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Polycystic ovary syndrome (PCOS) affects up to 20% of women but remains

poorly understood. It is a heterogeneous condition with many potential

comorbidities. This review offers an overview of the dysregulation of the

reproductive and metabolic systems associated with PCOS. Review of the

literature informed the development of a comprehensive summarizing ‘wiring’

diagram of PCOS-related features. This review provides a justification for each

diagram aspect from the relevant academic literature, and explores the

interactions between the hypothalamus, ovarian follicles, adipose tissue,

reproductive hormones and other organ systems. The diagram will provide

an efficient and useful tool for those researching and treating PCOS to

understand the current state of knowledge on the complexity and variability

of PCOS.
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1 Introduction

Polycystic ovary syndrome (PCOS) is a heterogeneous condition that is reported to

affect between 8% to 20% of women (1, 2). Currently, PCOS is diagnosed with the

Rotterdam diagnostic criteria (3). To diagnose PCOS with the Rotterdam criteria, two of

the following criteria must be observed: evidence of clinical and/or biochemical

hyperandrogenism, evidence of oligo-ovulation and/or anovulation, or evidence of

polycystic ovarian morphology through ultrasound (1). PCOS has a number of

significant comorbidities associated with it, including type 2 diabetes (T2DM) (4, 5),
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cardiovascular disease (6), insulin resistance (7), obesity (8),

infertility (6), pregnancy complications (9, 10), sleep

disturbances (11), hypothyroidism (12), decreased mental

health (13), and non-alcoholic fatty liver disease (NAFLD) (14).

PCOS is a common metabolic and reproductive syndrome

with heterogenous clinical presentations (‘syndromes’) that have

no simple, single diagnostic or clinical management pathway. In

addition there are multiple, poorly understood etiological factors

that contribute to the heterogenous clinical expression of PCOS

and these include genetic, environmental and hormonal factors.

This paper focuses on a review of hormonal factors for the

following reasons: There is an extensive body of research in this

area but previous research has tended to focus on one hormonal

sub-system, rather than consider the detailed interactions

present in the hormonal system as a whole. Having a better

understanding of the interactions between various parts of these

hormonal sub-systems may ultimately lead to better

interpretation of diagnostic tests and also help with the

development therapeutics that allow for individualized

treatment plans. The aim of this paper is to describe each

hormonal element of PCOS in detail, then unify these
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descriptions into a single codified ‘wiring’ diagram. The

unifying diagram is presented at the end of this paper, but a

simplified version is shown in Figure 1. This simplified version

will be used as a basis to construct a more complex

representation of the hormonal pathways affected by

PCOS upon.

Original research articles were located through topic

searches for the relationships between the hormones or

biological regions known to be altered in PCOS (Figure 1).

Clinical research involving humans was prioritized over pre-

clinical research using animal models, with animal studies

serving as support for human based evidence or suggestions of

mechanisms that may underpin the evidence identified in

humans. An exhaustive search was not possible due to the

volume of research and complexity of the subject. However,

effort was made to explore each primary facet of PCOS with

evidence from several sources. The ‘wiring’ diagram outcome of

this review is intended to capture the major endocrine

dysfunctions in PCOS. Specific mechanistic hypotheses are

noted where relevant but full coverage of endocrine

mechanisms is outside the scope of this review.
FIGURE 1

A simplified overview of the master diagram showing the key relationships and dysregulations of endocrine components in PCOS. Solid line
arrows between features are used to indicated conversion or release. Dashed lines with diamond arrowhead connections are used to indicate
influence. Dashed lines with arrowheads are used to indicate upregulation and dashed lines with reverse arrowheads are used to
represent downregulation.
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2 Reproductive hormone changes/
dysregulated HPG axis

2.1 Hyperandrogenism

Hyperandrogenism is a key component of PCOS.

Approximately 60-80% of women with PCOS present with

biochemical evidence of hyperandrogenism using androgen

plasma levels and 60% present with clinical evidence of

hyperandrogenism such as hirsutism, acne and androgenic

alopecia (15, 16). The androgens in women considered to be

present in the highest concentrations, in order of most to least

concentrated, are dehydroepiandrosterone-sulphate (DHEA-S),

dehydroepiandrosterone (DHEA), androstenedione (A4),

testosterone and dihydrotestosterone (DHT) (17). DHEA is

considered a “weak” androgen that converts to the more

potent testosterone and DHT (17). DHEA can be sulphated

into DHEA-S, another “weak” androgen with a longer half-life

(17). Androgen production in the ovaries is regulated by

upstream signals from the hypothalamic region of the brain.

Neurons in the hypothalamus secrete pulsatile gonadotropin

releasing hormone (GnRH) into the portal vasculature of the

pituitary gland (18). GnRH is responsible for stimulating

luteinizing hormone (LH) and follicle stimulating hormone

(FSH) production and release (17). LH secretion mirrors the

pulsatile release of GnRH and stimulates ovarian theca cells to

synthesize A4 and testosterone from cholesterol (17). In the

ovarian granulosa cell, A4 and testosterone are converted to

estrogens through aromatization (17). DHT cannot be converted

to estrogen, as it is said to be non-aromatizable, and is the most

potent androgen isoform (17). In addition to the ovaries,

androgens are synthesized in the adrenal glands, which mainly

produce DHEA and A4 (17). About 10-25% of testosterone is
Frontiers in Endocrinology 03
produced in the adrenal cortex but this is regarded by some as a

negligible contribution to the total concentration of testosterone

in a woman (19). Figure 2 shows a diagram of the primary

androgens and their significant relationships.

Androgen excess (hyperandrogenism) is a key feature in

PCOS and detrimentally affects ovarian function. Androgens are

thought to stimulate pre-antral and small antral follicle growth

through the androgen receptor (20). In women with PCOS, the

androgen receptor may experience increased activity in the

hypothalamus, ovary, skeletal muscle or adipose cells (21).

