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Abstract: Monitoring the machining process is crucial for providing cost-effective, high-quality
production and preventing unwanted accidents. This study aims to predict critical machining
conditions related to surface roughness and tool breakage in titanium alloy slot milling. The Siemens
SINUMERIK EDGE (SE) Box system collects signals from the spindle and axes of a CNC machine tool.
In this study, features were extracted from signals in time, frequency, and time–frequency domains.
The t-test and the binary whale optimization algorithm (BWOA) were applied to choose the best
features and train the support vector machine (SVM) model with validation and training data. The
SVM hyperparameters were optimized simultaneously with feature selection, and the model was
tested with test data. The proposed model accurately predicted critical machining conditions for
unbalanced datasets. The classification model indicates an average recall, precision, and accuracy of
80%, 86%, and 95%, respectively, when predicting workpiece quality and tool breakage.

Keywords: tool monitoring; milling; Ti6Al4V; binary whale optimization algorithm; feature selection;
slot milling; edge box; unbalance dataset

1. Introduction

The fourth industrial revolution, known as Industry 4.0, has revolutionized manufac-
turing by reducing the need for human intervention. This revolution has led to lower prices
and increased production volume. Industry 4.0 achieves this through automation and
robotics, which lower labor costs and boost production. Additionally, the flexibility and
customization capabilities of Industry 4.0 enable cost-efficient production of smaller batches
and custom products, potentially resulting in decreased prices for machined and milled
items [1]. The fourth generation industrial revolution was proposed by Kagerman et al. [2]
due to the existing infrastructures of the world, such as universal access to the Internet and
computer equipment, the reduction in the cost of providing computer parts, the expansion
of IoT technology, and the growth of artificial intelligence.

As the global market grows, it is essential to have access to health monitoring and
diagnosis tools, such as Tool Condition Monitoring (TCM) [3]. The TCM systems are used
for real-time monitoring and predictions of when tools need to be changed during cutting
processes. These systems are becoming increasingly important with the rise of flexible,
intelligent, and computer-integrated manufacturing systems [4]. Various sectors in the
industry have adopted hard-to-machine materials like Ti6Al4V for their strength, corrosion
resistance, and extended creep life. However, their machinability is poor due to high
cutting forces, high-temperature development, and severe work hardening. In this regard,
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correct prediction is crucial for optimizing machining efficiency, tool life, surface quality,
and process stability, leading to competitive advantages and sustainable practices in indus-
trial applications. TCM systems are needed to optimize tool life and boost production [5].
Tool monitoring detects tool problems before total failure, eliminating extra machining
expenses by repairing or replacing the tool at the right moment [6]. Recently, artificial
intelligence-based online tool monitoring has made significant progress. Intelligent models
analyze data from various machining processes to classify different machining conditions
as needed. There are two methods for monitoring machining processes: direct and indirect
methods. Direct methods for monitoring machining processes involve measuring param-
eters using lasers, cameras, and ultrasonic devices. These methods are generally reliable
but can become challenging in situations such as with a high-pressure coolant–lubricant.
Most researchers have focused on indirect monitoring approaches to understand better the
relationship between cutting tool conditions and variables such as cutting forces, vibration,
and surface finish [6–8]. Feature-based monitoring techniques use features derived from
sensor signals to detect the process condition [9]. It can achieve indirect monitoring by
monitoring power signals, vibration, force, current consumption, audio emissions, and
other relevant sensors. An indirect monitoring system involves signal registration, prepro-
cessing, feature extraction (mainly in three domains: time, frequency, and time–frequency),
feature selection, pattern recognition, and decision making [10]. Data analysis over time
often involves statistical analysis, singular spectrum analysis (SSA), empirical mode de-
composition (EMD), and principal component analysis. On the other hand, analyzing data
in terms of frequency requires a fast Fourier transform (FFT) or power spectrum density
(PSD). In TCM, the wavelet transform (WT), short-time Fourier transform (STFT), empirical
wavelet transform (EWT), intrinsic time-scale decomposition (ITD), and Hilbert–Huang
transform (HHT) are frequently used to examine signals simultaneously in both time and
frequency domains [11–14]. Intelligentization of machining is a growing trend in the ma-
chining industry. Li et al. [15] developed a real-time tool breakage detection system that
employs an acoustic emission (AE) sensor and an electric feed current sensor, utilizing a
current sensor as an economic monitoring tool. The discrete wavelet transform (DWT) was
used to analyze AE and feed electric current signals. The experimental results showed
that the system could accurately detect tool breakage. Li et al. [16] studied tool breakage
detection in end milling using the spindle current. A convolutional neural network (CNN)
was adopted to detect tool breakage by analyzing the signal of the spindle current; CNN
achieved a high accuracy rate (93%). The time domain analysis revealed that the spindle
current could serve as an indicator of tool wear. This discovery implies that utilizing current
to predict tool breakage is a feasible choice with promise for enhancement. Kolan et al. [17]
present a system for monitoring drill tool wear through machine data. They investigate the
correlation between directly measured flank wear ratio and indirect indicators like drive
currents and workpiece vibration, showcasing significant correlations with wear via RMS
signals. Tahir et al. [18] used three piezoelectric sensors to detect tool wear using cutting
force signals in the time and frequency domain. Results showed that signal amplitudes of
the main cutting force increase in the time domain as flank wear increases. In contrast, the
amplitude peak in the frequency domain decreases with increased flank wear and cutting
speed. Sensor fusion is an effective method to enhance monitoring systems by merging
data from several sensors in a complementary manner. By adopting sensor fusion, more
reliable data can be produced by adjusting the monitoring systems [19]. However, having
excessive sensors can lead to an abundance of redundant and useless features, causing the
monitoring system to become less effective and resilient [14]. Segreto et al. [11] developed a
tool wear estimation method for Inconel 718 based on detecting cutting force, AE, and vibra-
tion acceleration signals. Wavelet packet transform (WPT) decomposition was employed
to extract various signal features (SFs). The authors then utilized them to form multiple
feature pattern vectors (FPVs) for artificial neural networks (ANNs). Results showed that
the proposed method could accurately estimate cutting tool wear. Similarly, Niaki et al. [20]
investigated the use of the recurrent neural network (RNN) with statistical features of WPD



