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Abstract: Measurement of accurate tidal volumes based on respiration-induced surface movements
of the upper body would be valuable in clinical and sports monitoring applications, but most current
methods lack the precision, ease of use, or cost effectiveness required for wide-scale uptake. In this
paper, the theoretical ability of different sensors, such as inertial measurement units, strain gauges, or
circumference measurement devices to determine tidal volumes were investigated, scrutinised and
evaluated. Sixteen subjects performed different breathing patterns of different tidal volumes, while
using a motion capture system to record surface motions and a spirometer as a reference to obtain tidal
volumes. Subsequently, the motion-capture data were used to determine upper-body circumferences,
tilt angles, distance changes, movements and accelerations—such data could potentially be measured
using optical encoders, inertial measurement units, or strain gauges. From these parameters, the
measurement range and correlation with the volume signal of the spirometer were determined. The
highest correlations were found between the spirometer volume and upper body circumferences;
surface deflection was also well correlated, while accelerations carried minor respiratory information.
The ranges of thorax motion parameters measurable with common sensors and the values and
correlations to respiratory volume are presented. This article thus provides a novel tool for sensor
selection for a smart shirt analysis of respiration.

Keywords: wearables; smart clothing; respiratory parameters; inertial measurement units; strain
gauges; movements upper body; tidal volume

1. Introduction

The measurement of tidal volumes based on respiration-induced surface motions of
the upper body has been a part of research for decades. Pioneers in this field of research
were Konno and Mead in the 1960s [1]. Although the motivation was different at that
time, the potential and benefits combined with surface motion measurements were already
apparent, and thus, many other research approaches and studies followed over the years.
Unfortunately, the success of most studies has been marginal; only two measurement tech-
niques have been able to establish themselves in clinical practice or homecare and are used
sporadically in present days. These two techniques are the optoelectronic plethysmography
(OEP) [2,3] and the respiratory inductance plethysmography RIP [4]. The OEP is based on
an optical motion tracking system (MoCap) that measures respiration induced movements
on the upper body to determine respiratory parameters, while the RIP measures changes
in cross sections at the upper body inductively to obtain respiratory parameters such as
the tidal volume. However, both of these methods are associated with disadvantages. The
OEP involves a complex, non-wearable system and high costs, while the RIP struggles
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with inaccuracy of the measurement results [5]. Therefore, despite all previous efforts, tidal
volume measurement is still based on airflow measurements via spirometry [6,7] or body
plethysmography [8,9]. In other words, the determination of respiratory parameters via
surface motions of the upper body is still a part of research.

Whereas in the past the motivation was rather the inaccuracy of other existing mea-
surement methods (including spirometry), today the focus is more on a measurement
comfortable and convenient for persons being examined. However, even if the motivation
changed, the goal is still the same: avoiding flow measurements. Flow measurements
generally require the use of a face mask, or the person examined must breathe through
a mouthpiece while the nose is blocked by a nose clip. While present flow sensors can
measure laminar airflow accurately, facemasks or mouthpieces can be uncomfortable, espe-
cially in long term measurements, and may affect the measurement results itself [10,11].
Thus, a measurement method as an alternative to flow measurement would be beneficial
then as now.

The existence of a relationship between breathing and surface movements of the upper
body has always been obvious. The fundamentals and physiological basis of respiration
induced movements of the human upper body were already analysed and published as
early as 1848 by Sibson et al. [12], using simple techniques available at that time. Later, Wade
et al. performed a more sophisticated analysis of the movements in 1954 [13]. Since then,
new and improved measurement techniques, especially optical measurement techniques
(MoCap or laser scanners) or other imaging techniques (magnetic resonance imaging or
computer tomography), have provided a much better understanding of respiration induced
movements; however, the fundamentals provided by Wade et al. are still valid.

In last decades, new sensors and sensor technologies, such as miniaturized sensors,
have opened up many new opportunities and applications [14,15]. The improved imple-
mentation of miniaturized sensors in garments and their enhanced accuracy have enabled
a variety of new applications. Smart shirts and intelligent garments are on the rise and
are increasingly being used in medical diagnostics and therapy control as well [16–19].
While mobile solutions in cardiovascular monitoring, e.g., heart rate monitoring, have
been successfully used for some time, respiratory monitoring systems are mostly limited to
monitoring respiratory rate [20–26], which can be measured with sufficient accuracy for
clinical purposes.

However, measurement methods in respiratory diagnostics with smart shirts are not
very advanced in accurately determining respiratory volume, and a real breakthrough has
not yet been achieved. Some studies focused on inertial measurement units IMUs [22,26–28]
that can measure accelerations and tilt angles, others on strain gauges [29], or on optical
encoder systems, such as CiMeD belts [30] that measure circumferential changes on the
upper body by optical encoders.

A smart shirt for monitoring vital parameters is the Hexoskin Shirt (Montreal, QC,
Canada) [31]. Various studies evaluated this smart shirt [32–34], and the results of heart
rate and respiratory rate measurements are in a clinically relevant range. However, when
measuring respiratory volumes (minute volumes), errors ranging from 9.5% to 19.6% and
even up to 41% during exercise were found compared to the reference devices used, which
is outside the clinically relevant range. In summary, it is apparent that some of the new
developments are promising but still subject to inaccuracies.