High androgens in PCOS at least partially contribute to an

increase in GnRH/LH pulse frequency (1, 22) and vice versa,

generating a cycle of hormonal dysregulation (23). Functional

ovarian hyperandrogenism can be directly or indirectly

identified in the vast majority of PCOS patients (1). Functional

adrenal hyperandrogenism is also present in a portion of PCOS

patients, with a small percentage of this group not presenting

with functional ovarian hyperandrogenism (1). A minor

percentage of mostly obese PCOS patients present with neither

functional ovarian nor functional adrenal hyperandrogenism.

This small subgroup may present an endocrine state that appears

to be a phenotype of PCOS but has an etiology related to obesity

(excess adipose tissue) (1, 24).

Hyperandrogenism may also influence endometrial function

(10). People with PCOS have an altered endometrium (25). This

altered endometrium, along with other abnormalities commonly

associated with PCOS, may lead to endometrial dysfunction,

which can lead to pregnancy complications (25). Reduced

reproductive potential in PCOS is often associated with

anovulation and oligo-ovulation, but endometrial dysfunction

may also contribute (26).

PCOS theca cells appear to have a gene expression profile

that is distinct from normal theca cells (27). There is strong
FIGURE 2

A diagram of the primary androgens, with colored arrows to represent how the androgens are changed by types of dysregulation.
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evidence that PCOS theca cells have an intrinsic abnormality

that causes an overexpression of most steroidogenic enzymes,

including LH receptors (1, 28–30). This overexpression leads to

the increased androgen production that is ubiquitous with PCOS

theca cells (31). Additionally, this increased androgen

production appears independent to ovulation status (32).
2.2 Follicles and PCOM

A follicle in the ovary is composed of the oocyte, granulosa

cells, and theca cells (33). Follicles start as primordial follicles

which contain an oocyte surrounded by a single layer of

granulosa cells and a basal lamina (34). Hyperandrogenism

may have a negative effect on oocyte development and quality

through the increase of reactive oxygen species levels (26).

However, oocyte competence and quality appear equivalent in

people with and without PCOS, so whether the oocyte

contributes to decreased reproductive potential in PCOS is

unclear (26). There are no theca cells until 2-3 layers of

granulosa cells are acquired (34). There are large antral (later

stage) and small pre-antral (earlier stage) follicles in the ovary.

The density of pre-antral and small antral follicles in a person

with Polycystic ovarian morphology (PCOM), one of the three

diagnostic criteria of PCOS, has been shown to be six times

greater than in a normal ovary (35).
Frontiers in Endocrinology 04
While PCOM may occur in PCOS, PCOM can also occur in

women who do not fully meet the diagnostic criteria for PCOS.

In such cases, PCOM generally has a granulosa cell abnormality

that is similar to PCOS but not as severe (36). Normal ovarian

morphology and PCOS seem to exist on a spectrum with PCOM

sitting between them (1). PCOM groups have been shown to

have LH levels similar to non-PCOS and non-PCOM controls,

but their anti-Mullerian hormone (AMH) levels were between

that of controls and PCOS patients (36). Approximately half the

women with PCOM have subclinical evidence of PCOS-related

dysregulation whereas the other half have no apparent relation

to PCOS, but most women with PCOM appear to be ovulatory

(1). Figure 3 shows a simple diagram of follicle growth.
2.3 Increased LH synthesis over
FSH synthesis

Serum LH concentrations have been found to be

significantly increased in women with PCOS (37, 38). In

contrast, FSH concentrations have been significantly lower in

women with PCOS (39). Consequently, elevated LH/FSH ratios

are generally reported (37, 38, 40). One study of 192 women

showed that LH and FSH appear lower in women with PCOS

who are also overweight or obese when compared to women

with PCOS that were in the healthy BMI range (41). Among
FIGURE 3

A diagram of follicle growth, with red arrows to represent how polycystic ovarian morphology alters it.
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women in the healthy BMI range, those with PCOS had

significantly higher FSH concentrations than controls (41).

However, the women in the overweight or obese BMI

categories had significantly lower FSH concentrations than

controls (41).

Increased LH secretion is thought to have several

consequences. LH stimulation of thecal cells in the ovary

drives the synthesis of testosterone. Thus, the androgen

synthesis in ovarian thecal cells is promoted, and can lead to

hyperandrogenism. Elevated serum LH concentration is closely

associated with a reduced chance of conception and an increased

risk of miscarriage (42). However, it is unclear how substantially

excessive LH in PCOS contributes to ovarian dysfunction (23).

The A4 and testosterone formed by the thecal cells in

response to LH stimulation is converted in the granulosa cell

to estradiol, but the activation of the enzyme aromatase

necessary for this estradiol synthesis is dependent on FSH

(43). FSH also promotes pre-antral follicle growth in synergy

with theca cell-derived androgen. In PCOS, both these functions

become dysregulated (44). Serum concentration and follicular

fluid concentrations of FSH are generally lower in PCOS, with

some studies reporting significantly decreased levels (45), and

others reporting lower levels that are still within normal limits

(46). However, these lower FSH levels do not seem to be enough

to account for the disturbance of antral follicle growth and

estradiol synthesis (47). Figure 4 shows the consequences of

dysregulated LH and FSH.
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2.4 Increased GnRH pulse frequency

LH release is a result of pulsatile GnRH transfer from the

hypothalamus to the pituitary (48). GnRH neurons in the

hypothalamus are controlled by gonadal steroid feedback and

release patterned pulsatile GnRH peptide to maintain pituitary

function. A high pulse frequency of GnRH secretion favors

release of LH while a low frequency of GnRH secretion favors

greater FSH release. Thus, increased GnRH pulse frequency

promotes LH synthesis over FSH synthesis (38, 49). Increasing

levels of estradiol produced during the majority of the follicular

phase cause a switch to positive feedback, triggering ovulation

with an increase in LH (50). Ovulation triggers the increase in

progesterone during the luteal phase, and low levels of

progesterone are used as a clinical indicator that ovulation has

not occurred (51). During the luteal phase, progesterone and

estradiol produced by the corpus luteum signal the lowering of

the GnRH pulses via negative feedback (50, 52) and by increased

progesterone levels in the presence of estradiol (53). Evidence in

the ewe suggests that estradiol alone inhibits GnRH and LH

pulse amplitude, whereas progesterone alone inhibits GnRH and

LH pulse frequency (54). Androgens have also been shown to

contribute to increasing GnRH pulse frequency (55).

