological reaction and its subsequent arousal intensity. This
approach offers a more detailed understanding of an individual’s level of engagement with
the presented stimuli.

2. Materials and Methods
2.1. Database Description

The data used in this research were collected as part of a study on emotion induction
techniques, under controlled laboratory conditions [15]. Physiological measurements
of ECG and EDA were recorded, along with videos of the facial expressions. In total,
24 subjects (10 male, 14 female), from different age groups, volunteered.

The experiment consisted of having the subjects sit and watch a slideshow recording
containing 7 different image stimuli, comprising the six basic emotions of anger, disgust,
fear, happiness, sadness, and surprise, and a seventh neutral category. Each stimulus was
applied for 30 s, designed to induce an emotional reaction, followed by a rest time of
1 min between each stimulus. After the rest period, subjects were asked to reflect for a
period of 30 s on a situation in their lives where such an emotional trigger had occurred
(autobiographical recall), followed another rest period of 1 min. Subjects also assessed each
stimulus using the SAM [16], where this information was used as ground truth for system
development. A more detailed description of the experiment can be found in Schmid
et al. [15].



Sensors 2023, 23, 8092 5 of 19

Physiological signals were recorded from two sensors on the hand and chest. For the
ECG, the “EcgMove4” sensor (Movisens GmbH, Karlsruhe, Germany) with a dry electrode
chest belt was used. The “Ecg-Move4” records ECG signals at a rate of 1024 Hz and 12-bit
resolution with an input range of 560 mV [40]. To measure EDA, the “EdaMove4” sensor
(Movisens GmbH, Karlsruhe, Germany) was used. The “EdaMove4” sensor was attached
to the subject’s non-dominant wrist with the two electrodes placed on the palm (thenar and
hypothenar), as depicted in Figure 1. The EDA sensor records at a sample rate of 32 Hz
with a 14-bit resolution and an input range of 2 to 100 µS [41].

Figure 1. Graphic illustration of the EDA sensor strap and electrode placement on the non-dominant
hand of the subject.

The collected dataset consisted of 24 ECG and EDA signals. For system development,
the signal sequences were annotated for each subject and signal, based on the used emo-
tional categories (anger, disgust, fear, happiness, neutral, sadness, and surprise) and the
participants’ assessment using the SAM [16]. The following measurement times (record-
ing sequences) were used for each emotional category: (a) during image presentation
(30 s), (b) rest period after image presentation (60 s), (c) during autobiographical recall
(30 s), (d) rest period after autobiographical recall (60 s), and (e) a baseline measurement
recorded at the beginning of the experiment. The arousal level was retrieved from the
SAM assessments using a 9-point scale (from 1—low arousal to 9—high arousal) based on
pictograms.

In this study, a two-class classification model was first established to classify the state
of the signal as either an emotion or resting stage. Afterwards, a three-class classification
model was developed to identify the arousal strength of the detected emotion. The 9-point
arousal scale was converted to a three-class arousal strength by setting the values 1 to 3 as
low, 4 to 6 as mid, and 7 to 9 as high. Table 1 represents the arousal scale conversion. The
baseline and emotion classes consisted of recordings of 30 s, while the rest period had a
60 s duration.

Table 1. Arousal scale conversion.

Scale Arousal

9-Point 1 2 3 4 5 6 7 8 9
3-Class Low Mid High

2.2. System Methodology

The workflow of the proposed system in real-time applications is depicted in Figure 2.
The physiological signal analysis was separated into two paths, one for EDA and another
for ECG. The EDA data obtained from the experiments had to be pre-processed to address
disturbances, such as invalid measurements and signal discontinuity, during data gathering
and post-processing, which included skin conductance level (SCL) calculation. Signals were
then processed to determine emotional stimulus trigger time stamps. This key information
was used in conjunction with the ECG signal classification model.
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Figure 2. Flow chart of the system workflow for EDA and ECG signal analysis. The EDA analysis
path is used to detect the changes in signal activity. The trigger period is then used for the ECG signal
path analysis and classification of the emotional state and arousal strength. The red font indicates a
flow process that was rejected and removed from further processing, unless illustrated otherwise.