The development of a smart shirt approach for respiratory analysis requires the range
of motion and information content of various locations on the thorax to be precisely
understood. To analyse the theoretical possibilities of tidal volume measurement via
surface motions of the upper body, this research analysed in detail the movements of
the upper body, captured by a motion tracking system. Based on the movements of the
motion tracking markers, the range and information content of various motion parameters
(such as upper body circumference changes, local extensions, tilt angles and accelerations)
were captured at the positions of the MoCap markers and were tested and evaluated for
theoretical suitability to determine tidal volume. Thus, this study provides a support for
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sensor selection, representing the changes of the parameters to be measured on the upper
body and offering the respective correlation to the respiratory volume. A specific selection
of a sensor-set was not carried out, as this process is individually dependent on the types
of sensors desired.

2. Materials and Methods
2.1. Sensors Targeted by the Study

Optical tracking or laser systems directly provide the spatial data of the object under
examination, which in the given situation is the human upper body. Since these systems are
usually associated with higher costs and can hardly be integrated into a smart shirt, other
sensors must be employed to detect surface movements of thorax and abdomen, such as
inertial measurement units (IMUs), strain gauges, or optical encoders in CiMeD-belts. This
work focuses on analysing the range of changes in respiration-induced motion parameters:
spatial positions, accelerations, distance variations, circumferential changes at the upper
body and changes in tilt angles, which can be captured with the mentioned sensors. The
results of this work provide the basis for any other sensor technology used to determine
one of these motion parameters.

An IMU with 9 degrees of freedom (DOF) combines a 3-axis gyroscope, a 3-axis
accelerometer and a 3-axis magnetometer. The gyroscope measures angular rates in the
x-, y- and z-direction, the accelerometer accelerations in x-, y- and z-direction, and the
magnetometer the magnetic field or magnetic dipole moment in all 3 directions. Thus, for
the given area of application, tilt angles and acceleration data can be predominantly used
from IMUs, integrated into a smart shirt, e.g. [18]. A survey of applications and methods on
IMUs placed on the upper body to monitor respiration can be found in Rahmani et al. [27].

Looking at strain gauges, there are many strain gauges with different properties on
the market, some of which are specially tailored to the particular application. In order to
determine strains of textiles by means of strain gauges, in contrast to strain gauges for
other applications (carrier films of the strain gauges are made of acrylic resin, epoxy resin,
phenolic resin or polyamide), larger strain ranges must be expected so that the strain gauge
can expand with the textile. It would be ideal if the textile carrier material of the strain
gauge had similar elongation properties to the textile under investigation, the smart shirt
itself. Larger strain ranges are usually found in textile strain gauges, whose sensor wires
are woven directly into the textile. These strain gauges could be used in smart shirts to
obtain changes in distance, such as distances between MoCap markers.

Putting the attention on circumferential changes, which are basically as well a distance
change or expansion, then, due to the dynamic character and circular arrangement and the
large dimension of these changes (changes up to 100 mm and more), their determination
requires a special measuring principle. These dynamic circumferential changes of the upper
body can be determined inductively, for example in RIP [35], by textile strain gauges [36],
or by optical encoders via CiMeD belts [30].

Caution must be taken to ensure that the measurement system only slightly inhibits
the expansion of the upper body during respiration to allow examinations of patients with
pulmonary disease. If the restoring forces are too high, the compliance of the upper body
will increase, and the measurement results themselves will be falsified. However, none of
the mentioned sensors would interfere significantly with the measurement itself, and all
would allow comfortable measurement of respiratory movements.

2.2. Measurement Setup

To analyse respiration-induced movements of the upper body accurately, a MoCap
(Bonita, VICON, Denver, CO, USA) with nine infrared cameras (VICON Bonita B10,
Firmware Version 404) was utilised. A schematic sketch of the MoCap system is illus-
trated in Figure 1. The participating subjects wore a tight compression shirt with a total of
102 reflective motion capture markers attached (Figure 2). Forty-eight markers were fixed
ventral on the shirt, 18 lateral, and 36 dorsal—in 8 different heights. The uppermost MoCap
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marker (Figure 2b) on the collar of the shirt is located at the level of the cervical vertebrae
C6 and serves as a reference point, since this location at the cervical spine is barely exposed
to any respiratory movement. Thus, during further measurements, movements that are not
respiration-induced can be corrected by this reference point.
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Figure 2. Compression shirt with 102 reflective MoCap markers—ventral view (a) and dorsal view
(right). The reference point in dorsal view (b) is the uppermost MoCap marker on the collar of
the shirt.

