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Abstract: Neural networks are increasingly able to outperform traditional machine learning and
filtering approaches in classification tasks. However, with the rise in their popularity, many unknowns
still exist when it comes to the internal learning processes of the networks in terms of how they make
the right decisions for prediction. As a result, in this work, different attention modules integrated
into a convolutional neural network coupled with an attention-guided strategy were examined
for facial emotion recognition performance. A custom attention block, AGFER, was developed
and evaluated against two other well-known modules of squeeze–excitation and convolution block
attention modules and compared with the base model architecture. All models were trained and
validated using a subset from the OULU-CASIA database. Afterward, cross-database testing was
performed using the FACES dataset to assess the generalization capability of the trained models.
The results showed that the proposed attention module with the guidance strategy showed better
performance than the base architecture while maintaining similar results versus other popular
attention modules. The developed AGFER attention-integrated model focused on relevant features
for facial emotion recognition, highlighting the efficacy of guiding the model during the integral
training process.

Keywords: attention module; emotion recognition; deep learning; digital health; mental well-being;
network prediction analysis

1. Introduction

Neural networks have shown the ability to outperform traditional approaches in
different computational tasks, especially classification. Popular pre-trained network models
include AlexNet [1], VGG16 [2], and residual networks such as ResNet50 [3]. However,
with the rise in their popularity there are still many unknowns when it comes to the integral
learning processes of the network when making appropriate decisions, which is why they
are typically regarded as black boxes [4]. To try and understand the decision process,
explainable artificial intelligence (XAI) models have been introduced. These models use
prediction visualization techniques to visualize the regions of influence from the image on
the predicted outcome at different layers within the architecture.

XAI helps in understanding which region the network based its decision upon, and
based on this knowledge changes in the hyper-parameters can be made to improve the
results. This fine-tuning of parameters is an exhaustive time-consuming process for the
identification of optimal settings. However, with the introduction of attention modules
in recent years [5–9], a shortcut to extensive parameter tuning for better robustness and
regions of focus has become available. These attention modules can be easily integrated
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into any existing network architecture to improve network representation and regions of
focus by concentrating on informative features and diminishing less important ones [5,6].

One of the well-known and basic applications of machine learning is emotion intel-
ligence [10]. In this study, an attention module developed for facial emotion recognition
(FER) is examined for the performance improvement of a base convolutional neural net-
work (CNN) model. The face is chosen for emotion recognition as it is estimated that 65% of
emotions are expressed nonverbally via facial expressions (55%) and physiological signals
(10%) [11]. In this case, an efficient, robust FER system is desired to create a feedback
variable for integration in a closed-loop system to help treat people with autism spectrum
disorder (ASD) [12]. While facial expressions are often emphasized as primary nonverbal
communicators of emotion, it should be mentioned that whole-body expressions also hold
equal importance in understanding others’ emotional states, offering distinct advantages
such as recognizing emotions when faces are occluded and powerfully conveying action
intentions, as shown in previous research [13,14].

The dynamics of emotional stimuli, particularly their role and influence in clinical
contexts, has evolved in terms of our understanding over the years. It was widely accepted
that emotional stimuli, especially those perceived as threats, wielded considerable power
in directing selective attention, prioritizing their processing, and consequently inducing
automatic reactions [15,16]. However, recent research offers an intriguing perspective, noting
individuals’ reactions to such stimuli are incited primarily when they align with personal
objectives. This result suggests a context-dependent effect of facial emotions [17,18].

For instance, a previous study [18] explored this concept through a go/no-go task,
revealing that emotional cues influenced participants’ behavior only when pertinent to the
task at hand. Parallel findings have been observed in other domains, such as reaching arm
movements and critical executive functions like inhibitory control [17,19]. These revelations
underscore an essential nuance: the attentional system’s interaction with emotions is
intricately tied to its immediate context and the goals of the individual. Consequently, the
impact of information on emotion recognition might be contingent upon its relevance to the
task in focus. However, given this distinction, the focus of this article is aligned to staged
emotions rather than spontaneous reactions to stimuli.

This treatment concept is reinforced in [20], in which FER was used in a closed
system that provided a positive perspective towards utilizing such a concept for ASD
children’s interactions and behavioral monitoring. A small pilot study conducted in [21]
showed that the use of a closed-loop virtual reality environment had encouraging results,
suggesting such a system is potentially beneficial for the support of ASD patients in
building communication skills. However, to date, these systems lack feedback of the
subject’s response to the stimulus input, while a robust, efficient FER system can provide
this feedback.

The key to any good prediction model is its ability to interpret any input and pro-
vide the correct output regardless of external influences, such as lighting, orientation,
background noise, and color combinations. In short, this can be summarized as model
robustness. In some studies, robustness has become associated with adversarial robust-
ness, which is the ability of the network to maintain its decisions when the input data are
distorted or perturbed [22]. In this study, robustness is defined as the ability of a trained
network classifier in identifying emotions from data not seen during the training process,
and thus novel to the system yet still containing the same emotions. This robustness
definition is also synonymous with the network’s ability to generalize.