Machines 2023, 11, 835 3 of 25

for TCM of hard-to-cut materials. In their study, sensory information from spindle power
and vibration was utilized. The improved performance accurately estimated tool wear,
increased productivity and quality, and reduced costs. He et al. [4] introduced a new way to
predict tool wear during turning operations using temperature signals and a stacked sparse
autoencoder (SSAE) model. Their method was more accurate and stable than traditional
methods, and time–domain features of the temperature signal were highly related to tool
wear. The authors suggest that incorporating temperature signals can be a reliable way to
enhance wear predictions. Hojati et al. [21] proposed a model to predict critical machining
conditions concerning surface roughness and tool breakage during the milling of a titanium
alloy (Ti6Al4V). After collecting the process signals through a Siemens SINUMERIK Edge
Box computing device, the Gramian angular field (GAF) and a CNN method were applied.
The current investigation showed that the model achieved acceptable performance with
recall and precision values of 75% and 88%, respectively, and the accuracy stood over 95%
in different groups. The authors recommend that future improvements to the model should
involve expanding the dataset, specifically by collecting more experimental data related to
the critical machining condition. Aghazadeh et al. [19] present a methodology for tool wear
monitoring using WT, spectral subtraction, and CNNs. The WT reveals the time-variant
characteristics of the signal frequency response. At the same time, spectral subtraction re-
moves the steady-state part of the signal due to regular cutting and magnifies the remaining
fault characteristics. The CNNs accurately characterize internal variations within a large
amount of data. Results show that the proposed methodology has an average accuracy
of 87.2% and 81.5% with and without spectral subtraction, respectively. Pagani et al. [22]
present a deep learning approach for tool wear assessment in machining operations. The
method uses the monitoring feature of chip color characteristics like RGB and HSV image
channels. It can process complex color distributions on the chips and classify the tool wear
state. The method was tested on five different tools with five distinct cutting conditions. It
could accurately predict tool wear with up to 97% accuracy. However, it was only suitable
for fixed machining processes due to the influence of workpiece materials and cutting pro-
cess parameters. The curse of dimensionality caused by large datasets with many features
reduces machine learning model performance. It increases complexity and computational
costs [23]. Dimensionality reduction techniques, such as feature selection and extraction,
are used to address this issue. Feature selection removes redundant and irrelevant features
to select the most optimal subset, while feature extraction generates smaller-dimensional
features. Both approaches aim to improve model performance, prevent overfitting, and
enhance speed [24]. Feature selection techniques are classified into filter, wrapper, and
hybrid methods, each with advantages and limitations. Filter methods assign weights to
features but ignore their relationships, while wrappers optimize feature sets at a higher
computational cost. Hybrid approaches combine the benefits of both methods [12,23,24].
Maciej Kusy et al. [25] propose a feature selection approach for a milling process dataset,
combining Pearson’s linear correlation coefficient, ReliefF, and the single decision tree
methods. The approach identifies the most significant features and creates a reduced
dataset, evaluated using computational intelligence models for classification tasks. The
results confirm the effectiveness of the approach and suggest its universality for different
classification problems. Further research will explore weighting the selected features based
on classification correctness. Xie et al. [26] discuss using continuous hidden Markov models
(CHMMs) for TCM and life prediction in CNC high-speed milling operations. The authors
use Fisher’s discriminant ratio (FDR) as the criterion for feature selection. Ten top-value
features are selected to establish the CHMMs. The proposed method uses two feature sets to
monitor different tool wear conditions (medium and severe worn states). The results show
that FDR is a robust feature-selecting algorithm that can distinguish severely worn tool
states but has a poor ability to classify other states. Liao et al. [27] introduced a recognition
scheme for tool wear states that relies on signal analysis and machine learning. The authors
implemented feature extraction through time domain analysis, frequency domain analysis,
and WPD. The feature selection module uses a genetic algorithm (GA) to select a subset
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of features that best predict tool wear. The tool wear state classification module that uses
an SVM model optimized by the Grey Wolf Optimizer (GWO) algorithm. Chen et al. [28]
studied chatter detection in a multi-channel monitoring system. The ensemble empirical
mode decomposition (EEMD) decomposes the raw signals into intrinsic mode functions
(IMFs) with various frequency bands. Features extracted from IMFs are ranked using the
Fisher discriminant ratio (FDR) and presented to a linear SVM for classification. The most
effective channel to detect chatter was identified in their work. The results showed that
the multi-channel strategy achieved higher accuracy than the single-channel strategy. In
a study conducted by Binsaeid et al. [29], they investigated the effectiveness of machine
learning and machine ensemble techniques (such as majority vote and generalized stack-
ing ensembles) for analyzing sensor signals (force, vibration, AE, and spindle power) in
machining 4340 steel. They utilized a data acquisition and signal processing module to
extract 135 features from the signals. By applying a correlation-based feature selection
technique, they identified the most significant features. Surprisingly, they found that using
a subset of 25 features outperformed all 138 features, which led to improved computational
performance and greater efficiency in TCM modeling. Kossakowska et al. [30] presented
a filter methodology for prominent SFs in tool wear diagnostics in the time, frequency,
and time–frequency domains. The study did not find strong correlations with tool wear
but proposed a large set of SFs that may be related to tool wear. The research findings
suggest that no single SF is always associated with tool wear. For each new machining
case, many different SFs should be determined, and those related to the tool state should
be automatically selected. Hu et al. [14] investigated the tool wear mechanism in milling
Ti–6Al–4V under minimum quantity lubrication (MQL) conditions. Cutting forces and
AEs were measured online and used as raw sensor signals. The SFs were analyzed and
extracted from the time and frequency domains. High-correlated features were selected
based on mutual information (MI). Linear discriminant analysis (LDA) was used to re-
duce dimensionality. Then, the v-SVM was used to predict tool wear states. An overall
classification rate of 98.9% was obtained. Liu et al. [9] evaluated the relationship between
sound signals and tool wear under multiple cutting conditions. The WPD was used to
extract time–frequency features from sound signals. This procedure was followed by a
stepwise regression and an artificial neural network model to predict the degree of tool
wear. The time–frequency feature extracted from the resonant bandwidth of the sound
signal proved to have an apparent correlation with the flank wear of a CNC engraving
machine and was invulnerable to background noise and robust under varying spindle
speeds and feed rates. Lei et al. [31] proposed a tool wear estimation method based on
an extreme learning machine (ELM) algorithm enhanced by a hybrid genetic algorithm
and particle swarm optimization (GAPSO) (combination of GA and particle swarm opti-
mization (PSO)) approach. Features extracted in the time, frequency, and time–frequency
domains of the workpiece vibration signals were used as inputs for the ELM model. The
hyperparameters of the ELM model are optimized based on the GAPSO approach with the
training dataset. The results showed that the proposed method provided a considerably
lower mean squared error (MSE) value and computation time than the ELM, GA-ELM,
and PSO-ELM methods. This research was conducted in similar steps as conducted by
Chegini et al. [12]. They presented a novel fault detection method for rotary machines
using a wrapper and filter. The EMD and WPD were used to decompose and process
vibration signals. Then, time–frequency domain features were utilized to construct the
feature matrix. The proposed method combines both the F-score and Fisher discriminant
analysis (FDAF-score) with the binary particle swarm optimization (BPSO) algorithm as
feature selection technique. The goal is to determine the optimal feature set and optimize
the SVM parameters. The proposed method can select features sensitive to the presence of
defects in bearings, identify different fault sizes for the three faulty states in bearings, and
solve the dimensionality problem of the feature space.