The ECG signals collected were then separated into signal snippets based on the
information from the EDA analysis. The ECG signal was first down-sampled and then
standardized for a consistent stimulus activity period between the subjects. This processing
was performed to address data synchronization issues. Outliers were then removed and
heart rate variability (HRV) calculated using two different time- and frequency-based
methods [42]. The HRV was then used as input to classification model 1, designed to find a
pattern within the data and classify the two states of the subject, emotion and rest. Next, the
emotion signal was passed through a continuous wavelet transform (CWT) to convert the
signal into an image, and then passed through classification model 2, where the emotion
signal arousal strength was classified.

2.3. Signal Processing
2.3.1. EDA Signal Processing

Given the placement positions of the electrodes and sensor for EDA data collection,
inconsistencies and noise were unavoidable. To counter these disturbances, the SCL output
derived from the EDA signal underwent a pre-processing stage. During the pre-processing
stage, the SCL signal was scanned for missing data, such as not-a-number (nan) errors, for
each subject. If a discontinuity was detected, piecewise cubic spline interpolation was used
to fill the gap. After this, a threshold was set to change any non-physiological value below
zero to zero to counteract false measurements. Figure 3 shows an example before and after
pre-processing.

To detect emotional stimulus trigger marks from the SCL data, a second-order deriva-
tive was performed to determine the deflection points in the signal. The output was then
used to extract the peaks, which represent the instance where a change in the EDA is
observed. The time frame between two consecutive trigger marks was later used as the
basis for the ECG signal snippet.
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Figure 3. Sample of SCL signal before and after the pre-processing stage. The black line shows the
original signal, and the red lines represent the signal output after pre-processing.

2.3.2. ECG Signal Processing

The ECG signal was first down-sampled from 1024 to 256 Hz, and then subdivided into
29 shorter signals representing the stimulus reactions from the experiment, the 14 emotions
(7 from visual stimulus and 7 from autobiographical recall), the 14 corresponding rest
stages, and a baseline measurement at the beginning of the experiment. Next, outliers
detected in the signals were removed by applying a 1 s sliding window with a stride of
one second to extract the minimum (min) and maximum (max) values across each stimulus
response. For each subject, the mean of the min and max was calculated in the respective
window frame and a threshold value set, so that any min and max value less than and
greater than, respectively, 2.5 times the mean min and max value was tagged for removal.
The tagged signal was then replaced with either its predecessor or successor of the same
length depending on the position of the highlighted signal. The algorithm used for outlier
removal is described in Appendix A. An example of the outlier removal algorithm applied
to the baseline measurement is shown in Figure 4.

Figure 4. ECG signal of baseline measurement of a subject. (a) Signal before (left) and (b) after (right)
outlier removal.

After removing the outliers from the raw ECG signal, the RR intervals were calculated
between the peaks of the QRS complex wave. When analyzing the output of the RR
intervals, different outliers were observed. Therefore, a separate outlier removal algorithm
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was implemented on the RR intervals using a generalized extreme Studentized deviate
test [43] and a modified Akima cubic Hermite interpolation [44,45] to fill gaps caused by
the discarded information.

Outliers were removed to enhance the accuracy and robustness of the analysis. Outliers
can distort underlying trends in the data, leading to potentially misleading results. By
excluding these anomalies, the analysis benefits from a more consistent and representative
dataset, thereby ensuring the validity of the conclusions drawn.

2.4. Feature Extraction

To achieve robust prediction, meaningful features need to be extracted. Since the
ECG information was used to classify the different stages of the response, the heart rate
variability (HRV) was selected as a relevant feature. The HRV can be calculated using
time- or frequency-based techniques. In total, eight features were selected as input to
the classifier, 4 time-based and 4 frequency-based. Time-based HRV features extracted
comprised 1—the root mean square of successive differences between heartbeats (RMSSD),
2—the standard deviation of the RR intervals measured in ms (SDNN), 3—the mean of
the RR intervals (RR_Avg), and 4—the heart rate (HR). Frequency-based HRV measures
comprised 1—the high-frequency power (HF), 2—the low-frequency power (LF), 3—very
low-frequency power (VLF), and 4—the ratio of high-frequency to low-frequency power
(HF2LF).