In PCOS, the sensitivity of the GnRH pulse generator to

progesterone suppression is impaired (56, 57). Thus, ovarian

steroid negative feedback that tightly regulates the

Hypothalamic-Pituitary-Gonadal (HPG) axis is impaired (58),
FIGURE 4

A diagram showing the effects of LH and FSH dysregulation in PCOS.
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leading to hyperactive GnRH/LH secretion and disruptions to

the neuroendocrine regulation of the reproductive system.

Mechanistic studies in rodents demonstrate that DHT impairs

the ability of progesterone to reduce the firing frequency of

GnRH neurons from the HPG axis (59).

The mechanisms underpinning increased GnRH activity are

not completely understood but have been explored in animal

models. Figure 5 displays a summary of the likely hypothalamic

dysregulation. One potential contributor is the GABAergic

network. g-aminobutyric acid (GABA), the major inhibitory

neurotransmitter in the brain, binds to two primary receptors:

the GABAA receptor, and the GABAB receptor (60). While

GABAergic signaling is predominantly inhibitory in the adult

brain, GABA has a predominantly stimulatory effect on GnRH

neurons through the GABAA receptor (50, 60), but an inhibitory

effect through the GABAB receptor can also be observed (60).

Increased GABA signaling to GnRH neurons has been identified

in preclinical models of PCOS (61, 62) and cerebrospinal fluid

GABA levels are higher in women with PCOS (63). There is a

strong suggestion that this increased GABA signaling plays a

role in driving the hyperactive GnRH release associated with

PCOS as the GABAergic system is also thought to play a role in

progesterone negative feedback (59). Hyperandrogenic mouse

models of PCOS were shown to have significantly less

progesterone receptors in a population of GABA neurons and
Frontiers in Endocrinology 06
exhibited impaired progesterone negative feedback (64, 65). This

decrease in progesterone receptors likely contributes to the

impaired progesterone inhibition of GnRH secretion found in

some women with PCOS (66). Flutamide, an androgen

receptor blocker, restores normal GABA innervation and

neurotransmission in hyperandrogenic mice models (61, 62)

and sensitivity to progesterone in women with PCOS (67). Mice

models have also been used to demonstrate that DHT may

increase the pulse frequency via the GABAergic system (55).

Kisspeptin, neurokinin B, and dynorphin are three distinct

neuropeptides that are found co-localize in a single

subpopulation in the hypothalamus of several mammalian

species. They are referred to as kisspeptin-/neurokinin B-/

dynorphin-expressing or KNDy neurons. There is strong

evidence that KNDy neurons have an important role in

mediating the negative feedback of GnRH secretion by ovarian

steroids (22, 68). It is possible that estradiol inhibits GnRH pulse

amplitude by suppressing kisspeptin release from KNDy

neurons (69). The kisspeptin neuropeptides that release from

KNDy neurons have been identified as a primary GnRH pulse

generator (50).

There is evidence that kisspeptin may contribute to GnRH

neuron hyperactivity (22). Kisspeptin potently and directly activates

GnRH neurons and drives GnRH/LH secretion (70, 71). Mice

models have suggested that the presence of estradiol leads to
FIGURE 5

A diagram of hypothalamic dysregulation in PCOS.
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kisspeptin indirectly activating GnRH neurons as well (70). It has

been found that women with PCOS had increased kisspeptin levels,

suggesting that kisspeptins play an important role in regulating LH

levels (72, 73). It is unclear if this elevated kisspeptin is related to

increased kisspeptin signaling in the brain. Animal models suggest

not all PCOS phenotypes present with high kisspeptin levels (73).

However, the models imply kisspeptin is elevated in PCOS with

higher LH levels and normal body weight (73).

There is also considerable evidence that dynorphin is an

important mediator of the inhibitory feedback control of

progesterone on GnRH secretion (54). Evidence in the ewe

shows a very high percentage of dynorphin neurons contain

progesterone receptors; as such, dynorphin is likely to inhibit

GnRH pulse frequency (74). Dynorphin expression has been

found to be reduced in ewes prenatally exposed with androgen

(75), which is in agreement with the theory that PCOS may be

caused by prenatal exposure to excess androgens (76, 77).
2.5 Increased AMH

The formation of pre-antral and small antral follicles is

thought to be accelerated by the hyperandrogenism present in

PCOS (78). Granulosa cells are considered the only source of

AMH in the ovary (79). Mice models have shown that AMH is

released throughout the development of a primordial follicle into

a small antral follicle but AMH release wanes as the follicle

develops into a pre-ovulatory stage (78). As there are often more

pre-antral and small follicles in PCOS ovaries, more AMH is

generally produced than in normal ovaries (47). Furthermore,

each individual follicle in PCOS has been shown to produce

more AMH than normal (47). However, this increased AMH

may not be solely due to PCOM. In particular, serum AMH has
Frontiers in Endocrinology 07
been positively correlated to high androgen levels, and women

with high androgens and PCOM seemed to have the highest

AMH levels of women with PCOS (79). Therefore, high

androgens may also contribute to increased AMH levels.