According to the literature, there is not only a gap in studying feature selection in
machining processes, but this gap is also apparent in the simultaneous selection of the
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most appropriate features and optimization of a machine learning model. This study
proposed a new method to predict critical machining conditions in titanium alloy slot
milling, incorporating the Siemens SINUMERIK EDGE Box system as a sensor monitoring
tool. The experiments were conducted on titanium alloy (Ti6Al4V), known for causing
severe tool wear, breakage, and increased surface roughness. Extracting statistical features
from the signals collected in three domains was performed to achieve accurate predictions
of critical machining conditions. A feature selection method was employed, combining a
t-test filter technique criterion with a BWOA.

Additionally, the study optimized the hyperparameters of the SVM model using a
whale optimization algorithm, ensuring optimal performance. In order to address the
challenge of dimensionality, the study employed dimensionality reduction techniques,
including feature selection and extraction methods. In addition, a novel K-fold cross-
validation division method was introduced to split the data into twenty groups.

2. Experimental Setup

The milling process used in this experiment was slot milling, and the machined
material was Ti6Al4V. Various process parameters were utilized during the milling tests.
The axial depth of cut (ap) was set to 1 mm, and the radial depth of cut (ae) was set to
3 mm. The cutting speed (vc) and feed per tooth ( fz) were varied in the experiments. Six
slot milling passes were performed with and without coolant. The use of coolant prevented
tool wear and breakage during the observations. This issue underscores the significant
role of cooling as a vital parameter in preventing the onset of critical conditions during
machining. The aim of accelerating tool wear and reducing testing duration led to a series
of tests conducted without lubrication. These tests included a wide range of feed rates and
cutting speeds. In this regard, the mentioned parameters gradually increased to induce the
critical conditions. Table 1 presents the milling parameters.

Table 1. Milling parameters.

Cutting Speed,
vc (m/min)

Feed Per Tooth,
fz (µm/tooth)

Radial Depth of Cut,
ae (mm)

Axial Depth of Cut,
ap (mm) Coolant

50–113 17–50 3 1 Oil/Dry

This study used a five-axis CNC machine tool (Haas-Multigrind® CA, Trossingen,
Germany) with a Siemens Sinumerik controller. The Siemens SINUMERIK EDGE (SE)
Box was applied to record data at a resolution of 1 ms (1 kHz). When executing an NC
program, the data from different axes of the machine tool were saved in the format of a
JSON file. Afterward, ETL (Extract–Transform–Load) program converted the JSON file into
a CSV format for each test. After processing the CSV file and extracting useful features, the
post-processed information, such as features, was imported into an artificial intelligence
(AI) model. Moreover, the machine tool user can then visualize the CSV data from the
measurement system on an external computer.

Figure 1a illustrates the experimental setup. As explained, the milling tests were
conducted in 6 passes for each test. At each pass, the axial depth of cut, ap, was 1 mm.
According to the milling direction shown in Figure 1a, the milling tool moves from the
right to the workpiece’s left side. Signals from various machine tool axes were recorded
via the SE Box system and saved as a JSON file. Figure 1b illustrates the different axes in
the HAAS machine tool. The types of signals that the Edge Box can record for the spindle
and each axis are categorized into current, load, torque, and power. The Edge Box starts
recording signals automatically before the slot milling process during each milling pass.
Similarly, the recording is stopped automatically after the milling process.
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Figure 2 illustrates the geometrical characteristics of the milling tool in the study. The
utilized tool had a coating of AlTiN. Geometric properties like cutting tool and shank
diameter (D1 and D2), total length (L1), cutting edge length (L2), a corner chamfer (EF),
and the number of teeth (Z) are provided in the table (See Figure 2).
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& Co. KG, Germany.

3. Signal Selection

The previous section mentioned that the data were obtained by extracting signals from
JSON files for each experiment. The subsequent phase of the study was allocated to detect-
ing signals that can differentiate between machining and non-machining areas. Moreover,
the responsiveness of each signal concerning the variations in machining conditions was
evaluated. Among different recorded signals, the current, load, and torque signals in the
z-axis meet the pre-defined conditions. They can be used for training the classification
model. However, signals from other axes did not display significant changes until the tool
failure. Figure 3 illustrates the various types of signals in terms of current, load, power,
and torque in the z-axis at a feed speed of 30 µm/tooth and a cutting speed of 50 m/min.
Accordingly, the current, load, and torque signals in the z direction reveal the differences
between machining and non-machining areas. In contrast, the power signal exhibits no
change during the machining.
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30 µm/tooth feed.

Figure 4a provides the recorded current signals in the z-axis before the tool breakage.
A notable fluctuation in signals is observable after the second pass. This phenomenon can
be attributed to the significant Built-Up Edge (BUE) formation, as indicated in Figure 4b,
when dry-milling titanium alloys, which ultimately caused tool failure.
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fz = 20.6 µm/tooth, and (b) BUE and edge chipping at vc = 80 m/min and fz = 20.6 µm/tooth.