These features were selected since HRV captures the variability between successive
heartbeats and offers insights into the autonomic nervous system (ANS), which is integral
to emotional processing. Time-based HRV features measure overall heart rate variability
and its rapid changes, with alterations indicating different emotional responses. In the
frequency-based HRV, the balance between low-frequency and high-frequency components
can reflect shifts in emotional states, with specific patterns potentially distinguishing emo-
tions like joy from sadness or anger. Overall, HRV serves as a valuable tool in deciphering
the body’s autonomic responses to emotions, aiding in understanding emotional regulation
and processing.

2.4.1. Time-Based HRV

The RMSSD is calculated as the difference in time between two consecutive R waves
in milliseconds (ms) over a set period of time. In this study, 30 and 60 s time windows
were chosen for the RMSSD for emotion and rest, respectively, as these perform as well as
the 5 min period [42,46]. The computation of the RMSSD, where RR represents the time
interval between R peaks and N is the total number of RR intervals, is defined as

RMSSD =

√√√√ 1
N − 1

N−1

∑
i=1

(RRi+1 − RRi)
2 (1)

The SDNN is the standard deviation of the RR time intervals over the length of the
signal and is defined as

SDNN =

√√√√ 1
N

N

∑
i=1

(RRi − µ)2 (2)

where µ represents the mean of the RR intervals in ms.
The RR_Avg feature is calculated as the mean of the RR intervals, and HR is calculated

as the number of RR intervals in a 60 s time window:

HR =
60 ∗ 1000

µ
(3)
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2.4.2. Frequency-Based HRV

The frequency domain can be used to separate HRV into power in different frequency
ranges [42]. In this study, the Lomb–Scargle power spectral density [47] was used to
estimate the periodogram and frequencies of the given signal. Afterwards, the output was
separated into the three frequency ranges of HF, LF, and VLF. The HF2LF is calculated as
the ratio of HF to LF. The following frequency limits [42] were used for the calculation:

• HF: 0.15–0.4 Hz;
• LF: 0.04–0.15 Hz;
• VLF: 0.003–0.04 Hz.

The sum square energy was calculated for each of the HF, LF, and VLF, as follows:

x_Feat = ∑iP( fi) ∀(n < fi > m) (4)

where P represents the periodogram data, f the frequency, n the lower limit, and m the
upper limit of the corresponding frequency range.

2.4.3. Continuous Wavelet Transform (CWT)

The CWT was used to extract features for the classification of the emotions’ arousal
strength. A sampling frequency of 256 Hz was used with a scale range of 1 to 512, a time
bandwidth of 0.234, and a Morlet wavelet [48]. Figure 5 shows the output (Figure 5b) from
the CWT with a given ECG signal snippet input (Figure 5a).

Figure 5. ECG signal of emotion measurement of a subject. (a) Original signal (left) and (b) signal
after applying CWT (right).

2.5. Classification Models
2.5.1. Emotion Detector

To distinguish a signal’s emotion state, divided into either emotion or rest, from the
gathered features, a machine learning algorithm was adopted. Different models were tested
and the results are presented in the ablation study in Section 5.1, and the best-performing
one was selected. The support vector machine (SVM) classification model was thus used
to classify this two-class system. The SVM classifier has many strong points suitable for
this task, as they are versatile, robust to overfitting, and effective in high-dimensional
spaces [49,50].

The hyperparameters of the SVM were optimized using a Bayesian optimization
function for 100 iterations with a 5-fold cross-validation scheme. The optimized and
selected hyperparameters are described in Table 2. The model classified the signal as either
emotion or rest based on the predicted probability. The input features were normalized to
the range of 0 and 1 across each observation.
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Table 2. Selected hyperparameters for classification model 1 following the results of the optimiza-
tion process.

Hyperparameter

Multi-class coding One vs. One
Data standardization False

Kernel function Gaussian
Kernel scale 6.385

Box constraint 956.32

2.5.2. Arousal Strength Classifier

After identifying a signal as an emotion, it was passed through a CWT to convert
the signal into an image before entering classification model 2, to determine the arousal
strength of the given emotional response. To classify the image into one of the three arousal
strength classes, deep learning convolutional neural network (CNN) models were utilized.
Different CNN architectures were tested, the results of which are given in the ablation
study in Section 5.2. The best-performing model was selected for the classification.