FSH promotes the development of small antral follicles

through to an ovulatory stage (47). AMH has been shown to

both inhibit FSH-induced aromatase activity and counteract

FSH growth-promoting effects on granulosa cells (44, 80),

consequently deterring estradiol production (79). In PCOS,

antral follicle growth can be disturbed by high AMH levels

inhibiting FSH effects (80). Thus, FSH-stimulated pre-antral

follicle growth is attenuated (81). This suggests that increased

AMH levels likely play a role in the causation of anovulation in

PCOS (47). AMH has also been shown to contribute to GnRH

hyperactivity in animal models, as it can directly activate GnRH

neurons (82). As there is a negative correlation between estradiol

and AMH in small antral follicles, AMH is thought to be down-

regulated by FSH, potentially via estradiol synthesis (83).

Serum AMH concentrations are higher in PCOS patients

and there is evidence to suggest that more severe PCOS

phenotypes display higher AMH levels (46, 84, 85). One study

of 104 women found that PCOS patients with amenorrhea had

higher AMH serum concentrations than those with

oligomenorrhoea (86). Similarly, another study of 215 women

found that oligo/anovulatory women with PCOS had higher

AMH levels than ovulatory women with PCOM (36). Figure 6

shows how high AMH relates to the dysregulation in PCOS.
2.6 Increased DHEA and DHEA-S

In humans, almost all A4 is produced from DHEA (19),

which is produced in the adrenal gland. It is commonly believed
FIGURE 6

A diagram of the effects of AMH in PCOS.
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that DHEA and DHEA-S can freely convert between each other,

with DHEA-S acting as a reservoir for DHEA due to its long

half-life (17). However, this belief has been challenged by a study

finding no evidence of a rise in DHEA-S upon DHEA

administration in men (87). The study also noted that

although pregnant women have been shown to convert

DHEA-S to DHEA, they were unable to find direct evidence of

continuous conversion between DHEA and DHEA-S in women

in the literature (87).

Since DHEA-S is almost solely produced by the adrenal

cortices, increased DHEA-S is often used as an indicator for

overactive adrenal cortex production of androgens.

Approximately 50-60% of women with PCOS exhibit adrenal

originating androgen excess by increased DHEA-S (88).

Currently, it is thought the ovary has a limited to negligible

effect on the adrenocortical function (89). DHEA-S has been

found to positively correlate with total testosterone, A4, and free

androgen index (FAI) (90), as well as 17-hydroxyprogesterone

(91). DHEA-S has also been found to decline with age (89, 92).

Insulin and insulin resistance will be discussed directly in

section 3. However, there are complex links between DHEA-S

and insulin that will be discussed in this section. Some studies

negatively correlate DHEA-S and homeostasis model

assessment-estimated insulin resistance (HOMA-IR) (89, 91).

Other studies report no association (90), or a positive correlation

between higher adrenal precursor androgen levels and insulin

resistance (89). However, the HOMA-IR metric is imprecise and

can fail to identify insulin resistance in woman with PCOS

when compared to the gold standard of insulin resistance
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detection (93). There may also be ethnic differences, with one

study finding that those they classified as white patients

displayed a negative correlation between DHEA-S and

HOMA-IR while those they classified as black patients did not

(89). However, the number of patients in the ‘black’ cohort was

too low to allow strong conclusions.

There is evidence to suggest communication between the

adrenals and the hypothalamus. DHEA-S levels have been

observed to decrease after administration of a GnRH

antagonist in women with PCOS and high DHEA-S (94).

Sullivan and Moenter reported that DHEA-S decreases GnRH

neuron excitation through modulating the GABAA receptors in

mice (95). It was also found that asymptomatic ovulatory

women with PCOS had the highest DHEA-S levels when

compared to other women with PCOS and those without

PCOS (1). Figure 7 shows a diagram of the effects of an

overactive adrenal cortex.
3 Metabolic hormone changes

PCOS is strongly associated with insulin resistance – around

75% of women diagnosed with PCOS also have impaired insulin

sensitivity (93). Furthermore, lean women with PCOS have

equivalent peripheral insulin resistance to obese women with

PCOS (96). Thus, women with PCOS are vulnerable to

developing metabolic syndrome and its associated dysfunction,

which include hyperglycemia, central obesity, hypertension, and

dyslipidemia. Metabolic syndrome is typically caused by
FIGURE 7

Adrenal dysregulation in PCOS.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1017468
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Emanuel et al. 10.3389/fendo.2022.1017468
interactions between insulin resistance and obesity. PCOS-

linked insulin resistance is more severe in hyperandrogenic

PCOS than non-hyperandrogenic PCOS (97) . The

pathogenesis of metabolic dysfunction in women with PCOS is

not ful ly understood, but there is suggestion that

hyperandrogenism influences the metabolic facets of PCOS

(98, 99).
3.1 Insulin resistance and
hyperinsulinemia

Insulin resistance induces hyperinsulinemia that can

exacerbate PCOS dysfunction. Insulin and testosterone levels

appear highly correlated and hyperinsulinemia has been

suggested as the primary cause of increased testosterone (100).

Insulin resistance also significantly increases the risk of T2DM

(4, 5). Furthermore, obstructive sleep apnea is a PCOS

comorbidity and is known to exacerbate insulin resistance

(1). As with typical insulin resistance, PCOS-related

insulin resistance is characterized by reduced sensitivity and

responsiveness to insulin-mediated glucose utilization primarily

in skeletal muscle and adipose tissue (101). Of interest, insulin

sensitivity is not diminished in the ovaries, pituitary gland, or the

adrenal gland in women with PCOS.
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Insulin is thought to augment LH-stimulated testosterone

production through activation of its receptor (102, 103). Rat

studies have shown hyperinsulinemia upregulates LH-binding

sites, thus augmenting LH-induced testosterone production in

theca cells (34, 104, 105). Insulin in rats also augments the

GnRH-stimulated production of LH, which has been shown to

be glucose dependent (103). Insulin seems to augment the

production of estradiol and progesterone in human granulosa

cells through its own receptor (106). Therefore, elevated insulin

can promote and exacerbate hyperandrogenism and PCOS

symptoms (Figure 8).