As mentioned above, the tool breakage during the experimental tests was considered
critical. Additionally, high roughness values of the milled surface were detected as another
inappropriate machining condition. Based on these two criteria, the recorded signals were
divided into two main groups: safe and critical. The critical group included the signals
before the tool breakage and those associated with the high surface roughness values. At
the same time, the rest of the signals were related to the safe condition without tool breakage
and with appropriate surface quality. Figure 5 indicates the differentiation between these
two groups concerning the qualitative and quantitative surface analysis. The critical group
highlighted in red exhibits higher surface roughness and low surface quality. In contrast,
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acceptable surface quality with low surface roughness values can be observed in the safe
group. Of the different samples, 726 were classified under the safe group, and the critical
group comprised 132.
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4. Methods

Figure 6 provides a roadmap of the current research. After data acquisition, the
machining time was extracted from the measured signal, and detrended signals were
obtained by removing the slope. In order to consider the variations in amplitude caused by
different machining parameters in terms of cutting speed and feed per tooth, the signals
were normalized using Z-score normalization (Equation (1)). For a fair evaluation of
different signals by the statistical features, the signals’ trimming was based on the length
of the shortest existing signal. This issue is important because the length of the signal
affects several statistical features, thus highlighting the crucial role of uniform signal length.
These mentioned steps are explained in the section “Preprocessing Signal”. Next, the
feature extraction was performed in three domains (time, frequency, and time–frequency),
and the extracted features were concatenated to create a unified primary feature vector.
To meet the requirements of machine learning models, where features should have a
consistent numerical range, a Z-score normalization was applied to scale the values of the
features between 0 and 1. Afterward, a hybrid feature selection technique was employed,
combined with simultaneous SVM hyperparameter optimization. This approach, explained
in detail in the following sections, aimed to develop a well-trained model capable of
accurately classifying the data while identifying the most important features for detecting
the machining process conditions.

4.1. Preprocessing Signal

As illustrated in Figure 7, before analyzing the signals and extracting their features,
the detection of the machining area was conducted. In this regard, the original raw
signal (highlighted in green) was subjected to a low-pass filter to remove high-frequency
components and form a masked signal (illustrated by dark green color). The derivative of
the masked signal indicates one peak and one valley, corresponding to the start and end
of the machining time. Consequently, the machining time (highlighted by grey color) was
detected concerning these two points.

After detecting the machining time from the entire signal, the extracted signals (cor-
responding to the machining area) must have the same length because the signal length
significantly impacts the statistical features. As mentioned earlier, various tests were con-
ducted at different process parameters regarding cutting speed and feed per tooth, leading
to a variation in signal length. To ensure the same signal length from different experi-
mental tests, the smallest signal length was selected as a reference, and the other signals
were adjusted by trimming their length, as shown in Figure 8. Additionally, according
to Figure 4, it can be observed that the critical condition occurs at the end of each pass.
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Thus, the uniforming signal length was carried out concerning the signals’ end. Further,
the extracted signal was normalized using Equation (1).

xnormalized =
x(i)− xsignal

σsignal
(1)

where x(i), xsignal, and σsignal represents the signal points, mean, and standard deviation,
respectively. A linear drift was subtracted before normalizing the extracted and trimmed
signal. Figure 9 provides the signals in safe and critical conditions after extracting, trimming,
detrending, and normalizing. In further steps, these signals were analyzed in different
domains discussed in the following sections.
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4.2. Signal Analysis
4.2.1. Frequency Domain

Signals were analyzed using the FFT methods. The amplitude of converted signals
in the frequency domain was normalized between 0 and 1. Figure 10a,b provide the
frequency components of the measured signal in safe and critical conditions, respectively.
Accordingly, the amplitude of the frequency components for safe conditions is lower than
that for critical conditions at lower frequencies. In detail, the signals associated with the
critical condition, which exhibit irregular patterns during metal cutting, lacked periodic
variations and demonstrated higher amplitudes near the zero frequency (Figure 10). Upon
generating the FFT diagrams for various experimental tests, it was observed that safe
and critical signals could be differentiated based on their distinct characteristics across
all samples. In order to facilitate this differentiation, the signals were divided into five
frequency intervals.
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Moreover, the 50 Hz frequency component associated with municipal electricity, which
was present in both safe and critical signals, was eliminated from the dataset. Notably,
this frequency was removed from all samples in various domains, including frequency,
time, and time–frequency domains. As an example, Figure 10c (vc = 50 m/min and
fz = 30 µm/tooth) and Figure 10d (vc = 75 m/min and fz = 22 µm/tooth), respectively,
indicate the frequency division; this division was based on the distinguishability of safe
and critical signals within the two classes for safe and critical conditions, with the removal
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of their municipal 50 Hz frequency. Figure 10c,d demonstrate that when the cutting
speed increases and critical conditions such as BUE occur, there is a noticeable decrease
in the amplitude of the signal in the frequency domain. The wide range of features from
frequency components of the signal was extracted in different intervals. As mentioned,
feature extraction is explained in Section 4.3.

The findings of this research closely align with the observations made by Tahir et al. [18].
Both studies identified a consistent decrease in the amplitude of the signals in the frequency
domain (current signal in this research and main cutting force signal in [18]) as the tool
condition deteriorated and the main cutting speed increased. These results further prove the
relationship between tool condition, cutting speed, and the corresponding signal amplitudes.

4.2.2. Time Domain

In addition to frequency domain analysis, the preprocessed signals were also analyzed
in the time domain. Considering the frequencies discussed earlier in the frequency do-
main, the time series were divided into five distinct frequency intervals using low-pass,
Butterworth, and high-pass filters. This segmentation aimed to differentiate signals from
two classes based on their frequency characteristics in the frequency domain, as shown in
Figure 10. Moreover, Figure 11 illustrates the signals for safe and critical conditions, respec-
tively. Accordingly, a noticeable distinction between safe and critical signals concerning
the signal band at different frequency intervals can be observed. At frequency intervals
ranging from 0 to 50 Hz, the signal associated with the critical condition exhibits more fluc-
tuations with sharper edges compared to the safe signals. Therefore, Figure 11 highlights a
difference between the signals of safe and critical conditions. In the feature extraction step,
these differences are quantified by calculating varied features (See Section 4.3).
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4.2.3. Time–Frequency Domain

Wavelets analyze time–frequency traits of signals, decomposing them via a mother
wavelet instead of sinusoidal components like the Fourier Transform. Wavelets resemble
sinusoids but with a finite duration, existing in both the time and frequency domains [32].
In order to create a family of wavelet functions, a basis function called the mother wavelet,
denoted as ψ(t), is used (Equation (2)) [33].

ψa,τ(t) =
1√
a

ψ

(
t− τ

a

)
(2)

The function ψa,τ(t) relies on parameters a and τ, determining scale and shift, respec-
tively. In Equation (2), a < 1 widens the wavelet, and a > 1 narrows it. τ shifts ψ along the
time axis, while the parameter a changes the scale of ψ, which either expands or shortens
it. Wavelet is a sliding window on the time axis, convolving with the signal. The process
repeats at different scales [34].