The ResNet-50 [51] architecture with initial pre-trained weights, trained on the Ima-
geNet dataset, was used for model training. The last fully connected layer of the architecture
was replaced such that the output was set to 3, which represents the number of classes for
classification. Weighted cross-entropy was used for the loss function:

loss = − 1
N

N

∑
n=1

K

∑
i=1

wiTni ln Yni (5)

wi =
N
mi

where N is the total number of observations, K is the total number of classes, and wi is the
weight at class i. mi is the number of observations for class i, and T is the GT value for the
predicted value T. Table 3 shows the different training options used for model training.

Table 3. Selected classification model 2 training options after fine tuning.

Parameter

Optimization function Stochastic gradient descent with momentum (sgdm)
Epochs 12

Mini-batch 30
Learning rate 0.001

Gradient threshold 1.00
Shuffle Every epoch

2.6. Evaluation Criteria

To evaluate the performance of the different systems, different metrics were selected.
To assess the trigger mark detection from the SCL signal, the root mean squared error
(RMSE) was used:

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x̂i)
2 (6)

where N represents the total number of trigger marks, x the annotated trigger, and x̂ the
predicted trigger at a certain time.
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The emotion detector and arousal strength classifier models were evaluated using a
5-fold Monte Carlo cross-validation scheme. Performance was based on the mean of the
accuracy and F1-score over the 5 folds. The Fβ-score is calculated as follows:

Fβ_score =

((
1 + β2) ∗ Precision ∗ Recall

)
(β2 ∗ Precision) + Recall

(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where the β. is a coefficient used to weight the precision, and, in this work, β is set to 1 to
have a weighted balance between precision and recall. In Equations (8) and (9), TP stands
for the true positive, FP for false positive, and FN for false negative predictions. For the
second classification model (arousal strength identification), the TP accuracy was used to
assess the model performance.

3. Results
3.1. Dataset Distribution

Table 4 represents the original and selected datasets’ class distribution. The different
emotional classes of anger, disgust, fear, happiness, neutral, sadness, and surprise were
combined to form one class under the representation of emotion. Therefore, the two-class
system consisted of 266 observations for emotion and 266 observations for rest from the
selected dataset.

Table 4. Original and selected datasets’ class distribution.

Class
Original Data Selected Data

Image Stimulus Emotional Recall Image Stimulus Emotional Recall

Anger 24 24 19 19
Disgust 24 24 19 19

Fear 24 24 19 19
Happiness 24 24 19 19

Neutral 24 24 19 19
Sadness 24 24 19 19
Surprise 24 24 19 19

Rest 168 168 133 133
Total 336 336 266 266

Table 5 displays the distribution of the arousal levels from the SAM assessments. As
described in Section 2.1, a three-class system was established from the nine-point SAM and
the distribution of the dataset was 84 for low, 121 for mid, and 61 for high arousal strength.
The arousal strength labels were then randomly split into a training and testing set with a
ratio of 90% training, with 240 observations, and 10% testing, with 26 observations, such
that at least one observation from each nine-point SAM class was present in the testing set.

Table 5. Original dataset arousal level distribution.

Arousal Level
1 2 3 4 5 6 7 8 9

Low Mid High

Total observations
24 26 34 29 51 41 31 19 11

84 121 61
Training set 78 105 57
Testing set 6 16 4
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3.2. SCL Trigger Point Detection

The first phase of the system workflow demonstrated the efficient detection of the
trigger marks form the SCL signal, as observed in Figure 6. The strategy and steps adopted
were able to achieve an RMSE value of 0.9871 for all the trigger mark time stamps, for each
stage of emotion and rest, at both emotion induction methods, for all subjects.

Figure 6. Sample of an SCL signal for image stimulus with predicted and ground truth (GT) trigger
marks of a subject from the dataset. The blue circles represent the predicted trigger points, green
dashed lines the GT, and the black solid line the SCL.