The pre-trained VGG16 [2] architecture modified for FER was used as the base model
for comparison in this study. Three separate models were created from the base by in-
corporating three different attention modules. The first model adopted a custom FER
attention module, the AGFER, which was developed specifically for guiding the training
process for robust emotion classification. The second model, the SEFER, was integrated
with the squeeze and excitation block (SE) [5]. Finally, the third model, the CBAMFER, was
integrated with a convolution block attention module (CBAM) [6].
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The well-accepted emotion database of OULU-CASIA [23] was used for training and
validation, while the FACES [24] database was used for testing and robustness analysis.
The use of two databases in this way ensures external influences are different and thus tests
robustness better than using a subset of similarly obtained data. The input images were first
pre-processed according to the method in [12] and split into a five-fold cross-validation [25]
scheme, with 80% training and 20% validation sets thus created for each segment.

This study aims to show that attention modules help guide the decision process of the
network to focus on areas of significance to the classification task, thereby achieving better
overall accuracy and efficacy.

Hereafter, Section 2 defines the methods for the attention module, network architecture,
image pre-processing, and analysis criteria. Section 3 presents the results, Section 4 presents
discussion of these results, and Section 5 performs the ablation study. Finally, Section 6
presents the conclusion.

1.1. Related Work
1.1.1. Facial Emotion Recognition (FER)

In [26], the performance of traditional machine learning techniques involving K-
nearest neighbors and support vector machines with the histograms of oriented gradients
as a feature extractor were examined against the performance of an AlexNet [1] CNN
for FER. The results obtained showed that the traditional methods performed just as
well as neural networks in terms of performance. In [12], the focus area of the networks’
decision was studied by visualizing the predictions through the implementation of gradient-
weighted class activation mapping (Grad-CAM) [27] on different image inputs. Results
showed that enhanced image pre-processing made the network more robust in terms of
focusing on the areas of particular significance to emotion classification.

Different approaches and models for emotion recognition have been studied over the
years. In [28] a study was conducted on the FER2013 [29] dataset and achieved state-of-
the-art results by using the VGGNet architecture and conducting extensive fine-tuning of
network hyper-parameters. In [30], a shallow two-network model architecture was studied,
where one network removed background data and the second generated point features on
the remaining face image, where accuracies of up to 96% were recorded using a combined
dataset. In [10], a two-network strategy was adopted where one network was trained on
a sequence of images and the second on the geometry-based trajectory computation of
facial landmarks, with a joint fine-tuning method subsequently proposed that achieved
better performance and state-of-the-art results on the OULU-CASIA [23] database (reaching
accuracies of 81.46% in a 10-fold cross-validation). In [31], the novel approach of a peak-
piloted network was proposed, where the peak and non-peak image frames from a sequence
were considered as a paired input to a network based on the GoogleNet [32] architecture,
where tests on the OULU-CASIA [23] database showed accuracies of up to 84.59%.

1.1.2. Attention Mechanisms

Learning mechanisms have recently shown improvement in CNN representations by
capturing spatial correlations between features [5]. In [5], the relations between channels in
network design were investigated and, as a result, an SE block was introduced to improve
the performance of networks by computing the interdependencies between the channels.
The tests were conducted on the ImageNet 2012 [33] dataset using the architectures of
VGGNet [2] and different residual networks. The results showed the SE blocks incor-
porated into the architecture outperformed the baseline models while slightly affecting
computational performance. In [6], the CBAM was introduced, in which the work extended
SE blocks by focusing on the spatial as well as the channel information, arguing spatial
attention is important in deciding where the network must focus. The tests were conducted
on the ImageNet 1K [34] database using ResNet50 [3] as the base architecture. The results
showed better performance over both the base and the SE–base integrated models with the
CBAM having finer attention than SE.
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In [7], two attention modules were proposed for spatial and channel features, which
learn the relations between the inter-channels and inter-spatial dimensions sequentially and
output refined features. Residual networks were used as the framework of the models with
an additive angular margin loss function during training. Performance on the test dataset
revealed enhanced performance. However, this strategy increased the computational time
and power required. In [8], the attention branch network (ABN) is defined; an attention
map from XAI is generated, which represents the regions of significance in an image;
and the effective weight of the attention mechanism is extracted in a supervised learning
approach. Results show that combining an ABN with base models improved performance
and enhanced capabilities when incorporated with other attention-laced networks. This
structure is somewhat complicated to add to an existing network and also adds more
computational load.