Height 2 was in the level of the thoracic vertebra T1, and respectively in height of the
clavicular. Height 3 was at the level of T4, while height 4 was at the level of T7, caudal
below the scapula. Height 5 was at the level of thoracic vertebra T11, and height 6 was at
the level of lumbar vertebra L1, just at the caudal end of the arcus costalis. Height 7 was at
the level of L3, and finally, height 8 was at the level of L5. However, these descriptions of
heights are only approximations that varied depending on the body shape, and especially
the body height, of the participants wearing the compression shirt.

The subjects performed tidal volume measurements via a spirometer (SpiroScout
and LFX Software 1.8, Ganshorn Medizin Electronic GmbH, Niederlauer, Germany) while
they wore the compression shirt and were surrounded by the MoCap cameras. Both
measurements were performed simultaneously. The spirometer data were utilised as
reference values for tidal volumes. Flow and volume data were obtained by the SpiroScout
with a sampling frequency of 200 Hz. The sampling frequency of the MoCap system was
set to 40 Hz. The VICON Nexus Software (Version 1.8.5.6 1009h, Vicon Motion Systems
Ltd., Denver, CO, USA) was used to process the raw data and to estimate the location of
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the markers that were optically obscured and finally, the spatial positions of all markers
at each point in time were transferred to MATLAB (R2021a, The MathWorks, Natick, MA,
USA), for subsequent analysis.

The data were obtained from subjects in a sitting position (Figure 3). To reduce
movements of the upper body, which are not related to respiratory activity such as bending
or twisting, the spirometer was fixed on a rigid hold to the height of the subject’s mouth
when sitting upright. Thus, the subjects performing the measurement did not move their
head and upper body significantly, and the obtained movement data were nearly limited
to respiration-induced movements.
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2.3. Participants and Respiratory Manoeuvres

All measurements were done in accordance with the tenets of the Helsinki Declaration.
The ethical approval for this low-risk study was obtained from the Human Ethics Committee
of the University of Canterbury HEC 2019/01/LR-PS and the Ethikkommission of the Furt-
wangen University. Before the measurement, the subjects received a full explanation of the
study and were informed about any minor risks, even when only low risks were associated
with these measurements and very unlikely to happen. A written informed consent was
collected from each subject. The subjects were assured that they can remove the mouthpiece of
the spirometer at any time and stop without penalty if even the slightest discomfort occurred.

Sixteen lung healthy subjects voluntarily participated in the measurements—three
women and thirteen men. The subjects’ average age, weight and height were 25.7 ± 2.2 years,
69.4± 2.0 kg and 1.76± 0.02 m, respectively. For more details on the subjects, please refer to
Table 1. Additionally, the vital capacity, which is defined as the maximal volume of air the
subject can inhale after total exhalation, was measured with the SpiroScout spirometer by
means of a Tiffeneau test [37]. A Tiffeneau test is a pulmonary function test, typically used
to determine volume that can be maximally exhaled within one second after a maximum
inspiration (termed forced expiratory volume per second). During a Tiffeneau test, subjects
exhale maximally, and then they inhale maximally, before subsequently exhaling totally
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as quickly as possible. To enhIn addition to the forced expiratory volume per second, this
breathing manoeuvre additionally allows the determination of the vital capacity.

Table 1. Details of the participants.

Subject Height/
[m]

Weight/
[kg]

BMI/
[kg/m2]

Age/
[Years] Gender Vital Capacity/

[L]

1 1.84 75 22.15 18 male 4.76
2 1.72 65 21.97 19 female 3.87
3 1.70 56 19.38 26 male 3.99
4 1.67 57 20.44 18 female 3.12
5 1.83 78 23.29 30 male 6.47
6 1.75 70 22.86 32 male 5.39
7 1.79 75 23.41 53 male 5.12
8 1.74 63 20.81 20 male 4.94
9 1.70 68 23.53 24 male 4.41

10 1.82 73 22.04 30 male 6.83
11 1.74 81 26.75 31 male 4.99
12 1.73 67 22.39 19 male 4.95
13 1.71 60 20.52 23 male 4.09
14 1.68 66 23.38 21 female 4.45
15 1.88 75 21.22 20 male 5.93
16 1.83 82 24.49 28 male 6.75

Apart from the additional Tiffeneau test, the subjects were instructed to breathe differ-
ent tidal volumes. In order to capture as much of the respiratory spectrum as possible, the
subjects breathed shallowly by reducing their respiratory activity to a minimum. Subse-
quently, the subjects performed medium breaths, where they increased the tidal volume
over the volume level of normal spontaneous breathing, but not to the extent of maximal
breaths. Finally, they performed maximal breaths, where they inhaled and exhaled to
the maximal possible. Each different breathing pattern was performed for approximately
one minute, and before and after each breathing pattern, the subjects performed normal
spontaneous breathing for about 30 s to recover and to prevent any kind of hyperventilation.

There was a pause between the Tiffeneau test and the manoeuvre. The length of
the pause was determined by the subject itself—the manoeuvre was started when the
subjects had fully recovered from Tiffeneau testing and felt ready to continue. However, the
exact timing of the manoeuvre was not predetermined; it was dependent on the breathing
rhythms of the subjects. Table 2 illustrates the details about the respiratory manoeuvre,
and Figure 4 illustrates exemplarily the volumes measured by the spirometer during the
manoeuvre. The total time of the measurement was about 5 min.