Computing the continuous form of the wavelet is a time-consuming task. In order to
efficiently analyze the convolution of signals over a wide range of time, it is beneficial to
use a discrete form of the Equation. This method incorporates the concepts of scale and
shift, as expressed in Equation (3) [35]:

a = 2j, τ = k2j (3)

The process of discrete WT involves the use of a mother wavelet ψ, a scaling parameter
j, and a wavelet transmission variable k. When j takes high values, it corresponds to shorter
time scales and higher frequencies. The substitution of Equation (3) into Equation (2) results
in Equation (4) as the mother wavelet relation. Moreover, the discrete wavelet transfer
function is provided in Equation (5) [35]:

ψj,k =
1√
2j

ψ

(
t− 2jk

2j

)
(4)

DWT(j, k) =
〈

x(t), ψj,k(t)
〉
=

1√
2j

∫ +∞

−∞
x(t)ψ*

(
t− 2jk

2j

)
dt (5)

A filter bank splits a signal into distinct frequencies in practical applications, enabling
analysis at various scales. High-pass and low-pass filters evaluate signal frequencies,
dividing them into high-frequency details and low-frequency approximations. This decom-
position occurs by convolving the wavelet filter and down-sampling, reiterated for each
level. Equation (6) reconstructs the original signal via details (Di(t)) and approximations
(Aj(t)) from discrete wavelet analysis [35].

f (t) =
i=j

∑
i=1

Di(t) + Aj(t) (6)

Wavelet tree decomposition involves signal splitting with high-pass and low-pass
filters, followed by down-sampling. This iterative process occurs at each wavelet tree level,
dividing previous approximations into new details and approximations. This approach
allows comprehensive multi-scale signal analysis. This study used the WPD technique
to extend filtering to approximation and detail coefficients within the wavelet decompo-
sition tree. This extension captures valuable information from both approximations and
details [10,35]. The selection of the mother wavelet depends on the data and the problem.
In tool monitoring, the Daubechies function is often used. In this research, the Daubechies 6
wavelet was chosen to analyze current signals and decomposed into five levels (Figure 12).
The wavelet type and decomposition levels were determined via trial and error.
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4.3. Feature Extraction

Statistical feature extraction was carried out after converting the signals in different
domains. Table 2 displays the utilized features for three domains: time, frequency, and time–
frequency. For each milling process, 756 features were extracted: 90 for time (18 features
from each frequency band of level 5), 90 for frequency (18 features from each frequency
band of level 5), and 576 for time–frequency (18 features from each of the 32 frequency
bands of level 5). These features were concatenated for each sample to form a vector of
features. Next, a feature matrix was generated with dimensions of 856 × 756, where each
row (corresponding to a measured signal (sample)) includes 756 features. The total number
of samples accounted for 856. A different range of utilized features can hinder the training
and accuracy of machine learning algorithms. The Z-Score method normalized features to
address this issue (Equation (1)). Z-Score normalization improves the handling of diverse
feature ranges, enhancing training efficiency and accuracy. In Table 2, x(i) represents the
individual signal point, with i ranging from 1 to N, and p(x(i)) denotes the probability of
each possible value of signal point x(i). The features highlighted in this article were selected
because they are commonly used in condition monitoring based on [12,14,25,27,29,36].

Table 2. Statistical features.

Mean = ∑N
i=1 x(i)

N
Energy = ∑N

i=1 (x(i))2

Maximum = max(x(i))
Kurtosis =

1
N ∑N

i=1(x(i)−x)4

4
2

√
1
N ∑N

i=1(x(i)−x)2

Minimum = min(x(i))
Skewness =

1
N ∑N

i=1(x(i)−x)3

3
2

√
1
N ∑N

i=1(x(i)−x)2

PeakValue = max(|x(i)|) RootMeanSquare =

√
∑N

i=1(x(i))2

N

Range = max(x)−min(x) LogEnergyEntropy = −∑N
i=1
(
log2(p(x(i))))2

Variance = 1
N ∑N

i=1 (x(i)− x) ShannonEntropy = −∑N
i=1(p(x(i))× log2(p(x(i)))

StandardDeviation =

√
∑N

i=1(x(i)−x)2

N
HybridFeature1 = log(Kurtosis + RootMeanSquare

0.078 )

GeometricMeanSquare =
(

∏N
i=1|x(i)|)

1
N TheAverageDeviationFromTheMean = ∑N

i=1
|x(i)|−x

N

QuadraticMeanSquare =

(
∑N

i=1

√
|(x(i))2 |
N

)2
Tigear−KaiserEnergy =

N
∑

i=1

[(
x(i))2 − x(i− 1)x(i + 1)

]
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4.4. Feature Selection

Filter and wrapper methods are two approaches in feature selection: selecting a subset
of relevant features from a larger set. Filter methods are fast in computation but do not
consider the redundancies among features. For example, two features might have very
similar statistical measures, such as standard deviation and variance, differing only by a
radical in their formulations. Therefore, some of the features may present a high correlation.
However, filter methods may still propose both features, even though they are redundant
and correlated. This issue can lead to the curse of dimensionality when dealing with many
redundant features.

On the other hand, wrapper methods aim to select features that not only differentiate
between different classes but also prevent the consideration of redundant features. How-
ever, wrapper methods are computationally expensive since they involve evaluating the
performance of different feature subsets by training and testing the classification model. A
combination of filter and wrapper methods can address the computational cost. This hybrid
approach consists of two steps. Firstly, a filter method is applied to eliminate irrelevant
features. Then, a wrapper method is used to search for an independent and uncorrelated
feature set from the remaining feature set. In the mentioned study, the hybrid approach
utilized the t-test as the filter method and the BWOA as the wrapper method.

4.4.1. t-Test

As mentioned, the current study has two safe and critical classes of conditions. The
t-test method is used to evaluate the degree of differentiation between the corresponding
features of these two classes. Equation (7) provides the calculation of the t-value [37]:

ti =
µ1 − µ2√(

σ1√
n1

)2
+
(

σ2√
n2

)2
(7)

where µ1, µ2, σ1, σ2, n1 and n2 are the mean of the first class, the mean of the second
class, the standard deviation of the first class, the standard deviation of the second class,
the number of features in the first class, and the number of features in the second class,
respectively. Based on Equation (7), each feature can be evaluated. Accordingly, a lower
standard deviation for each class and a higher difference between the means of the two
classes results in higher values of t, indicating a better feature for use in the training
process. In feature selection for a classification issue, the t-test is used to assess if there is
a significant difference between the means of the features in the two classes. For a large
number of samples, the t-score follows a normal distribution. If the mean values differ
considerably, the feature is considered informative and retained for further analysis or
model building. While the t-value in a t-test measures the difference between two groups
relative to their variability, the associated p-value, which can be obtained from the related
tables or statistical software, indicates the probability of obtaining such a difference by
chance alone. This paper set a p-value lower than 0.001 as a threshold for the primary
selection of features in the proposed hybrid method [38].