1.1.3. Facial Emotion Recognition with Attention

In [9], a VGG16 combined with bidirectional LSTM and an attention mechanism was
studied on single 2D images and multi-viewpoint images. The results showed increased
performance against other approaches, reaching 87.62% and 80.73% accuracy on datasets
for single and multi-viewpoint images, respectively. In [35], the authors propose slide-patch
and whole-face models that use attention mechanisms with SE blocks. State-of-the-art
performance was achieved on multiple datasets, and cross-database experiments showed
the improved performance and generalization ability of the models.

Based on the improvements noted from the SE and CBAM block applications over
base models, and given the simplicity in incorporating them into an existing network with
limited hindrance on computational performance, they were selected for use in this study’s
FER modeling.

2. Materials and Methods
2.1. Base Network Architecture

The VGG16 was selected as the base network model, as a deep representation depth
is considered important in classification results [2]. It is composed of five convolutional
blocks and three fully connected (FC) layers. The first and second convolution blocks
contain two convolution layers with rectified linear unit (ReLU) activation functions and a
pooling layer. Convolution blocks three, four, and five have three convolution layers with
ReLU activation and a pooling layer at the end. The architecture takes 224 × 224-pixel RGB
images as input and is composed of 41 layers with a total of 138 million parameters. For
this study, the model was trained from scratch without pre-trained weights.

To boost robustness and guide the models’ decision making during training, attention
modules were added throughout the architecture. In this study, the integration strategy
of [5] was adopted for all the proposed attention modules of AGFER, SEFER, and CBAM-
FER. They are placed after the second, third, and fourth convolutional blocks prior to the
last pooling operation of each of the blocks. Following the work of [36], the last pooling
layer (“pool5”) was also removed from the architecture to increase the spatial dimension for
better classification results and assessment of the decision visualization. This impact can be
seen in the ablation study performed in Section 5.1, which assesses change in performance
when specific parts of the CNN are removed. Figure 1 represents the network architecture
and the implementation of the attention block strategy.
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2.2. Attention Modules

Attention blocks have had a significant impact on conventional CNNs’ performance.
They have been adopted for different tasks, such as image classification [5–9] and image
segmentation [37]. They are credited for their ability to drive the learning process of
networks to focus on areas of particular importance to the task, thereby improving network
efficiency and efficacy.

2.2.1. Squeeze and Excitation (SE)

Squeeze and excitation (SE) blocks are simple in structure and implementation. They
enhance the representation power of the network by refining the channel-wise features
without drastically affecting computational performance [5].

In SE blocks, the features generated by the convolution layers are first squeezed to find
the channel statistics, which is achieved by implementing global average pooling (GAP) on
the spatial features across the channel dimension. An advantage of GAP is that it enforces
correlation between feature maps and the classes, making them class-agnostic confidence
maps. Equally, since there are no optimization parameters at this layer, over-fitting can be
avoided [38]. A gating mechanism is then added by means of two FC layers to bottleneck
the data. To reduce the dimensionality of the information, the first FC layer was assigned
to output a feature vector with a size of C/R, where R is a reduction coefficient and C is the
total number of channels. The output then passes through an ReLU activation function to
threshold each feature element. Afterward, it passes through the second FC layer, where
the feature space is scaled back up to the input dimension, the excitation phase, and ends
with a Sigmoid activation function before being multiplied channel-wise with the input
feature space to form the newly refined features. Figure 2 shows a schematic drawing of
the SE block architecture.
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2.2.2. Convolutional Block Attention Model

Convolution block attention models (CBAMs) are lightweight and can also be inte-
grated easily into pre-existing network architectures with minimal impact on the number
of parameters. They have a wide application range and have shown improvements in
classification tasks [6]. The CBAM attention module extends the concept of SE blocks by
considering the spatial information’s importance in deciding “where” to focus, as well
as the inclusion of a global max pooling (GMP) operator to gather features to infer finer
channel attention [6].
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A CBAM block is composed of two steps. The first step is where channel-wise attention
is computed and processed. In the second step, the spatial attention is calculated.

In the original CBAM architecture channel-wise attention module, the features of the
convolution layer are fed into both GAP and GMP in parallel. The output features are then
fed into weight-shared multi-layer perceptron (MLP) layers with one hidden layer that
reduces the dimension and a second which rescales it back to C. This process produces
vectors which are then summed and passed through a Sigmoid activation function to form
the channel-wise attention vector. The output of this process is then multiplied with the
input feature space to form the channel-wise refined features.

Next, for spatial attention, the refined channel-wise features are fed into channel-
wise global max pooling (CGMP) and channel-wise global average pooling (CGAP) in
parallel. The outputs are then concatenated across the channel dimension and fed into
a convolution layer with a filter size of seven before finally passing through a Sigmoid
activation function to form the refined spatial features. The refined CBAM features are then
the result of element-wise multiplication between the spatial attention features and the
refined channel-wise features.