Table 2. Respiratory manoeuvre.

Pattern Number Duration
/[sec] Breathing Pattern

1 30 spontaneous breathing (normal)
2 60 shallow breathing
3 30 spontaneous breathing (normal)
4 60 medium breaths
5 30 spontaneous breathing (normal)
6 60 maximal breaths
7 30 spontaneous breathing (normal)

To improve the optical capturing, the subjects were asked to place their arms on the
rigid spirometer hold and to tie up long hair during the measurement, because long hair
would cover MoCap markers, and therefore, would reduce the detection rate of the hidden
MoCap markers.
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2.4. Data Processing

All data processing in this study was based on the measured spatial positions of the
102 MoCap markers and their movement during breathing manoeuvres. The movement of
the markers allowed for calculating changes in tilt angles in each MoCap marker position,
movements along the principal component of the marker movement, occurring accelera-
tions at the marker positions, the changes in distances between neighbouring markers and
changes in upper body circumferences at different heights.

However, prior to the individual calculations, an initial correction was made to the
spatial marker positions obtained by the MoCap system. Each measured marker position
was corrected so that the marker position was on the skin surface of the subject’s upper
body and not in the centre of each MoCap marker (approximately 10 mm from the skin
surface). This correction was done by calculating the imaginary centre of all markers in a
specified height and subtracting the distance of the marker-midpoint to the skin surface
from the distance of the centre of all markers to the marker-midpoint of the respective
marker. (A detailed description of this performed correction procedure can be found in
Laufer et al. [30]). The individual calculation methods of the different employed parameters
are explained in the subsequent subsections.

2.4.1. Movements along the Principal Component of the Marker Movement

Movements in the direction of the principal component of the marker movement of
each marker were obtained. In a previous work (Laufer et al. [38]), it was evident that
each marker moved predominantly along a particular line. Therefore, for each marker,
this line (the main component of the marker motion) was identified using a singular value
decomposition SVD. The subsequent projection of the spatial positions (x(tk), y(tk), z(tk))
on the principal component delivered the respiration induced movement L of each marker
along the direction of its principal marker movement. The projection was done by using
the dot function of MATLAB, which delivered the length of the projected vector Li, which
was then used for further analysis. Details on the calculation of L can be obtained from
Laufer et al. [38].

All linear trends and offsets were removed from the data by the detrend-function of
MATLAB, which subtracts the best-fit line in the least-squares sense from the data. The
movement ∆Li of each marker i (for 1 ≤ i ≤ 102) along its principal movement axis at each
time point tν with t1 ≤ tν ≤ tn is given by:

∆Li =

∆Lt1
...

∆Ltn


i

(1)
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2.4.2. Accelerations along the Principal Component of the Marker Movement

The second derivatives of Li delivered the desired accelerations aL,i of marker i (1 ≤ i
≤ 102) by:

vL,i =
dLî
dt

aL,i =
dvL,iˆ
dt

(2)

where the “ˆ” symbol denotes filtered, detrended values, and thus, vL,iˆ is the filtered
detrended velocity of marker i in the direction of the principal component of its movement.
For filtering, a zero-phase low pass filter (filtfilt function of MATLAB) was used with
a PassbandFrequency of 0.04, a StopbandFrequency of 0.1, a PassbandRipple of 0.5, and a
StopbandAttenuation of 60 and the detrend-function removed all trends and offsets.

2.4.3. Distances between Neighbouring Markers

By using strain gauges, expansions and distance changes can be measured on the sur-
face of the upper body. Based on the MoCap data, the distances between all neighbouring
markers were determined by the L2 norm function. The distance between MoCap marker j
and MoCap marker i is calculated by:

Dm = ‖(xi, yi, zi)−
(
xj, yj, zj

)
‖2 =

√∣∣xi − xj
∣∣2 + ∣∣yi − yj

∣∣2 + ∣∣zi − zj
∣∣2 (3)

for all 1 ≤ i ≤ 102 and j as a direct neighbour of marker i.
The arrangement of the 102 MoCap markers on the compression shirt yielded m = 361

distance values, which were calculated and shown in Figure 5a. Figure 5b shows which
MoCap markers were considered as direct neighbours of marker i.
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Figure 5. Distances between neighbouring MoCap markers—all 361 distances (blue) between MoCap
markers (red), which were determined (a). The eight neighbouring MoCap markers of marker i in the
middle of the illustrated marker-set (b).

The vecnorm function of MATLAB was used for the calculation of distance values.
Trends and offsets were also removed from the distances using the detrend-function of
MATLAB. Thus, the distance between two neighbouring markers i and j was determined
at each time point tν with t1 ≤ tν ≤ tn of the measurement by:

∆Dm =

∆Dt1
...