Table 3 displays the top five features obtained through t-tests conducted on all samples.
Accordingly, the log energy entropy feature in the frequency domain with frequency band
(180–350 Hz) is considered the most discriminative feature for differentiating these two classes.

Figure 13a presents the normal distribution diagram of log energy entropy for two
distinct classes: safe and critical conditions. In order to assess the normality assumption
and validate the applicability of the t-test method, a Quantile–Quantile (QQ) plot can
be utilized. The QQ plot serves as a graphical tool for comparing the distribution of a
dataset to a known theoretical distribution, such as the normal distribution in this case. By
plotting the quantiles of the dataset against the quantiles of the theoretical distribution,
alignment along a straight line indicates whether the dataset follows the same distribution
as the theoretical one. In the context of t-tests, the normality assumption of the data can be
verified using the QQ plot. One of the assumptions in conducting a t-test is that the data in
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each group follows a normal distribution. Suppose the points on the QQ plot closely align
with the straight line. In that case, it confirms the data’s approximation using the normal
distribution, thus validating the t-test for analysis. As mentioned earlier, the QQ plot in
Figure 13b represents the data distribution, specifically the features in each group (safe
and critical conditions). A significant difference of points from the straight line suggests a
deviation from normally distributed data, indicating the inappropriateness of the t-test for
analysis. However, in this case, Figure 13b confirms the applicability of the t-test method
as the data points follow the straight line closely, which means that the data in each group
is approximately normally distributed.

Table 3. Identification of the best features through t-tests across all samples.

t-Test Rank Domain Frequency Band (Hz) Feature Name

1 Time 180–350 Log Energy Entropy

2 Time 180–350 Hybrid Feature 1

3 Frequency 350–500 Mean

4 Frequency 350–500 Hybrid Feature 1

5 Time 180–350 Max
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Figure 13. (a) Normal distribution of the best feature (log energy entropy) in two classes of safe and
critical; (b) a QQ plot of the best feature.

4.4.2. Whale Optimization Algorithm (WOA)

The Whale algorithm was used in the current investigation to optimize the classifica-
tion model’s hyperparameters and find the appropriate features. This algorithm consists
of two main steps: the exploration phase, where the algorithm searches for prey, and the
exploitation phase, where the prey is encircled using a spiral bubble-net feeding maneuver.
Whales can detect and trap prey, but the exact location of the prey is often unknown; this
algorithm assumes that the best solution is likely near the prey or close to the optimum
position of the whale [39].

In the “Exploitation Phase”, the humpback whales (search agents) use Equations (8) and (9)
to move closer to the optimal solution when detecting the location of prey [39].

→
D =

∣∣∣∣→C · →X*(t)−
→
X(t)

∣∣∣∣ (8)

→
X(t + 1) =

→
X*(t)−

→
A ·
→
D (9)

In the current iteration denoted by “t”, the coefficient vectors A and C are calculated
using Equations (10) and (11). The location vector of the current best whale and the current
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whale is represented by X∗ and X, respectively. It is important to update X∗ in every
iteration if a better solution or position is found [39]:

→
A = 2 ·→a ·→r −→a (10)

→
C = 2 ·→r (11)

In each iteration, the value of “a” decreases from 2 to 0 according to Equation (12),
where “MaxIteration” stands for the highest possible number of iterations. To determine
the new location of the whale, random vectors of r are selected within the range of −1 to 1.
These values are used to establish the whale’s position between the current best whale and
the original location of the whale [40].

a = 2
(

1− t
MaxIteration

)
(12)

Two methods are used to model the bubble-net behavior of humpback whales: the
shrinking encircling mechanism and spiral updating position. The shrinking encircling
mechanism is performed by reducing the value of “a” in Equation (10). In the spiral
updating position method, Equations (13) and (14) are used to calculate the distance
between a whale and its optimal solution, taking into account a spiral pattern similar to the
movement of the whale. These Equations can be used to replicate this pattern [39].

→
X(t + 1) =

→
D′ · ebl · cos(2πl) +

→
X*(t) (13)

→
D′ =

∣∣∣∣→X*(t)−
→
X(t)

∣∣∣∣ (14)

The distance between the whale and the prey (the best solution obtained so far) is
denoted as D′. The constant value b establishes the shape of the logarithmic spiral that the
whale follows around its prey. It is a random number that ranges between 1 and −1 and is
used to define the form of that logarithmic spiral. The whale follows a combination of a
shrinking encircling path and a spiral path around the prey. Depending on the value of p,
the whale algorithm can choose between circular or spiral movements. To simulate this
movement, the whale randomly selects either the shrinking encircling path or the spiral
path with a 50% probability of updating its position. The model can be represented by
Equation (15) [39]:

→
X(t + 1) =


→
X*(t)−

→
A ·
→
D if p < 0.5

→
D′ · ebl · cos(2πl) +

→
X*(t) if p ≥ 0.5

(15)

where p is a random integer between 0 and 1; whales look for prey randomly in addition to
the bubble-net approach. The mathematical model of search is as follows.

In the “Exploration Phase (Search for Prey)”, the search agents focus on broadening
the scope of the search and moving away from the previously found solution (rather than
relying solely on the best solution). In contrast to the exploitation phase, the exploration
phase utilizes random whale selection to update the whale’s position, allowing for more
extensive search space exploration. The mathematical model is as follows [39]:

→
D =

∣∣∣∣→C · →
Xrand(t)−

→
X(t)

∣∣∣∣ (16)

→
X(t + 1) =

→
Xrand(t)−

→
A ·
→
D (17)

In Equations (16) and (17), Xrand is a randomly selected whale from the current
population. If the absolute number of |A| is greater than one, a random whale is chosen
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to update the position of the whales. In contrast, when the absolute number of |A| is less
than one, the best solution is to update the whales’ position. Finally, the whale algorithm
terminates by satisfying the termination conditions (maximum iterations).

4.5. Support Vector Machine (SVM)

In a labeled dataset D with N samples, the labels (yi) are binary, having a value of
either 1 or−1. The feature vector (xi) is an n-dimensional vector that represents the number
of available features and is defined by Equation (18) [41,42].