In this study’s approach, some modification to the main CBAM architecture was
performed. The weights of the MLP were not shared between the FC layers but rather
followed the same approach of the SE block, i.e., a sequential approach. This approach
was taken for the FC layers so that they could learn independently from each other for a
better representation. Figure 3 represents a schematic drawing of the CBAM block used in
this study.
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2.2.3. Attention-Guided Facial Emotion Recognition

A custom attention module is introduced in this article: the attention-guided facial
emotion recognition module (AGFER). The AGFER combines the strengths of both SE and
CBAMs by highlighting the feature maps of influence, as well as the focus area within each
map. The input features pass through two pipelines in parallel, where the first extracts the
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maps of influence by passing through GAP followed by two FC layers, one with an ReLU
activation having a size of C/R, where R is a reduction coefficient and C is the total number
of channels, and one with a Sigmoid activation function and size of C. The second pipeline
determines the position of high concentration within the feature space, which is obtained
by applying CGAP followed by two convolution layers. The first layer involves ReLU
activation and has a filter size of 3, with the number of channels equal to m + 1, where m
is the total number of classes. The second convolution uses a Sigmoid activation function
with a filter size of 3 and a number of channels equal to 1.

The output from both pipelines is then merged using element-wise multiplication
followed by a Sigmoid activation and is subsequently fused with the input feature space.
Figure 4 represents a schematic of the AGFER attention block.
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2.3. Guidance Strategy

To boost the model’s classification performance and its focus on regions of impact for
emotion recognition, a guidance strategy was adopted. First, a binary mask representing
facial areas of special interest was created. This mask was used only during the training
stage, where the input was fused with the mask and specific weighting for the model to
focus on these areas and thus reduce the influence of the rest. Equation (1) represents
the mask–image fusion and the output IRe from the model input layer. IIn is the image
input, M is the binary mask, and α is the weighted parameter, set to α = 0.125 in this study.
Figure 5 provides a graphical illustration of the mask–image fusion.

IRe = IIn ∗ (M + α) (1)

In neural networks, when deployed for facial emotion classification, the attention
mechanism serves as a critical component to prioritize certain regions of the input image,
making sure the network focuses on emotionally salient features, such as the eyebrows,
eyes, and mouth. These regions often contain pivotal cues for emotion recognition. The
guidance strategy, in this context, directs the attention mechanism towards these emotion-
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ally significant regions. Without this guidance, the attention mechanism might give undue
importance to less relevant facial areas, potentially missing or diluting the emotionally
charged features that are essential for accurate classification.
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By introducing a guidance strategy, we provide the network with prior knowledge or
a hint about where the most informative regions are likely to be located. This proactive
approach ensures that the attention mechanism does not waste computational resources
and focus on irrelevant areas. As a result, the model is better equipped to recognize subtle
emotional cues, leading to improved accuracy in emotion classification. In the realm of
facial emotion classification, where subtle changes in facial expressions can differentiate
one emotion from another, ensuring that the network consistently focuses on the right areas
can make a significant difference in performance.

Furthermore, a class-weighted cross-entropy loss function was used to compensate
for any imbalance in class distribution. Weights were calculated as follows:

wc =
N

m ∗ sc
(2)

where wc represents the weights of a certain class c, N is the total number of observations,
m stands for the total number of classes, and sc is the number of observations for a specific
class c.

2.4. Database Descriptions

The well-accepted OULU-CASIA [23] database was chosen for the initial training and
validation of the network models. The database was generated using two image acquisition
systems with infrared and visible light, each taken under three illumination settings (strong,
weak, and natural light). The database is composed of image sequences of 80 different
subjects expressing the six basic emotions (anger, disgust, fear, happiness, sadness, and
surprise). A fraction of the entire database was chosen for the analysis, specifically the
non-cropped RGB images of visible light with a strong illumination setting. This dataset
was composed of 10,379 image frames with a quality of 320 × 240 pixels.

A second database was selected to test the generalization and robustness of the trained
models, providing an entirely independent dataset for this purpose. For this task, the
database of FACES [24] was chosen, which is made of images of facial portraits from varying
subject ages. This database is composed of two images per emotion expression, expressing
the six emotions of anger, disgust, fear, happiness, neutral, and sadness. It contains a total
of 2052 images with a quality of 2835 × 3543 pixels. Thus, per our definition of robustness
and generalization, this database is significantly different in terms of external influences.

Since the FACES database contains an extra emotion class (neutral) not present in the
OULU-CASIA dataset, the first three frames of a subject’s emotion image sequence were
taken as the neutral set, and the rest were taken to represent the specific labelled emotions.