A relationship between insulin resistance, hyperinsulinemia

and hypertension has been observed, leading to the postulation

that hyperinsulinemia contributes to cardiovascular disease

through direct mechanisms such as increasing sympathetic

activity (107). Hyperinsulinemia may also contribute to

cardiovascular disease by inducing abnormalities in endothelial

function and vascular reactivity (108). In a study of over 2,000

PCOS patients, total cholesterol, triglycerides and low-density

lipoprotein (LDL) cholesterol were significantly higher in PCOS

patients than in controls even after correcting for body mass

index (BMI) (39).

PCOS and its comorbidities are known to affect the liver.

Insulin resistance (109) and PCOS (14) are compounding risk

factors for NAFLD. In particular, PCOS doubles the risk factor
FIGURE 8

A diagram of the effects of insulin resistance and hyperinsulinemia in PCOS.
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for NAFLD in women (14). The liver enzymes aspartate

transaminase (AST) and alanine transaminase (ALT) are

significantly higher in PCOS groups (39) and are known

markers of liver disease. Androgen excess has also been shown

to contribute to the occurrence of NAFLD in PCOS rat models

(110). It has been demonstrated that hyperandrogenic women

with PCOS have increased liver fat compared to non-

hyperandrogenic women with PCOS and non-PCOS controls,

even after correction for BMI, adipose tissue volume, and

HOMA-IR (98, 109). There is suggestion that an androgen-

dependent proapoptotic PCOS environment contributes to

NAFLD (111).
3.2 Decreased IGFBP-I and increased
IGF-I bioactivity

Insulin-like growth factor I (IGF-I) is produced in theca cells

(33) and has been shown to stimulate testosterone production

(112), likely by increasing LH binding affinity with theca cells

(104). IGF-I may also augment FSH stimulated production of

estradiol (113). Insulin amplifies these effects as it suppresses

insulin-like growth factor binding protein I (IGFBP-I)

production (114). This suppression of IGFBP-I enhances IGF-I

bioactivity (114). LH is also thought to promote ovarian

secretion of IGF-I (104) and DHEA-S has been found to

positively correlate with IGF-I (91).

A meta-analysis found that women with PCOS appear to

have lower levels of IGFBP-I than controls (115). However,
Frontiers in Endocrinology 10
adjustments for BMI suggested that decreased IGFBP-I may be

the result of obesity and not have a role in the pathogenesis of

PCOS (115). Thus, the relationship between IGF-I, IGFBP-I

and PCOS remains unclear. IGF-I, IGF-II, and insulin can

each augment LH-induced A4 production in the theca cell.

Thus, it is possible for insulin resistance to have a role in

hyperandrogenism, even in the absence of hyperinsulinemia

(116). IGF-I has been shown in vitro to stimulate follicle

growth in normal human ovaries but not polycystic ovaries

(117). Figure 9 shows the dysregulation of IGF-I and IGFBP-I.
3.3 Decreased SHBG

Low concentrations of sex hormone binding globulin

(SHBG) are prevalent in T2DM, impaired glucose tolerance,

insulin resistance, and obesity (118). Most circulating

testosterone and estrogen can bind to SHBG, preventing the

hormones from entering cells and binding to their receptors

(17). Insulin and insulin resistance suppresses SHBG production

(102, 119), resulting in increased circulating free testosterone

levels and enhanced hyperandrogenism. SHBG levels have been

shown to be raised by estrogen and possibly suppressed by

androgens (120). However, testosterone has also been shown in

vitro to increase SHBG levels to the same degree that estradiol

does (119). A meta-analysis determined that SHBG levels are

decreased in women with PCOS and appear to increase with

treatments that improve their endo-metabolic profile (118). The

meta-analysis also suggested that women with PCOS and lower
FIGURE 9

A diagram of the relationships of IGF-I and IGFBP-I in PCOS.
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SHBG levels were more likely to have hyperandrogenism,

metabolic issues and infertility (118). SHBG levels are

especially lower in those who also possess a high BMI (121–

123). Figure 10 shows how SHBG is dysregulated in PCOS.
3.4 Thyroid and autoimmune disorders

Thyroid disorders, especially the autoimmune disorder

Hashimoto’s thyroiditis (HT), are observed significantly more

frequently in PCOS patients than in the general population (12).

Patients with both PCOS and HT have more severe metabolic

symptoms than patients with either condition in isolation (12).

A study of 125 women found that women with PCOS had

increased thyroid volume compared to controls and the volume

was highest in the insulin resistant PCOS group (124). In a study

of 800 women, levels of thyroid stimulating hormone (TSH)

were found to be higher in women with PCOS and appeared to

be associated with hyperandrogenism (125). High TSH is a

marker for an underactive thyroid and underproduction of the

thyroid hormone, thyroxine. In a study of 103 women with

PCOS, associations were found between high TSH values and

high BMI, increased fasting insulin, high HOMA-IR indices,

high testosterone, high FAI, and low SHBG (126). A study of 164

women found that those with PCOS and HT had lower SHBG

than those with PCOS alone and normally functioning thyroids

(12). This reduced SHBG in HT could occur because thyroxine
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has been shown to have a stimulatory effect on SHBG in vivo

(119). Figure 11 shows the major aspects of dysregulation of the

thyroid observed in PCOS.

The link between Hashimoto’s and PCOS is well established,

but there also appears to be a link between PCOS and

autoimmune disorders in general (127–129). Certain

rheumatic diseases, which are autoimmune and inflammatory

diseases, are more prevalent in PCOS (129). Some even claim

that PCOS could be classed as an autoimmune disorder (128).