D = {(xi, yi)|xi ∈ Rn, yi ∈ {−1, 1}}N
i=1 (18)

The optimal hyperplane is represented by Equation f (x) = w · x+ b, with x as the input,
w the feature coefficients, and b as the bias. Solving a convex optimization problem, precisely
a quadratic problem, determines this optimal hyperplane. The objective is to minimize
‖w‖2 while satisfying constraints (Equation (19)), aiming to maximize the margin between
the hyperplane and the closest samples from two-class data. The SVM algorithm balances
reducing misclassifications and finding a hyperplane with a significant margin, depending on
the chosen kernel function (e.g., linear, polynomial, or radial basis function) [12,41].

min
(

1
2‖w‖2 + C

N
∑

i=1
ξi

)
Subject to :

{
yi(w · x + b) ≥ 1− ξi i = 1, . . . , N
ξi ≥ 0

(19)

where ξi is a slack variable to measure the distance between the hyperplane and misclassi-
fied samples, with a penalty coefficient (C). The Kuhn–Tucker condition is converted into a
dual Lagrangian problem [43] by introducing Lagrangian multipliers for the constraints of
the problem (Equation (19)). This problem creates a new quadratic optimization problem.
The aim is to measure the difference (ξi) between the hyperplane and incorrectly placed
samples, and solve the problem using the transformed Lagrangian dual formulation [12,41]:

min
N
∑

i=1
αi − 1

2

N
∑

i=1

N
∑

j=1
yiyjαiαjxixj

Subjectto :


N
∑

i=1
αiyi = 0

0 ≤ αi ≤ C

(20)

By solving the optimization problem in Equation (20), the Lagrange coefficient αi (La-
grange coefficient of the i-th sample) is determined. This optimal α value is used to calculate
the hyperplane parameters (b and w), resulting in the following classification function [44]:

f (x) = sign

(
N

∑
i=1

αiyi
(
xi · xj

)
+ b

)
(21)

When linear separation is impossible, non-linear classification methods like the SVM
can be used. By employing a mapping function described in Equation (22), the SVM
transfers data from a low-dimensional space to a higher-dimensional space, allowing for
easier separation between class borders. Equation (23) introduces the use of a non-linear
function, φ(x), to map input feature vectors (xi) from an n-dimensional space to an l-
dimensional feature space, enhancing classification. This problem requires defining the
kernel function K

(
xi, xj

)
, as specified in Equation (24) [44].

∀i, xi → ϕ(xi) (22)

φ(x) = (ϕ1(x), . . . , ϕl(x)) (23)
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K
(
xi, xj

)
=
(
φ(xi) · φ

(
xj
))

(24)

Subsequently, the optimization problem can be converted into the equation expressed
as follows [41]:

min
N
∑

i=1
αi − 1

2

N
∑

i=1

N
∑

j=1
yiyjαiαjK

(
xi, xj

)
Subject to :


N
∑

i=1
αiyi = 0

0 ≤ αi ≤ C

(25)

When the non-linear kernel is used, Equation (21) for the decision function is modified
and transformed into Equation (26) [44].

f (x) = sign

(
N

∑
i,j=1

αiyiK
(
xi, xj

)
+ b

)
(26)

The radial basis function is a commonly used kernel in SVM applications. It is defined
as Equation (27) [12]:

K
(
xi · xj

)
= exp

(
−
∥∥xi − xj

∥∥2

σ2

)
(27)

SVMs are well known for their computational efficiency and effectiveness in handling
high-dimensional data without relying on complex models. This advantage arises from
their unique ability to overcome the “curse of dimensionality”, allowing them to navigate
such spaces without being overwhelmed by excessive parameters. However, SVMs lack an
efficient method for selecting the optimal kernel function, making it a challenging research
problem. Choosing kernel parameters, such as σ and C, is crucial for optimizing the
classifier’s error performance. Hyperparameters, such as C and σ, are vital in determining
how well the classifier generalizes to new data beyond the training set. Proper tuning of
these hyperparameters significantly influences the overall effectiveness of SVMs. Despite
this challenge, SVMs achieve superior generalization performance, ranking at the top in
studies comparing them to other classifiers [38]. This study utilizes the whale optimization
algorithm to find the optimal values for these parameters.

4.6. Encoding and WOA Parameters

According to Figure 14, the whale’s position
→
X(t) includes three main sections of Nc,

Nσ, and NF. To create the vector of the whale’s position, the values of parameters C and
σ associated with hyperparameters of the SVM classification method are converted into
the binary values (0 and 1) and stored in sections Nc and Nσ, respectively. Moreover, NF
determines the state of the features (active or inactive), according to Equations (28) and (29):

→
Xij =

1, if sigmoid
( →

Xij

)
≥ rand()

0, otherwise
(28)

sigmoid(
→
Xij) =

1

1 + e−10(
→
Xij−0.5)

(29)

In Equation (28),
→
Xij represents the j-th dimension for the i-th whale. A comparison

between the sigmoid function and the generated random variable determines whether a
0 or 1 value is assigned to the corresponding dimension [45,46]. The acceptable ranges
[xdmin, xdmax] for C and σ, specified by Chegini et al. [12], are [0.001, 100] and [0.01, 10],
respectively. In this regard, the process of debinarization of C and σ values into the demical
ones can be carried out using Equation (30).
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xd =
∑N

i=1
(
bit(i) · 2i)

2N − 1
(xdmax − xdmin) + xdmin (30)

For each of these whale positions, the cost of the proposed position is calculated
through Equation (36).

The range of values for the BWOA algorithm parameters and the C and σ param-
eters are first determined. The BWOA algorithm uses a population of whales, with
nPop = 20 whales and MaxIt = 1000 maximum iterations.
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5. Results and Discussion

When evaluating a classification model, various factors come into play: accuracy,
precision, recall, specificity, and geometric mean. In order to assess these factors, a confusion
matrix (Table 4) is constructed for each set of test cases. In binary classification, this matrix
consists of four outcomes: true positive, true negative, false positive, and false negative. A
true positive occurs when the model correctly identifies positive samples. In contrast, a
true negative happens when it correctly identifies negative samples.

Table 4. Confusion matrix.

Positive Prediction Negative Prediction

Positive Class True Positive (TP) False Negative (FN)

Negative Class False Positive (FP) True Negative (TN)

Conversely, false positives and false negatives occur when the model mistakenly
labels samples as positive or negative. The model’s performance is evaluated by computing
metrics involving true positive, true negative, false positive, and false negative. The
confusion matrix visually represents the model’s performance, with rows indicating actual
classes and columns representing predicted classes.