2.5. Image Pre-Processing

To highlight the face of the person in the image and reduce background noise, signifi-
cant image pre-processing was performed. This step was crucial in model design as the
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goal of learning models is to learn from features relevant to the task, emotion recognition in
this case. The images from the OULU-CASIA dataset included a large background covering
up to 50% of the total frame. In [12], when the image was taken as in the dataset with no
pre-processing, the network focused on areas and features with no significance to emotion
classification. This study also showed that the more the image was cropped to the exact
facial characteristics without background noise, the better the focus areas of the network
were in making correct decisions.

Based on the results of [9], a finer image pre-processing model was adopted for this
analysis. Utilizing the object detection algorithm of [39] combined with the approach
of [40], the face of the subjects in the images were first segmented. After segmentation, the
algorithm was developed to extract the left eye and mouth regions from the face images
using the approach of [41], with the bounding box locations of the detected regions the
utilized as guidelines for further cropping. The dimensions of the left eye boundaries were
optimized so that the eyebrow is included and then extended to encompass the right eye
and eyebrow region as well.

The bottom boundary of the mouth region was set as the cropping edge for the lower
limit of the image, while the upper boundary of the eye pair region was set as the upper
limit. The right and left edges were set as the top right endpoint location of the left eye
bounding area and the range of the eye pair region. The image processing algorithm
developed effectively removed the background noise, focusing solely on the face of the
subject. The model was developed so that if any of the regions failed detection then the
image was excluded and removed from further analysis. Figure 6 describes the outcome
from the main stages of this image pre-processing algorithm.

Appl. Sci. 2023, 13, 10179 FOR PEER REVIEW  10  of  18 
 

using the approach of [41], with the bounding box locations of the detected regions the 

utilized as guidelines for further cropping. The dimensions of the left eye boundaries were 

optimized so that the eyebrow is included and then extended to encompass the right eye 

and eyebrow region as well. 

The bottom boundary of the mouth region was set as the cropping edge for the lower 

limit of the image, while the upper boundary of the eye pair region was set as the upper 

limit. The right and left edges were set as the top right endpoint location of the left eye 

bounding area and the range of the eye pair region. The image processing algorithm de-

veloped effectively removed the background noise, focusing solely on the face of the sub-

ject. The model was developed so that if any of the regions failed detection then the image 

was excluded and removed from further analysis. Figure 6 describes the outcome from 

the main stages of this image pre-processing algorithm. 

 

Figure 6. Image pre-processing steps from  input to output. Image captured from a camera (left), 

first face detection (middle), output of the image pre-processing algorithm (right). 

2.6. Performance Criteria 

To effectively evaluate the performance of the models and the concentrations the at-

tention modules bring, a criterion for evaluation was first defined. The data for analysis 

were based on the K-fold validation scheme, where images of the dataset were first parti-

tioned into five segments, with each choosing a random training and validation set of im-

ages that was different from the next. This approach guarantees that all images are utilized 

for both  training and validation. The performance criterion  for  the respective model  is 

determined by taking the average of the true-positive (TP) accuracies from the predicted 

validation sets. Training accuracy was used to assess if the model was over-fit to its dataset 

of images by comparing it with the test or validation set accuracy. A limit of 5% difference 

between the validation and training accuracy was set, where any value less than this limit 

was considered to be a model that was not over-fit to its data. 

2.7. Training Options 

All models were executed in a MATLAB 2022a environment on a desktop with an 

AMD Ryzen Threadripper PRO 3955WX 16-Core @3.90 GHz, 512.00 GB memory (RAM), 

and the 64-bit Windows 10 operating system with an NVIDIA RTX A6000 graphics card. 

A constant learning rate of 0.0001 was set and run for 100 epochs. The stochastic gradient 

descent with momentum (SGDM) optimization function was used with a batch size of 128. 

3. Results 

3.1. Dataset Distribution 

Table 1 summarizes  the class distribution of both datasets. After passing  the data 

through  the  image pre-processing stage, a  loss of 10.41% and 8.77% of  images was de-

tected for the OULU-CASIA and FACES datasets, respectively, due to the inability of the 

algorithm to locate the defined regions of interest. The emotion classes are nearly equally 

distributed with a mean of 14.29% ± 1.45 and 16.67% ± 1.04 for OULU-CASIA and FACES 

datasets,  indicating  there  is no particular bias  to a certain emotion class. The  lack of a 

surprise class in the FACES dataset will pose a challenge and demonstrate the capability 

of the model in prediction generalization. 

   

Figure 6. Image pre-processing steps from input to output. Image captured from a camera (left), first
face detection (middle), output of the image pre-processing algorithm (right).

2.6. Performance Criteria

To effectively evaluate the performance of the models and the concentrations the atten-
tion modules bring, a criterion for evaluation was first defined. The data for analysis were
based on the K-fold validation scheme, where images of the dataset were first partitioned
into five segments, with each choosing a random training and validation set of images
that was different from the next. This approach guarantees that all images are utilized
for both training and validation. The performance criterion for the respective model is
determined by taking the average of the true-positive (TP) accuracies from the predicted
validation sets. Training accuracy was used to assess if the model was over-fit to its dataset
of images by comparing it with the test or validation set accuracy. A limit of 5% difference
between the validation and training accuracy was set, where any value less than this limit
was considered to be a model that was not over-fit to its data.