∆Dtn


i,j

(4)
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2.4.4. Circumferences

Based on the MoCap markers, the circumferences in 7 different heights (excluding
the height containing a single MoCap marker (reference point at C6)) at the upper body
were finally calculated. Therefore, all MoCap markers in a height were connected via a
closed spline curve, and the length of the spline curve was declared as the circumference
circk in height k (for all heights 1 ≤ k ≤ 7 with more than 1 MoCap marker) (see Figure 6).
The cscvn function of MATLAB was employed for spline calculation, and the length of the
spline curve was taken as the circumference, after removing trends and offsets (detrend
function of MATLAB). Thus, the circumference was determined at each time point tν with
t1 ≤ tν ≤ tn of the measurement by:

∆circk =

∆circt1
...

∆circtn


k

(5)
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Figure 6. Illustration of the circumferences in 7 different heights at the upper body obtained via
closed spline curves (blue) through the MoCap markers (red). The MoCap marker at the top is the
reference marker.

2.4.5. Tilt Angles

Tilt angles can be obtained by gyroscopes, implemented, e.g., in IMUs with 6 or 9
degrees of freedom (DOF). To obtain changes in tilt angles from the MoCap data, horizontal
and vertical closed spline curves (Figure 7a) were used to determine tangential planes to
the upper body surface at each MoCap marker position. In Figure 7b, the two direction
vectors spanning the tangent plane are shown in black, and the normal vector, which is
perpendicular to both direction vectors, is shown in red. The direction vectors are the
derivatives of the horizontal and vertical spline curves in the MoCap marker positions, and

the normal vectors
−−−−−−−−−−−−−−−→
(xi,norm, yi,norm, zi,norm) are obtained by the cross product of these two

direction vectors (cross function of MATLAB). Afterwards, the tilt angles refer to the z-axis
αtilt,i,z (illustrated as green vectors in Figure 7c) and are obtained for all MoCap markers (1
≤ i ≤ 102) at each time point tν with t1 ≤ tν ≤ tn by:
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αtilt,i,z = 180− arccos



−−→0
0
1

·
−−−−−−−→xi,norm

yi,norm
zi,norm


i∥∥∥∥∥

−−−−−−−→xi,norm
yi,norm
zi,norm


i

∥∥∥∥∥
2


·180

π
(6)
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Figure 7. Illustration of the closed spline curves (blue) through horizontal and vertical marker sets, used
to obtain tilt angles at the MoCap marker (red) positions (a) and the normal vectors (red arrows) to the
tangent planes in the marker positions, spanned by the directional vectors—the derivatives of the spline
curves (black arrows in (b)). The z-direction of the coordinate system is illustrated in green (c), and the
obtained tilt angles α (black in (c)) are the angles between the z-direction and the normal vectors.

Thus, for each marker i (for 1 ≤ i ≤ 102), the tilt angle was obtained at each time point
tν with t1 ≤ tν ≤ tn of the measurement by the vector:

−−→
∆αtilti =

∆αtilt,t1
...

∆αtilt,tn


i

(7)

To remove any linear trends and offsets from the data, each tilt angle vector was
corrected using the detrend-function of MATLAB.

2.4.6. Ranges and Correlations

In order to obtain the ranges of the individual parameters that can occur during
breathing, the changes of the analysed parameter for each marker during all breaths were
analysed. Breath by breath, the change of the particular parameter ∆P caused by exhalation
and inhalation was determined by:

∆Pi(t∗) = ‖max(Pi(tν
∗))−min(Pi(tν

∗))‖2 (8)

for all breaths b with tν
∗ =

[
t∗1,ν, t∗2,ν

]
b

and t1 <
[
t∗1,ν, t∗2,ν

]
< tn, where tj

∗ is the timeframe of
a single breath in the specified breathing pattern. Each single breath b has the timeframe
tν
∗ in the specified breathing pattern with tν

∗ =
[
t∗1,ν, t∗2,ν

]
b

and t1 <
[
t∗1,ν, t∗2,ν

]
< tn.

This was performed for all the particular parameters P in all MoCap marker positions
i with 1 ≤ i ≤ 102, analysing distances for all m with 1 ≤ m ≤ 361 and when investigating
circumferences for all k with 1 ≤ k ≤ 7.
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The areas of interest for determining the ranges are the maximum changes during
maximum breaths and shallow breaths. Smaller maximal changes are expected during
shallow breaths, while it can be assumed that the largest maximum changes are detectable
during maximal breaths. The determination of the maximum changes is the main focus
here, since the signal-to-noise ratio of the sensors used is highest during maximum changes,
which improves measurement results.

Rangemaximalbreaths = max
t
{∆P(t∗) : over all maximal breaths} (9)

Rangeshallow breathing = max
t
{∆P(t∗) : over all breaths in shallow breathing} (10)

Additionally, the correlations between the parameters and the volume signal of the
spirometer Vspiro were identified by the Pearson correlation coefficients RP,Vspiro :

RP,Vspiro =
∑tn

t=t1

(
P(t)− P

)(
Vspiro(t)−Vspiro

)√
∑tn

t=t1

(
P(t)− P

)2
√

∑tn
t=t1

(
Vspiro(t)−Vspiro

)2
(11)

where P is the examined parameter (e.g., circumferences, tilt angles or others) at each time
point t of the selected measurement interval.