Excess estrogen has been linked to different autoimmune

diseases (128). The stimulatory effect of estrogen on the

immune system may be inhibited by progesterone (127). As

such, low levels of progesterone could lead to an overstimulated

immune system (128) even though estradiol is not necessarily

elevated in PCOS. However, high levels of androgens in PCOS

appear to have a protective role against development of

autoimmune disorders (127). Therefore, it is likely that the

association of PCOS with autoimmune disorders differs

by phenotype.
3.5 Low prolactin and
hyperprolactinemia

While prolactin is primarily known for regulating breast

development and lactation, it has many other functions and is

closely associated with metabolism. Prolactin secretion from the
FIGURE 10

A diagram explaining SHBG and PCOS.
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pituitary is stimulated by estradiol and regulated by the

hypothalamus (130). Prolactin synthesis can also occur

elsewhere in lower quantities, including from adipose tissue

and the uterus (131). An in vivo study involving rats and

humans found that high glucose and inflammation may

stimulate the synthesis of prolactin in adipose tissue (132).

Hyperprolactinemia has been shown to induce an insulin

resistant state in non-PCOS cohorts (133, 134). Prolactin also

appears to inhibit SHBG production (119) and positively

correlate with TSH (39). Due to the possibility that

hyperprolactinemia may mimic PCOS, it is often one of the

exclusion criteria in PCOS diagnosis (135). However,

approximately 20% of women with PCOS also have

hyperprolactinemia (135, 136). Women with coincident PCOS

and hyperprolactinemia appear more insulin resistant than

women with PCOS and normal prolactin levels (137). Some

believe hyperprolactinemia is not more frequent in women with

PCOS and that any association between them is casual (136).

Others believe that hyperprolactinemia may be an integral part
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of PCOS (135) and PCOS with hyperprolactinemia may be a

specific phenotype of PCOS.

While a subset of women with PCOS have high prolactin

levels, a study of 2,052 PCOS patients and 9,696 controls found

that levels of prolactin are significantly lower in women with

PCOS when compared to controls before and after BMI

adjustment (39). Due to the heterogeneous nature of PCOS, it

is possible that both hyperprolactinemia and low prolactin are

associated with different phenotypes of PCOS (Figure 12). Low

prolactin seems to correlate with high BMI (138) and this effect

appeared more significant in women with PCOS (41). In women

with PCOS, prolactin appears to negatively correlate with total

cholesterol, triglycerides and LDL cholesterol (39).

Low prolactin seems to be an effective marker of a poor

metabolic spectrum and high cardiovascular risk (39). Low

prolactin levels are associated with metabolic syndrome and

T2DM, while higher prolactin levels within the normal range

appear to improve insulin sensitivity (139, 140). Prolactin

negatively correlates with AST and ALT, suggesting that low
FIGURE 11

A diagram of how the thyroid and immune system could be dysregulated in PCOS.
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prolactin may damage liver cells (39). Prolactin also plays a role

in suppressing stress and anxiety (130). There are strong

associations between PCOS and poor mental health. One

meta-analysis found that women with PCOS are three times

more likely to have depressive symptoms and five times more

likely to have anxiety symptoms than controls (13).
3.6 Adipose tissue dysfunction

Adipose tissue of women with PCOS is characterized by

hypertrophic adipocytes and impairments in lipolysis and

insulin action (99). The expression and secretion of a wide

variety of adipokines implicated in insulin resistance are altered

in PCOS (99). In particular, adiponectin, an adipose-specific

protein, is downregulated in obesity and lower adiponectin levels

are associated with insulin resistance (141–144). Women with

PCOS are reported to have lower adiponectin levels compared

with BMI-matched controls (141). Women with PCOS also

appear to have larger adipocytes than BMI matched controls.

These large adipocytes are also more prevalent in people with a

genetic predisposition to T2DM (145). Large adipocytes are

strongly correlated with insulin resistance (142). Adipose

tissue dysregulation and insulin resistance seems to correlate

more strongly with enlarged adipocytes rather than obesity itself

(145). Adipocyte size is also inversely correlated with

adiponectin levels and Glucose transporter type 4 (GLUT-4)

expression (145).
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GLUT-4 content in adipocyte membranes is independently

decreased by obesity and by PCOS (146). Decreased expression

of GLUT-4 leads to decreased insulin sensitivity and

responsiveness of the adipocyte to insulin (145). Since

diminished adipocyte insulin responsiveness in PCOS is

associated with decreased GLUT-4 abundance (146), the

problem may compound itself, and lead to divergence from

healthy glucose homeostasis.

Leptin is another adipokine that can also be produced from

granulosa cells (147). Leptin plays a key role in regulating

appetite and energy expenditure (99). Leptin also plays a role

in reproductive and immune function (99), as well as insulin

action and lipid metabolism (148). Leptin may have an

inhibitory effect on IGF-I augmentation of FSH-stimulated

granulosa cell production of estradiol and LH-stimulated theca

cell production of A4 (149). High leptin may also interfere with

oocyte development and contribute to infertility in PCOS (150).

A meta-analysis of leptin levels in people with PCOS found that

leptin levels were significantly higher in individuals with PCOS

when compared to controls (148). However, when separating

obese and non-obese groups, the obese PCOS group still had

significantly higher leptin levels than the obese controls but the

non-obese PCOS group compared to non-obese controls did not

(148). The meta-analysis also found a strong positive correlation

between leptin and HOMA-IR, and a weaker positive correlation

between leptin and BMI (148). Therefore, the increased leptin in

PCOS may be secondary to obesity and hyperinsulinemia (151).

There was also a negative correlation between leptin and
FIGURE 12

A diagram of showing the relationships to prolactin in PCOS.
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testosterone, possibly because testosterone may suppress leptin

synthesis (148). It is also possible that leptin positively correlates

with A4 in non-obese individuals with PCOS (152).

Additionally, there appears to be a relationship between leptin

and prolactin as increased prolactin may influence increased

leptin levels (131) and leptin may raise prolactin levels (138).