2.7. Training Options

All models were executed in a MATLAB 2022a environment on a desktop with an
AMD Ryzen Threadripper PRO 3955WX 16-Core @3.90 GHz, 512.00 GB memory (RAM),
and the 64-bit Windows 10 operating system with an NVIDIA RTX A6000 graphics card. A
constant learning rate of 0.0001 was set and run for 100 epochs. The stochastic gradient
descent with momentum (SGDM) optimization function was used with a batch size of 128.
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3. Results
3.1. Dataset Distribution

Table 1 summarizes the class distribution of both datasets. After passing the data
through the image pre-processing stage, a loss of 10.41% and 8.77% of images was detected
for the OULU-CASIA and FACES datasets, respectively, due to the inability of the algorithm
to locate the defined regions of interest. The emotion classes are nearly equally distributed
with a mean of 14.29% ± 1.45 and 16.67% ± 1.04 for OULU-CASIA and FACES datasets,
indicating there is no particular bias to a certain emotion class. The lack of a surprise class
in the FACES dataset will pose a challenge and demonstrate the capability of the model in
prediction generalization.

Table 1. Class distribution of both OULU-CASIA and FACES datasets before and after Image
Pre-Processing.

Emotion OULU-CASIA FACES

Original After Image
Pre-Processing Original After Image

Pre-Processing

Anger 1790 1315 342 292
Disgust 1633 1195 342 292
Fear 1796 1503 342 303
Happiness 1668 1502 342 338
Neutral N/A 1219 342 330
Sadness 1668 1200 342 317
Surprise 1701 1365 N/A N/A
Total 10,379 9299 2052 1872

3.2. Model Performance

Figure 7 shows that the attention-integrated models significantly outperformed the
base model. The neutral class showed the weakest performance in the attention-guided
networks with a mean of 58.32%, 57.95%, and 58.53% for each of the AGFER, SEFER,
and CBAMFER models, respectively, while the remaining emotion classes had greater
than 90% classification accuracy. The proposed AGFER model had a mean accuracy
of 89.19% ± 0.75, matching the performance of the SEFER and CBAMFER models with
88.73% ± 0.91 and 89.77% ± 0.70, respectively. The base model’s low performance was
recorded with a mean of 19.76% ± 2.49 over all emotion classes and the five segments.

To assess the ability to generalize, the trained models were tested against the inde-
pendent FACES dataset. Table 2 shows the results separated according to the different
age groups present. The model integrated with the proposed AGFER attention block
performed the best out of the different trained models, achieving a mean classification
of 46.50% ± 1.39. The AGFER model outperformed the others with increases of 27.97%,
6.02%, and 1.19% compared to the base, SEFER, and CBAMFER models, respectively. The
young age group had the highest mean classification accuracy across each of the models,
except for the base case. It is important to note that the models were entirely naïve to the
FACES dataset.

In Figures 8 and 9, the confusion matrices for the AGFER (a) and CBAMFER (b)
models are depicted for the OULU-CASIA validation and FACES dataset over all five
segments combined (summed). The matrix reveals the struggle of the models to classify
the neutral class, where a strong misclassification of the fear class in the OULU-CASIA
validation set was observed. For the confusion matrix of the FACES datasets, the models
were misclassifying fear as surprise.
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Table 2. Mean classification accuracy (%) with the FACES dataset for all emotions across each segment
for each model. Values in bold represent the best performance of the stride dimension.

Age Group AGFER Base SEFER CBAMFER

Young 49.60 ± 0.95 17.35 ± 0.45 43.95 ± 8.89 48.81 ± 3.36
Middle-aged 48.50 ± 1.30 18.07 ± 0.43 41.80 ± 7.57 46.57 ± 4.71
Old 41.40 ± 1.92 20.17 ± 0.50 35.70 ± 4.66 40.56 ± 6.92
Mean 46.50 ± 1.39 18.53 ± 0.46 40.48 ± 7.04 45.31 ± 5.00
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Figure 7. Mean classification accuracy for each emotion and the mean of all emotion classes of the
OULU-CASIA validation dataset over the five segments for each model. The error bars represent the
standard deviation over the five segments.
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4. Discussion

The results from Figure 7 reveal that the attention module-integrated network models
outperformed the base architecture in all emotional classes given the training settings de-
fined. The models did not achieve comparable performance for the neutral class compared
to the other emotional classes. This difference is linked to feature representation, making it
difficult for the model to distinguish neutral from the other classes, due in part to limited
inter-class variability. This issue can be seen in the confusion matrix results of Figure 8,
where the neutral class was misclassified the most.