Accuracy reflects the overall correctness of the model. It is calculated by dividing the
number of correctly predicted samples by the total number of samples in the confusion
matrix (See Equation (31)). According to Equation (32), precision, on the other hand,
evaluates the accuracy of positive sample labeling. It is determined by dividing the number
of true positive samples by the total number of samples predicted as positive. Recall, also
known as sensitivity or true positive rate, focuses on the ability of the model to correctly
identify positive samples, as provided in Equation (33). It is computed by dividing the
number of true positive samples by the total number of actual positive samples. Specificity,
also called the true negative rate, measures the capability of the model to identify negative
samples correctly. As indicated in Equation (34), it is calculated by dividing the number
of true negative samples by the total number of actual negative samples. The geometric
mean in Equation (35) combines accuracy and recall, providing insights into the balance
between majority and minority groups. This criterion proves particularly useful in specific
classification problems [47].
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Accuracy =
TP + TN

TP + TN + FP + FN
(31)

Precision =
TP

TP + FP
(32)

Recall =
TP

TP + FN
(33)

Speci f icity =
TN

TN + FP
(34)

G−Mean =

√
TP

TP + FN
× TN

TN + FP
=
√

Specificity× Sensitivity (35)

The accuracy criterion is commonly employed to evaluate the performance of the
model. It is also often incorporated into the cost function of wrapper methods. However,
it may not be an appropriate measure for evaluating the model’s performance when the
dataset is imbalanced. In an imbalanced dataset, the minority (Critical) group is neglected,
as its size is significantly smaller than the majority (Safe) group. The current study followed
the method employed in [47]. It incorporated the geometric mean into the cost function
instead of relying on accuracy as a measure in an imbalanced dataset. This modification
was necessary because the geometric mean relationship is more effective than the accuracy
criterion for evaluating models in imbalanced datasets.

During the optimization process, each position of the whale is evaluated using the
cost function (Equation (36)), which comprises the prediction error and the number of
selected features:

CostFunction = α× (1−
√

Specificity× Sensitivity) + (1− α)× (
Number of Selected Features

Total Number of Features
) (36)

The weight coefficient of this study (α) is set to 0.01, the same value used in a refer-
ence [12]. The first term of Equation (36) measures the error, which refers to the geometric
mean difference from one in the validation dataset. The purpose of this cost function is to
balance the tradeoff between the error rate and the number of selected features using the
alpha coefficient.

In this study, the performance of SVM classification was enhanced by employing the
hybrid t-test and the BWOA feature selection method. The data were divided into twenty
groups using K-fold cross-validation (Figure 15). Five folds were assigned for training,
validation, and testing. The hybrid method utilized four folds (training and validation)
for feature selection and optimization of the SVM hyperparameters in this framework. In
contrast, one fold was exclusively reserved for testing the model. This iterative process
was repeated twenty times to encompass all possible combinations [48]. The mean and
standard deviation of performance were calculated across the 20 testing sets. Each sample
comprised 726 features from two classes. The t-test method was employed to select the most
discriminative features, with an average of 527 features surpassing the p-value significance
level of 0.001 [38], facilitating the removal of features with inadequate resolution. Table 5 and
Figure 16 summarize the outcomes obtained from the training and testing of these groups.

The study focused exclusively on identifying the features that demonstrated the
highest performance on the test data within a specific fold. The Tiger Kaiser energy feature
of the wavelet coefficient consistently appeared in multiple folds, including the best one,
with a bandwidth ranging from 0 to 15.6 Hz. Additionally, several other features considered
adequate due to their frequent repetition across different folds are indicated in Table 6.
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Table 5. Performance of the testing dataset (mean ± standard deviation).

Total Selected
Features

Validation Accuracy Validation Precision Validation Recall Validation Specificity

99.36 ± 0.78 99.60 ± 1.23 96.27 ± 5.06 99.93 ± 0.21

16.45 ± 6.06

Test Accuracy Test Precision Test Recall Test Specificity

94.84 ± 1.43 85.55 ± 6.79 79.89 ± 7.69 97.52 ± 1.13

Caverage σaverage CBest fold σBest fold

41.75 ± 23.19 5.41 ± 1.32 75.39 ± 0 5.04 ± 0
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Table 6. Identifying best features using the t-test and the BWOA with the highest repetition across
20 folds.

Number Number of Repetitions across 20 Folds Domain Frequency Band (Hz) Feature Name

1 9 Time–Frequency 0–15.6 Teager Kaiser

2 8 Frequency 350–500 Teager Kaiser

3 5 Time–Frequency 78.1–93.7 Log Energy Entropy

4 4 Time–Frequency 359.3–375 Range

5 3 Frequency 350–500 Log Energy Entropy
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6. Conclusions

This study was allocated to predict critical machining conditions for Ti6Al4V as a
difficult-to-cut material. The process signals were collected using the Siemens SINUMERIK
Edge (SE) Box during slot milling. To select the most suitable features from measured
signals, a hybrid method, combining the t-test and the BWOA, was applied to train the
SVM classification model and select valuable features. Additionally, the parameters of the
SVM model were simultaneously updated during the feature selection process. Overall,
the findings of this study indicated great potential for monitoring and predicting critical
machining conditions during the slot milling of Ti6Al4V. In summary, the results of this
investigation are as follows:

Among different measured signals, the signals in the z-direction for current, load, and
torque indicated better differentiation between non-machining and machining time.

The validation of the SVM indicated an accuracy of 99.36 ± 0.78%, a precision of
99.60 ± 1.23%, a recall of 96.27 ± 5.06%, and a specificity of 99.93 ± 0.21%.

In the testing phase, the model showed an accuracy of 94.84 ± 1.43%, a precision of
85.55 ± 6.79%, a recall of 79.89 ± 7.69%, and a specificity of 97.52 ± 1.13%.

Using the t-test and the BWOA, the important features were Teager Kaiser, log energy
entropy, and range found in frequency and time–frequency domains.

Overall, the model performed well in validation and test sets, indicating that the
feature selection process successfully identified important features for the classification
task. The findings of this study show great potential for monitoring and predicting critical
milling conditions during the slot milling of Ti6Al4V.

This research highlights the importance of data-driven machining in the fourth indus-
trial revolution, focusing on its effectiveness in predicting machining conditions. Unlike
traditional simulation models that heavily rely on approximations and assumptions, data-
driven methods utilize real-time data from machining sensors, enabling precise predictions.
This methodology leads to improved productivity, reduced waste, and better decision
making. This approach can also be applied to various manufacturing processes.
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