The corrcoef -function of MATLAB was utilised to obtain the desired correlation coeffi-
cients, and the corresponding p-values were checked if they were less than 0.05 (the result
can be considered statistically significant).

The determined measurement ranges show the order of magnitude of the specified
parameters, which cover the measurement range from clinical application to home care
and sports activities, and thus represent the measurement ranges of these parameters in a
smart shirt that are available for respiration analysis.

3. Results

The spatial movements of the MoCap markers are illustrated in Figure 8 for shallow
breathing (b), normal spontaneous breathing (c), medium breaths (d) and maximal breaths
(d). The corresponding compression shirt is shown in Figure 8a.

The vital capacities obtained by the Tiffeneau test were compared by the maximal vital
capacity during breathing pattern 6 (maximal breaths). The results of the comparison are
illustrated in Table 3.

Table 3. Vital capacities obtained by the Tiffeneau Test compared to the maximal vital capacities
obtained during maximal breaths.

Subject Vital Capacity VC
by Tiffeneau Test/[L]

Max. Vital Capacity VC
during Max. Breaths/[L]

Difference/
[L]

Difference/
[%]

1 4.76 4.72 0.04 0.8
2 3.87 3.50 0.37 9.6
3 3.99 3.34 0.65 16.3
4 3.12 2.02 1.10 35.3
5 6.47 5.74 0.73 11.3
6 5.39 3.75 1.64 30.4
7 5.12 2.67 2.45 47.9
8 4.94 3.87 1.07 21.7
9 4.41 4.22 0.19 4.3
10 6.83 5.59 1.24 18.2
11 4.99 3.35 1.64 32.9
12 4.95 2.87 2.08 42.0
13 4.09 3.83 0.26 6.4
14 4.45 3.80 0.65 14.6
15 5.93 5.20 0.73 12.3
16 6.75 5.62 1.13 16.7
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Figure 8. Spatial movement of the MoCap markers on the compression shirt (a) during shallow
breathing (b), normal spontaneous breathing (c), medium breaths (d) and maximal breaths (e),
illustrated based on the data of subject 5. The MoCap markers move predominantly on a specific line,
which are illustrated in (e) as red dashed lines.

In Table 4, the maximal measured ranges and correlations to Vspiro during shallow
breathing and during maximal breaths of the analysed movement parameters are provided.
All values are given in the units of the respective parameter. In addition, the mean and
standard deviation of the parameters across all subjects are given.

Table 4. Ranges and correlations of the determined movement parameters.

Parameter Unit
Shallow Breathing Maximal Breaths

Max. Range
(Mean/std) Max. R2 Max. Range

(Mean/std) Max. R2

Spatial movements in the main direction of the
MoCap marker movement mm 24.1

(8.2/6.1) 0.91 84.6
(52.9/19.5) 0.97

Accelerations along the main direction of each
MoCap marker movement mm/s2 0.17

(0.05/0.03) 0.53 0.27
(0.18/0.06) 0.49

∆ distances between neighbouring markers mm 13.2
(2.9/2.8) 0.95 33.0

(9.6/6.9) 0.97

Elongation distances % 17.9
(3.9/3.8) 0.95 43.0

(12.7/9.0) 0.97

Absolute changes of body circumferences mm 47.8
(26.4/14.1) 0.93 112.7

(71.0/27.0) 0.97

Elongation circumferences % 5.1
(2.9/1.4) 0.93 13.5

(8.4/3.0) 0.97

∆ αtilt
◦ 15.0

(4.0/3.4) 0.88 35.2
(14.1/7.1) 0.96

In the following figures, the representation of the ranges of the individual motion
parameters and their correlations with the spirometer volume Vspiro are shown graphically.
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3.1. Movements

Figure 9 illustrates the movement ranges of the MoCap markers along their principal
movement axis and their correlation with Vspiro during shallow breathing.
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Figure 9. The maximal changes of the movements of MoCap markers along their principal movement
axis during shallow breathing (mean over all subjects (left)) and the mean corresponding correlation
of these changes with spirometer volume Vspiro of all subjects during shallow breathing are shown
(right). (Top-ventral view, bottom—dorsal view).

Figure 10 shows the movement ranges of the MoCap markers along their principal
movement axis during maximal breaths and their correlation of the movement with Vspiro.
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Figure 10. Illustration of the movement of MoCap markers at the upper body along their principal
movement axis. The largest movements amongst all subjects during maximal breaths (left) and the
mean corresponding correlation of maximal movements with spirometer volume Vspiro of all subjects
during maximal breaths is shown (right). (Top—ventral view, bottom—dorsal view).
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3.2. Accelerations

In Figure 11, the acceleration ranges of the MoCap markers along their principal
movement axis and their correlation with Vspiro during shallow breathing are displayed.
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Figure 11. The maximal accelerations of MoCap markers along their main movement axis during
shallow breathing (mean over all subjects (left)) and the mean corresponding correlation of these
changes with spirometer volume Vspiro of all subjects during shallow breathing are shown (right).
(Top—ventral view, bottom—dorsal view).