There may be relationships between PCOS adipose tissue

and the reproductive hormones. In PCOS, there is a decrease in

LH pulse amplitude with increasing BMI (1). In a study of 192

women, estradiol levels were lower in overweight and obese

women with PCOS than in normal weight women with or

without PCOS (41). In a study of 105 women, women with

PCOS appeared to have a higher waist-to-hip ratio than BMI

matched controls (142). No other differences in anthropometric

variables or abdominal adipose tissue volume and distribution

were significant (142). It is therefore unlikely that insulin

resistance in PCOS is strongly associated with increased

visceral and abdominal fat (142).

It is possible that many of the abnormalities related to

adipose tissue in women with PCOS could be secondary to

hyperandrogenism (99). An in vitro study of human pre-

adipocytes found that testosterone caused a time and

concentration dependent 50% reduction in lipolysis in

subcutaneous fat cells (153). Subcutaneous adipose cells pre-

treated with testosterone showed significantly impaired glucose

uptake and insulin response in vitro (154). Hyperandrogenism

has been linked to a decrease in adipose LDL receptor mRNA
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expression (111). Prolactin may induce changes in adipose

tissue, inhibit lipid activity in adipose tissue and decrease

adiponectin serum concentration (131). Figure 13 shows how

adipose tissue can be dysregulated in PCOS.
3.7 Gut hormones and gut microbiota
in PCOS

The gut is the largest endocrine organ in the body, producing

multiple hormones that have important signaling roles in

multiple metabolic pathways (155). The gut contains the

largest number of bacteria and the greatest number of species

compared to other areas of the body (156). Gut microbiota (GM)

also have many important signaling and metabolic functions

(156). Unsurprisingly, the gut is emerging as an important organ

in the hormonal signaling pathways associated with PCOS.

Gastric inhibitory polypeptide (GIP) and glucagon-like

peptide 1 (GLP-1) are gut hormones known as incretins.

Incretins influence insulin secretion from the pancreas in

response to ingested food (157). In healthy individuals, GIP

and GLP-1 account for 60-75% of insulin secretion following

glucose ingestion (158). Fasting GIP appears elevated in

individuals with PCOS compared to controls (159, 160).

Suppressing GIP has been shown to alleviate insulin resistance

(161). GLP-1 increases insulin sensitivity, cognitive function and

satiety (161). During a glucose tolerance test, late phase active
FIGURE 13

A diagram showing the dysregulation of adipose tissue in PCOS.
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GLP-1 levels have been shown to be decreased in lean

individuals with PCOS compared with controls (160). One

study of obese individuals with PCOS found that GLP-1 was

lower in prediabetic participants compared to those with normal

glucose tolerance (162). They also found correlations between

decreased GLP-1 response, increased visceral adipose tissue and

decreased insulin sensitivity as measured by the oral glucose

insulin sensitivity index (162). Treatment with metformin

appears to increase GIP and GLP-1 (163). Exploration of using

GLP-1 receptor antagonists as a treatment for PCOS has shown

that GLP-1 receptor antagonists appear effective in weight

reduction and decreasing HOMA-IR (157).

The human gut holds many different communities of GM.

There are four prime phylum, with Firmicutes and Bacteroidetes

making up approximately 90%, and Actinobacteria and

Proteobacterium making up approximately 10%, of all GM

(164). Many factors can lead to changes in GM, including age,

antibiotics and diet, with diet being one of the most influential

factors (165). GM have a range of functions and researchers have

often found relationships between different GM and obesity,

diabetes, and liver function (166). Some GM are also associated

with increased androgens and decreased estrogens (166). More

recently, the relationship between PCOS and GM is being

explored, with most researchers agreeing that people with

PCOS have different GM communities when compared to

healthy controls (167). However, at this early stage, the

specific differences in the GM of an individual with PCOS

are difficult to conclude, with many studies finding

contradictory results.

Many studies report a decrease in alpha-diversity (168–171)

and/or beta-diversity (169, 172) in PCOS groups when

compared to control groups (167, 173, 174). Diversity is often

negatively correlated with obesity (169, 172), androgens (169–

171, 175) and markers of metabolic issues (169). There is an

acknowledged relationship between decreased GM diversity and

metabolic dysfunction (167, 170). Some studies also reported a

decreased richness in GM in PCOS groups compared to

controls, with the obese PCOS group being the least enriched

(176, 177).

One of the most consistent findings throughout the literature

was an increase in the Bacteroides genus (belonging to the

Bacteroidetes phylum) within PCOS groups (169, 170, 176–

179). Bacteroides are pro-inflammatory bacteria that can

reduce activation of the gut-brain axis control of insulin

through a reduction of GLP-1 (178). Increased Bacteroides can

lead to an increase in branched chain amino acids (BCAAs)

(179) and a reduction in bile acids (166). Increased BCAAs are

associated with T2DM (165) and are a predictor in IR and

diabetes (180). Bile acids emulsify fats, promote digestion,

increase the absorption rate of fat-soluble substances, affect

lipid metabolism, regulate glucose metabolism and enhance
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insulin sensitivity (165, 180). Bacteroides also produce

lipopolysaccharide (LPS) that have links to chronic

inflammation, obesity and insulin resistance (177). LPS is

linked to signaling that promotes tumor necrosis factor alpha

(TNF-a) and interleukin 6 (IL-6) (167), two pro-inflammatory

cytokines. Both may be increased in PCOS and higher in IR

PCOS (151, 178), leading to a chronic inflammatory state and IR

(165). TNF-a increase can also lead to increased intestinal

permeability (167). One study found that the increase in

Bacteroides were greater in IR PCOS when compared to non-

IR PCOS (178). Another found the increase was greater in obese

PCOS when compared to non-obese PCOS (177). A positive

correlation between a Bacteroides species and LH levels has also

been reported (176).