The base model’s performance showed the inability of the model to learn the required
features with the given constraints, as evident from its performance for non-neutral emotion
classes. An increase in the number of epochs (to reach 450) for the base model did yield
similar performance to the other models trained at 100 epochs; however, this level of
training uses much more resources and the training time required was three times longer.

The AGFER model was able to achieve comparable standards with the other attention
models of SEFER and CBAMFER, highlighting its ability to refine features for a conclusive
output. The CBAM model showed a small performance advantage of 0.57% ± 0.05 over the
AGFER model due to the design structure of the CBAM module in learning and embedding
more information. This slight improvement comes at the cost of more resources, with an
increase of 0.1% in the number of learning parameters for the CBAMFER model compared
to the AGFER model. The inference rate was also higher for the CBAMFER model, with
a rate of 25 Hz compared to that of the AGFER (30 Hz). This increase is attributed to
the depth of the architecture, where the AGFER model has a total of 80 layers while the
CBAMFER has 92 layers. In terms of training time, an average of 2 h 35 min was observed
for AGFER, while an average of 3 h 1 min was observed for CBAMFER. The error bars
also indicate that the attention-based models all worked within a short range across all five
segments, which emphasizes the efficiency and stability of the model guidance process.

While the choice of the OULU-CASIA database was informed by its credibility and
prevalent use in related studies, a cross-database analysis was conducted to bolster model
generalizability and counteract the pitfalls of reliance on a single dataset, reflecting a
broader spectrum of facial expressions and conditions and thus underscoring the model’s
adaptability and performance in diverse real-world scenarios.
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Table 2 reveals a weakness in the model when it comes to classifying emotions from
other sources with different participant demographics and different external influences.
The models were not able to maintain the same high performance rate as they had for
the training and validation set from the OULU-CASIA dataset. This anomaly is linked to
key factors including the quality of the input image, the age variation, and the different
emotional expressiveness between participants in the OULU-CASIA and FACES datasets.

In particular, image quality has a strong impact on prediction as the OULU-CASIA
dataset was captured at a low resolution, while the FACES dataset contains high-resolution
images. The age of the subjects plays a small role, which can be noticed in Table 2, where
the young age group images performed better than the others. This outcome is likely due to
the OULU-CASIA dataset consisting mostly of participants from a young age demographic.
The facial expressions for the defined emotion classes are also different between the datasets,
creating a challenge for any classification model. This issue is evident in the results of
the confusion matrices from Figure 9, where the AGFER and CBAMFER models showed
difficulty in identifying and distinguishing neutral and sadness images from anger, disgust,
and fear in the FACES dataset. This latter issue highlights the limitation associated with
the large array of human facial expressions compared to the relatively limited images in
these datasets, as well as the potential need for much larger labelled datasets.

A salient difference between the two datasets lies in how they represent emotional
intensity. The FACES dataset is characterized by its focus on overt and distinct emotional
expressions, capturing what can be described as well-defined emotional states. In contrast,
the second dataset presents a more intricate range, spanning from the subtlest of emotional
undertones to pronounced expressions. This depth mirrors the diverse ways emotions
manifest in real-life settings, where their intensity can vary widely.

Moreover, the cultural representation in each dataset is also markedly different. FACES
is primarily anchored in Western contexts, echoing emotional norms and expression styles
commonly associated with European societies. Conversely, the OULU-CASIA dataset is
more globally inclusive, incorporating data from varied regions such as Asia and Europe,
thereby providing a wider lens into cultural emotional expressions.

This diverse blend of cultural variations, demographics, emotional intensities, and
image quality contributes to the observed effects on model performance during cross-
database evaluation.

Comparing the AGFER-integrated model with other research approaches, it can be
seen that the proposed attention–guidance pipeline yielded state-of-the-art results with
the OULU-CASIA dataset. Table 3 represents the evaluation results of different research
approaches on the OULU-CASIA dataset.

Table 3. Comparison of mean classification accuracy results from different methods with the OULU-
CASIA dataset. Values in bold represent the best performance.

Approach Mean Accuracy (%)

Jung H. et al. [10] 81.46
Haddad J. et al. [42] 84.17
Zhao X. et al. [31] 84.59
Yu Z. et al. [43] 84.72
Yu Z. et al. [44] 86.23
Ding H. et al. [45] 87.71
Yu Z. et al. [43] (with LSTM) 88.98
Proposed AGFER approach 89.19

The increase in dimensional space coupled with the proposed attention module and
guidance strategy demonstrated effectiveness in improving classification performance
for FER. The attention module highlighted the regions of relevance and extracted the
descriptive features to find a comprehensive pattern, capturing facial expressions effectively.
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The weighted loss balanced the class presence distribution during training so that each
emotion class was represented equally.