Figure 12 illustrates the acceleration ranges of the MoCap markers along their principal
movement axis and their correlation with Vspiro during maximal breaths.
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Figure 12. Illustration of the accelerations of MoCap markers along their main movement axis. The
largest accelerations amongst all subjects (left) during maximal breaths and the mean corresponding
correlation of maximal accelerations with spirometer volume Vspiro of all subjects during maximal
breaths are shown (right). (Top—ventral view, bottom—dorsal view).
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3.3. Distances

The ranges of the distance changes between neighbouring MoCap markers and their
correlation with the spirometer volume Vspiro are shown in Figure 13 for shallow breathing.
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Figure 13. Illustration of the maximal distance changes amongst all subjects during shallow breathing
(left), the corresponding distance elongation of all subjects (center), and the mean corresponding
correlation of distance changes with Vspiro of all subjects during shallow breathing (right). (Top—
ventral view, bottom—dorsal view). The dotted lines are distances, which do not fulfil (p < 0.05).

Figure 14 illustrates distance changes between neighbouring MoCap markers and
their correlation with Vspiro during maximal breaths.
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Figure 14. Illustration of the distance changes and elongations between MoCap markers at the upper
body. The largest distance changes amongst all subjects during maximal breaths (left), the maximal
distance elongation (center), and the mean corresponding correlation of maximal distances with
Vspiro of all subjects during maximal breaths are shown (right). (Top—ventral view, bottom—dorsal
view). The dotted lines are the distances, which do not fulfil the requirement (p < 0.05).
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3.4. Circumferences

Figure 15 shows the ranges of circumferential changes of the upper body circumfer-
ences and their correlation with the spirometer volume Vspiro during shallow breathing.
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Figure 15. Illustration of the maximal circumference changes amongst all subjects during shallow
breathing (left), the corresponding circumference elongation (center), and the mean corresponding
correlation of circumferences with spirometer volume Vspiro of all subjects during shallow breathing
are shown (right).

The ranges of circumferential changes of the upper body circumferences and their
correlation with Vspiro during maximal breaths are illustrated in Figure 16.
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Figure 16. Illustration of the circumferences at seven different heights on the upper body determined
via closed spline curves by the MoCap markers. The largest circumference changes amongst all
subjects during maximal breaths (left), the maximal corresponding circumference elongation (center),
and the mean corresponding correlation of circumferences with spirometer volume Vspiro of all
subjects during maximal breaths are shown (right).

3.5. Tilt Angles

Figure 17 shows the ranges of tilt angle changes and their correlation with Vspiro during
shallow breathing.

Figure 18 shows the ranges of tilt angle changes and their correlation with Vspiro during
maximal breaths.
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Figure 17. The maximal tilt angle changes amongst all subjects during shallow breathing (left)
and the corresponding correlation with the spirometer volume Vspiro of all subjects during shallow
breathing are shown (right). (Top—ventral view, bottom—dorsal view).
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Figure 18. Illustration of the changes of tilt angles at the MoCap marker position at the upper body.
The largest tilt angle changes amongst all subjects during maximal breaths (left) and the mean
corresponding correlation of maximal tilt angle changes with spirometer volume Vspiro of all subjects
during maximal breaths are shown (right). (Top—ventral view, bottom—dorsal view).

4. Discussion

Despite high initial costs, the clinical application of the OEP shows that there is a
need for respiratory flow measurement alternatives. However, the costs of the MoCap
system limit applications to those where respiration should not be compromised in any
way, such as the respiratory monitoring of premature infants. Existing wearable systems
such as the Hexoskin system [31] have recently been scrutinised in different studies and
show reliable results for heart rate and respiratory rate [33,34]. However, the accuracy
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of the Hexoskin system estimation of respiratory volumes does not exceed the threshold
required for clinical applications, and further research is still ongoing.

This study was conducted to support further development of smart shirts measuring
tidal volumes by investigating respiration-induced motion by compiling motion capture
information from multiple sensors on the upper body. Data from a MoCap system, with
measurement accuracy in the sub-millimetre range, were captured, various motion param-
eters were determined and their potential contribution to respiratory volume estimation
investigated. For surface motion measurement precision, the MoCap system provides
accuracy in the sub-millimetre range. Other sensors might have higher measurement
accuracy under ideal conditions, but this can decrease in specific applications—usually due
to the design of the measurement device or other circumstances.

In order to obtain the most accurate measurement results, non-respiration induced
movements of the upper body were almost eliminated during the measurement by fixing
the spirometer on a stable holder at the height of the subjects’ mouths. Thus, the subjects
could only move their heads to a limited extent during the experiment. Another advantage
of fixing the spirometer was that the subjects could rest their hands on this holder, which
significantly improved their comfort during the measurement, and the subjects’ arms were
in a position that did not obscure the detection of the MoCap markers. This allowed stable
measurement of upper body movements during different breathing patterns, which were
almost exclusively limited to respiration-induced movements.