3.3. ECG Signal Identification
3.3.1. Emotion and Rest Detection

In Figure 7a, the average TP accuracy across both classes, as well as the average
precision, recall, and F1-score accumulated over the five folds, are displayed. Figure 7b
also shows the aggregated confusion matrix over all five folds for both the emotion and
rest classes. The model achieved mean TP accuracy of 94.19% ± 2.50, with mean precision
of 94.16% ± 2.87, a recall mean of 94.21% ± 3.00, and a mean of 94.16% ± 2.55 for the
F1-score over all five folds and classes. The confusion chart revealed that the model had a
misclassification rate of 5.36% and 6.25% for the emotion and rest classes, respectively.

3.3.2. Arousal Detection

The results from the classification of the emotions’ arousal strength are represented in
Figure 8. The mean of the precision, recall, and F1-score over all five folds for each class is
displayed in Figure 8a, along with the mean and mean TP accuracy, whereas, in Figure 8b,
the summed confusion matrix over the five folds is depicted. The proposed model showed
some fluctuations in performance, reaching mean TP accuracy of 51.14% ± 5.58 over the
five folds. The mid arousal strength class showed the best performance among the classes,
achieving an F1-score of 60.31% ± 9.48, while the high arousal strength class performed
the poorest, with an F1-score of 33.41% ± 18.77. The best-performing model out of the five
trained models achieved mean TP accuracy of 60.37% over all the classes.
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Figure 7. Evaluation results of the performed 5-fold cross-validation on the classification model for
emotion and rest detection. (a) Mean precision, recall, and F1-score for each class over all 5 folds and
their means, along with mean TP accuracy over both classes and folds, with the standard deviations
depicted as error bars. (b) Confusion chart summed across all the 5-fold validation sets; blue regions
indicate the true positive (TP) of the corresponding class.

Figure 8. Evaluation results of the 5-fold cross-validation from the classification model for arousal
strength classification. (a) Mean of the precision, recall, and F1-score over the 5 folds and the mean
over all the classes along with the TP accuracy. The standard deviation is depicted as error bars.
(b) Confusion chart summed across all the 5-fold validation sets; blue regions indicate the true
positive (TP) of the corresponding class.

The confusion chart shows that the majority of the misclassifications of the low and
mid arousal strengths were linked to the mid arousal strength class with a rate of 50.81%
and 50% for the high and low classes, respectively.

4. Discussion

As observed in Table 4, the selected dataset was smaller than the original, with a
reduction of 20.83%. This reduction resulted from a first-stage signal analysis on the
original ECG signal, where data from five subjects revealed inconsistencies in the recording.
As a consequence, these samples were removed from further processing.

The distribution in Table 4 also demonstrates there was no bias towards a particular
class in the two-class system. Thus, there was equal representation during the training
process. However, in Table 5, a bias in the data towards the class of mid arousal strength
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is revealed, having a rate of 45.49% from the total distribution, with 31.58% for low and
22.93% for high. This data imbalance was countered with a class-weighted loss function,
as described in Section 2.5.2. This ensured the fair representation of each of the arousal
strength classes during model training.

The efficacy of the proposed model in distinguishing between the two classes of
emotion and rest is highlighted in Figure 7. The results indicate that the selected features,
and HRV specifically, have suitable embedded information for the task of distinguishing
between an emotion or calm or resting state. The robustness of the model at this stage
makes further processes throughout the workflow pipeline more efficient. Thus, overall
errors will be more sensitive to the model’s capability in identifying the strength of a
detected emotion’s arousal.

The results in Figure 8 reveal the difficulty in identifying the different arousal strengths
from the given dataset. One contributing factor to the heightened performance of the mid
arousal strength could be the inherent human uncertainty or variability surrounding the
projection of mid-range arousals. Contrary to real-life scenarios, where extreme emotions
tend to offer clearer cues, the model appears particularly adept at navigating the nuances of
these intermediate arousal strengths, possibly because of the complexities and ambiguities
that humans exhibit when expressing them.

In addition, the use of deep learning models is a high-dimensional problem and
requires significantly large datasets. Another contributing factor to this low performance
was linked to the data imbalance, as well as the limited number of total observations. The
data augmentation technique of signal oversampling was not adopted as it would have led
to the model overfitting on the data.