The Gammaproteobacteria class (of the Proteobacteria

phylum) has been consistently observed to be elevated in

individuals with PCOS compared to controls (175–177, 179).

At a genus level, an increase in Escherichia (176, 177, 179) and/or

Shigella (177, 179) were often mentioned. Proteobacteria have

been found to be higher in those with T2DM, metabolic

syndrome and inflammatory bowel d isease , whi le

Gammaproteobacteria is specifically higher in those individuals

with NAFLD (175). One study found that the species of

Escherichia they found increased in PCOS also positively

correlated with insulin and negatively correlated with good

cholesterol (176).

Some studies found that Actinobacteria were increased in

obese or PCOS groups when compared to healthy controls (171,

172, 177). At a genus level Atopobium (172), Scardovia (172),

Collinsella (177) and Slackia (177) were increased in obese

groups when compared to non-obese groups, while Rothia was

found increased in an obese PCOS group when compared to

controls (177). Results regarding the various species and families

in the Firmicutes phylum were inconsistent (171, 174, 177, 179).

There are many potential pathways between dysregulated

GM and PCOS (Figure 14). GM are involved in the production

of short chain fatty acids (SCFAs), which protect intestinal

barrier integrity, promote insulin secretion and improve

metabolism (180). There are many mediators of the brain-gut

axis, such as serotonin, ghrelin, and peptide YY (PYY). Some

studies reported a decrease in ghrelin and PYY in PCOS groups

compared to controls (177, 179). Ghrelin and PPY negatively

correlate with testosterone and liver enzymes and are lower in

more severe PCOS phenotypes (177). PYY generally appears

lower in obese individuals (161) and SCFAs are known to

stimulate PYY release (165). PYY also promotes energy

absorption in the intestinal tract (165). Ghrelin may inhibit

estradiol and progesterone production (181). Levels of serotonin,

which appears to be involved in appetite regulation and

psychological wellbeing in PCOS, appears significantly lower

in PCOS groups and obese controls compared to non-obese
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controls (177). Serotonin may also inhibit GnRH and LH

secretion (182).
4 Unifying model

A diagram was created to describe the major hormonal

signaling pathways associated with endocrine and metabolic

dysregulation seen in PCOS (Figure 15). The diagram aims to

capture the different aspects of PCOS and suggest why PCOS

may present with distinct phenotypes. In particular, colored

arrows have been included to show how hormones and

processes may increase or decrease, with different colors

representing potentially different etiologies or phenotypes.

They were also used to show known correlations between

hormones. While many hormones can be produced and

circulate in many different parts of the body only the most

significant or pertinent hormone interactions and pathways are
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noted within the diagram. The coloring of the text boxes and

circles are for aesthetic purposes.
5 Discussion and conclusions

PCOS is an overlapping collection of phenotypes, associated

with a complex hormonal dysregulation, which is not fully

understood. In Figure 15 it can be observed that any of the

featured dysregulation types can cause PCOS like symptoms due

to the interconnectivity of the endocrine system. With specific

blood test results to inform the process, Figure 15 could be used

as a basis to enable patient, or phenotype specific models of

PCOS. Such models may enable estimation of the likely efficacy

of hormone treatments on individuals.

Due to the heterogeneous nature of PCOS, it is important for

researchers to specify the pathological features of each PCOS group

they are studying. Without this specification, PCOS studies can
FIGURE 14

A diagram showing the dysregulation of the gut in PCOS.
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FIGURE 15

Unifying diagram of PCOS reproductive and metabolic dysregulation. Colored arrows are used to show how various features of the diagram are
increased or decreased by possible types of dysregulation or correlations between features. A colored ‘D’ is used to indicate when a feature is
dysregulated by something. A colored ‘X’ indicates a relationship that no longer occurs due to a dysregulation. The colors used to represent types of
dysregulation are as follows: dark blue for dysregulation in the hypothalamus, light blue for overactive theca cells and hyperandrogenism, red for PCOM,
dark green for insulin resistance, light green for hyperinsulinemia, yellow for obesity, purple for adrenal dysregulation, pink for hyperprolactinemia,
orange for an underactive thyroid and brown for gut microbiota dysregulation. Solid line arrows between features are used to indicated conversion or
release. Dashed lines with diamond arrowhead connections are used to indicate influence. Dashed lines with arrowheads are used to indicate
upregulation and dashed lines with reverse arrowheads are used to represent downregulation. Thin grey lines indicate weaker evidence.
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appear contradictory. Currently, most researchers use phenotypes

that can be derived from the Rotterdam criteria (Table 1) to group

women with PCOS. However, the Rotterdam phenotypes do not

directly consider the metabolic dysfunctions underlying PCOS.

Other researchers sometimes classify a subset of PCOS called

‘lean’ PCOS in an attempt to capture women who do not present

withmetabolic effects. However, 75% of lean women with PCOS are

still insulin resistant (7) and a large literature review on lean PCOS

indicated that the clinical presentation is comparable to that of

overweight/obese PCOS, but that evidence is limited (183). Some

research suggests splitting PCOS based on the presence of

reproductive issues and/or metabolic issues (184, 185) and

possibly even renaming the metabolic side as a different disorder

(185). However, as Figure 15 implies, the reproductive and

metabolic aspects of PCOS are interwoven.

Many clinicians stress the importance of tailored (individualized)

clinical care when treating PCOS (186). However, patient-specific

treatment requires an ability to describe the phenotype of the patient,

in as much detail as possible. With such an approach, rather than

treating the most prominent symptoms, the treatment of PCOS

phenotypes may be best considered as managing both the symptoms

and the most prominent underlying dysregulations. It is possible that

Figure 15 could elucidate the underlying phenotype of PCOS patients

by augmenting the interpretation of laboratory test results. This

ability to capture the patient phenotype in a more holistic way (dual

focus on both hormonal pathophysiology and presenting

symptoms), may reduce the clinical and personal burden of

treatment for this complex condition.
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