A crucial aspect warranting discussion is the relationship between the proposed
AGFER attention module and the self-attention mechanism foundational to the Transformer
architecture. The Transformer’s self-attention mechanism has garnered acclaim for its
ability to weigh the significance of different input elements in relation to a given element,
allowing for dynamic recalibration based on context. Our attention module highlights the
feature maps of influence, as well as the focus area within each map, and is coupled with
the adopted guidance strategy, thus directing the attention mechanism towards regions
of emotional significance. By understanding the underpinnings of both mechanisms, it
becomes evident that, while they share foundational similarities in attending to different
components of input, the differences in our module are geared towards providing the
network with prior knowledge about where the most informative regions are likely to be
located. This proactive approach ensures the model’s ability to recognize subtle emotional
cues, leading to improved accuracy in emotion classification. Drawing these parallels and
distinctions helps contextualize our module’s design choices and its potential advantages
in the broader landscape of attention mechanisms.

Adversarial robustness, particularly in the face of imperceptible perturbations, is
in-deed an indispensable aspect of model evaluation. Perturbations, even those that might
seem negligible or imperceptible to the human eye, can significantly skew model pre-
dictions, revealing vulnerabilities. When the models were subjected to such perturbed
images, based on the work of [46], a consistent pattern of performance degradation was
observed with an average decrease of 24% for each model. This observation accentuates the
challenges these perturbations present, underscoring the need for continuous refinements.
Drawing insights from [46], it becomes evident that achieving a balance between generaliz-
ability and adversarial resilience remains an intricate step in model optimization. While
the current framework of AGFER showcases promising results with standard datasets, the
adversarial landscapes underscore areas for further exploration and enhancement.

As demonstrated in this study, attention-integrated models outperformed the base
model given the defined constraints, parameters, and datasets. As in any research, some
study limitations were highlighted. Limitations include no hyper-parameter tuning for
the reduction parameter R of the attention blocks, neglecting the time-domain factor from
the training data sequences, and not performing model explicability analysis. Future work
will focus on tackling some of these limitations by tuning the reduction parameter via
an optimization function. The time domain will be taken into consideration through the
use of long short-term memory (LSTM) networks or Transformer models. To evaluate
the explainability of the model, a class-dependent evaluation metric will be established
for a quantitative measurement. Other approaches, such as multi-input feature fusion,
are also considered along with larger dataset acquisition for more comprehensive model
development.

In the scope of the comparisons, the proposed AGFER attention module was evaluated
against two distinct attention modules and a foundational model architecture. However,
the study did not encompass a broader assessment against leading state-of-the-art attention
mechanisms in facial emotion recognition. This limitation confines the robustness of the
results and might limit the full appreciation of the relative significance of the AGFER
attention module.

5. Ablation Study
5.1. Model Stride Reduction

The network architecture’s stride reduction was analyzed for performance assessment
of the proposed models. Any reduction in the overall stride will increase the computational
demand; therefore, to keep the training options fixed to the defined settings, a reduction of
two was possible given the hardware restrictions. Thus, the models were trained with a
reduction of two in the overall network stride to determine the effects of the increase in the



Appl. Sci. 2023, 13, 10179 15 of 17

spatial dimension on the outcomes. The final pool layer prior to the FC layer was removed
to increase the feature space from 7 × 7 × C to 14 × 14 × C, where C is the number of
channels at the given level.

Table 4 highlights the results of the model stride reduction experiment. As can be
noted, the lower the overall stride, the better the performance observed in each model. This
improvement is related to the increase in the spatial dimension, which provides a more
accurate interpretation of the learned features.

Table 4. Mean classification accuracy over all segments and emotion classes for each model at
both overall network architecture stride dimensions with the OULU-CASIA dataset. Values in bold
represent the best performance of the stride dimension.

Dataset Overall Stride AGFER SEFER CBAMFER

OULU-CASIA
32 86.81% ± 0.64 86.00% ± 0.74 86.84% ± 1.69
16 89.19% ± 0.75 88.73% ± 0.91 89.77% ± 0.70

6. Conclusions

In this article, the advantages of using attention-integrated modules for facial emotion
recognition are highlighted and a new attention module with a guided training pipeline
is proposed. The proposed attention-guided facial emotion recognition (AGFER) module
couples spatial and channel importance and works with the guidance strategy to emphasize
key descriptors in the images for a more robust outcome. The attention-infused models
were able to outperform the base model with a margin greater than 60% in terms of mean
accuracy given the training settings applied. The AGFER model achieved comparable
performance to the squeeze and excitation (SE) and convolutional block attention module
(CBAM)-integrated models with the OULU-CASIA validation set while outperforming
them with a mean margin of 3.60% with the FACES dataset. The proposed attention–
guidance strategy showed the capabilities of attention-laced networks in improving per-
formance by focusing on areas of relative importance towards emotion classification and
reducing the time allotted for training, thereby saving resources.
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