The low representation of the high arousal strength class also indicates that the subjects
were not strongly impacted by the experiment’s stimuli. Thus, no significant change in
their ECG signal was present. Indeed, when examining the recorded videos, which were
synchronized with the physiological signal measurements, minimal to no change in the
person’s facial expressions was observed. It is thus worth noting the need for potentially
more extensive tests to ensure that this state is better represented in the data, if possible.

Further, the dataset used in this study was composed of real human reactions to stimuli
perceived to trigger the corresponding emotional response. As a result, the complexity of
classification increased, since each person behaved differently towards the same stimuli.
Equally, the physiological signals also differed from one person to the other depending on
a wide range of factors, which in turn influenced the acquired features.

In the broader context of emotion recognition, this research underscores the potential
of physiological signals, specifically electrodermal activity (EDA) and electrocardiogram
(ECG) data, in accurately detecting emotions and assessing arousal strength. The notable
emotion detection accuracy of 94.19% achieved by emphasizing key descriptors from
heart rate variability (HRV) signifies a substantial advancement in the utilization of these
physiological markers. The proposed pipeline, with its real-time application capability,
highlights the emerging role of wearable devices in advancing the realm of digital health
therapeutics. Additionally, by incorporating a system that can be integrated into therapeutic
settings, the research paves the way for more personalized and adaptive therapeutic
interventions. The methodology, especially when compared to previous works, showcases
the efficacy of combining multiple physiological markers. Thus, this study adds a pivotal
dimension to the ongoing discourse in emotion recognition by emphasizing real-time,
wearable-device-driven insights, bridging the gap between laboratory findings and real-
world therapeutic applications.

As with any research, certain limitations of the study should be noted. Limitations
include no optimization on the signal window length for HRV feature extraction, no
hyperparameter tuning on the CWT, and no model explicability analysis. It should be
noted that the signal window length for HRV feature extraction was not optimized, which
could have influenced the accuracy of the HRV features derived. Additionally, the absence
of hyperparameter tuning for the continuous wavelet transform (CWT) suggests that the
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decomposition of the signal into its constituent frequencies might not have been at its
optimal state, potentially impacting the precision of the feature extraction. Furthermore,
without a detailed explicability analysis, the underlying rationale behind the model’s
decisions remained challenging to decipher, which might limit its practical application.
These factors collectively may constrain the generalizability of the findings.

The focus of future work will be to tackle some of these limitations by performing
an ablation study on the window length. An optimization function will be implemented
to tune the CWT hyperparameters. To evaluate the explicability of the model, differ-
ent techniques will be employed and an evaluation metric established for a quantitative
measurement.

5. Ablation Study
5.1. Traditional Classifier Algorithm Selection

To assess the performance and impact of the classification model on the given dataset
for emotion and rest classification, different traditional machine learning classifiers were
tested. The tested models were trained using the same features and their hyperparameters
optimized using the same strategy described in the Methods section, with a 5-fold cross-
validation scheme.

Table 6 represents the mean results over the 5 folds on each of the tested models over
all the classes. As highlighted, the SVM model with optimized parameters performed the
best overall. This indicates that it was able to create a more robust separable feature space
than the other tested models.

Table 6. Mean TP classification accuracy over the 5 folds and classes for each model on the given
dataset. Values in bold represent the best overall performance.

Model Accuracy (%)

K-Nearest Neighbors 91.20
Ensemble 91.20

Discriminant 90.90
Shallow Neural Network 92.60

Naïve Byes 83.30
Support Vector Machine 94.19

5.2. Network Architecture Influence

A convolutional neural network architecture has a strong effect on the outcome of
the model training process. In this study, five different architectures of Alexnet [52],
VGG16 [53], GoogleNet [24], EfficientNetb0 [54], and SqueezeNet [55], with initial pre-
trained weights, trained on the ImageNet dataset, were trained and analyzed for arousal
strength classification using the same training options defined in Section 2.

Each architecture has uniqueness and brings a key strength to the model training
process. VGG16 demonstrated that stacking small filters can be as effective as having
larger receptive fields with fewer parameters. GoogleNet allows for efficient multi-scale
processing by using filters of different sizes in parallel, capturing patterns at various scales.
EfficientNetb0 scales all three dimensions of depth, width, and resolution together, in
a balanced manner, resulting in efficient high-performing models. ResNet50 allows the
network to skip certain layers and reduces the problem of gradient vanishing. SqueezeNet
is lightweight and suitable for edge devices with limited computational power and is
designed to reduce the number of parameters without a significant loss in accuracy. AlexNet
allows the use of grouped convolutions to reduce the computational demand and promote
diverse feature extraction.

Table 7 showcases the mean TP accuracy results over all 5 folds and classes for each
model architecture. As can be seen, the ResNet50 architecture achieved the best perfor-
mance, highlighting its ability to learn relevant descriptive features for arousal strength
classification.
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Table 7. Ablation results of the mean TP classification accuracy over all 5 folds and classes for each
architecture on the given dataset. Values in bold represent the best overall performance.

Architecture Accuracy (%)

AlexNet 28.61
GoogleNet 39.10

EfficientNetb0 46.99
VGG16 19.88

SqueezeNet 37.61
ResNet50 51.14

6. Conclusions

This research used physiological signals for emotion detection and arousal strength
identification and a pipeline for real-time applications is proposed. The proposed workflow
emphasizes the contributions of wearable devices in advancing digital health therapeutics.
Such a system could be integrated into therapeutic settings to monitor patients’ emotional
responses during therapy sessions. This real-time feedback might be developed into a
guide for therapists in adjusting their strategies or interventions. Changes in electrodermal
activity (EDA) are first identified and this information is used to reinforce data gathered
from the electrocardiogram (ECG) to determine the state of the individual, differentiating
between a neutral, calm or rest, or emotional state. Subsequently, the arousal strength
of any detected emotional state is classified. The proposed model pipeline was able to
achieve emotion detection accuracy of 94.19% with statistical relevance by focusing on key
descriptors from the heart rate variability (HRV) features extracted from the ECG signal.
Classification accuracy of 51.14% was achieved for the arousal strength identification, which
was impacted by significant variability through the mid-range arousal states. Given the
complexity of identifying real reactions to emotional stimuli, coupled with the limited
amount of data, the proposed approach achieved compelling results, particularly in com-
parison to prior works and research using more measured input signals. Further analysis
and enhancements to the models are planned for future work, including the acquisition of
a new dataset along with real-time tests.
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Appendix A

Algorithm A1 describes the steps performed in this study to remove outliers from the
raw ECG signal for each emotional stimulus response.

Algorithm A1: Algorithm For Raw ECG Signal Outlier Removal

Function: ECG_Outlier_Removal(ECG, Sampling Frequency)
Input: ECG signal of emotional stimulus response with outliers
Output: ECG signal with outliers removed

1 S_Freq← Sampling Frequency, st← 1, et← S_Freq, Factor_1← 2.5
2 for i in size(ECG)/S_Freq
3 Sig_w← ECG[st:et]
4 Min_w[i]←min(Sig_w), Max_w[i]←max(Sig_w)
5 st← st + S_Freq, et← et + S_Freq
6 st_Mat[i]← st, et_Mat[i]← et
7 end for
8 Min_avg←mean(Min_w), Max_avg←mean(Max_w)
9 Bool_Out_Min←Min_w < Factor_1 * Min_avg
10 Bool_Out_Max←Max_w > Factor_1 * Max_avg
11 Col_min← find(Bool_Out_Min), Col_max← find(Bool_Out_Max)
12 Sec_Rem_Mat← vertical_stack(Col_min, Col_max)
13 for j in size(Sec_Rem_Mat)
14 Rs_C← Sec_Rem_Mat[j]
15 if Rs_C = 1 or Rs_C = 2
16 St_c← st_Mat[Rs_C], Et_c← et_Mat[Rs_C]
17 St_c_p← st_Mat[Rs_C + 1], Et_c_p← et_Mat[Rs_C + 1]
18 else
19 St_c← st_Mat[Rs_C − 1], Et_c← et_Mat[Rs_C − 1]
20 St_c_p← st_Mat[Rs_C − 2], Et_c_p← et_Mat[Rs_C − 2]
21 end if
22 ECG[St_c:Et_c]← ECG[St_c_p:Et_c_p]
23 end for
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