This measurement is based on the movements of MoCap markers. By using the
spatial positions of the MoCap markers to calculate the volume enclosed by the markers
(alphaShape function of MATLAB), deviations from the spirometer volume occur, espe-
cially for larger breaths [39], probably caused by pressure-related compressions of the
air in the thorax, while these compressions do not affect the flow measurement of the
spirometer. Hence, it could occur that the deviations are to some extent transferred to the
investigated parameters.

The breathing manoeuvre performed (Table 2) ensured that almost the entire spectrum
of tidal volumes was captured during breathing—from shallow breathing to maximal
breath. Shallow breathing, in which subjects try to inhale as little air as possible, is usually
associated with minimal upper body breathing movements and can be used to analyse the
minimal ranges of parameters. These shallow breaths may indicate patients with specific
respiratory diseases. The maximum parameter changes during the maximum breaths can
be observed as well. These maximal breaths may be more relevant to healthy individuals
undertaking aerobic exercise. However, with respect to accelerations that occur, shallow or
maximal breathing patterns do not necessarily imply minimal and maximal accelerations
of surface motion. In particular, the respiratory rate is often subconsciously increased
during shallow breathing, which can lead to higher acceleration values even with lower
movement amplitudes. However, in most cases, the increase in breathing frequency was
minor, therefore, this issue could be neglected during evaluation.

Prior to the measurement, the subjects underwent a Tiffeneau test to determine their
vital capacity. In addition, the vital capacity was determined during maximum breathing
in the manoeuvre (breathing pattern six). The comparison shows that some subjects almost
reached the vital capacity of the Tiffeneau test during maximal breaths (subjects 1, 9 and
13), while in others (subjects 7 and 12) a discrepancy of up to 48% was found (Table 3).
This discrepancy implies how much the results can be dependent on the motivation of the
subjects and on the trained personnel. When performing the Tiffeneau test, the subjects
were strongly motivated by the supervisor, whereas during the manoeuvre they were only
instructed to breathe maximally several times.

The measurements performed provided a number of metrics that captured the mo-
tion of the upper body during shallow and maximal breathing (Table 4). In particular,
circumferential changes of up to 113 mm (13.5% of end-expiratory circumference) occurred
during maximum breaths (Figure 15). Here, the largest circumferential changes occurred
between the level of the thoracic vertebra T4 and the lumbar vertebra L1. Changes in
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the spatial position at the upper body, i.e., movements along the major axis of motion
of the MoCap markers, occurred up to 85 mm anteriorly (ventrally) between the level of
T1 and L1 (Figure 7), and inclination angles changed by up to 36 degrees in the ventral
region (Figure 17). Distance changes between adjacent MoCap markers were a maximum
of 33 mm, corresponding to a percentage expansion of up to 43% (Figure 13). The largest
proportional distance changes occurred predominantly in the lateral and inferior dorsal
regions. Maximal accelerations detected at the MoCap markers were 0.27 mm/s2. The
acceleration values captured represent the design range of IMU sensors in smart shirt
applications. However, the maximum accelerations that occur are below the range of the
most inexpensive IMUs on the market, resulting in low signal-to-noise ratios [22]. This
problem is exacerbated for smaller breaths.

During shallow breathing, the maximum circumferential changes in the order of
5.1% were measured, which corresponds to an extension of about 48 mm (Figure 16). In
contrast to maximal breaths, larger circumferential changes occurred toward the abdominal
region between the levels of the thoracic vertebra T4 to the lumbar vertebra L3. The
greatest changes in spatial positions occurred in the abdomen, anteriorly between T4 and
L1. The greatest elongations between markers occurred predominantly laterally and in
the abdominal region. The tilt angles, with respect to the vertical, also changed most
predominantly in the lower abdominal region, up to 15 degrees (Figure 18).

The comparatively high standard deviations observed in parameters during shallow
breathing (Table 4) indicate an inter- and intra-individual variability of the measurements
of different subjects and, therefore, changes in the movement parameters can vary consid-
erably from person to person. Different tendencies to abdominal or thoracic breathing or
different breathing frequencies do not exclusively influence the results; in addition, differ-
ent tidal volumes affected the outcomes. In Figure 19, the data variability of the individual
subjects is exemplarily shown in the circumferential changes. Since the different tidal
volumes respired by the subjects (Table 3) may be a significant factor for the high standard
deviation, the variation of the data with respect to the tidal volumes is also shown. This
indicates that the different tidal volumes certainly have an influence on the variability, but
that the variability also depends on other factors, such as different tendencies to abdominal
or chest breathing.
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Figure 19. Inter-individual variability of circumferential changes amongst all subjects during maximal
breathing (middle) and variability of circumferences considering different inspired tidal volumes
(right). The blue numbers identify the circumferences as shown (left). The deployed box and whisker
plot illustrates the minimum value, 25% percentile, median, 75% percentile, the maximum value and
the red + signs denote outliers.

However, it could be observed across subjects that during shallow breathing, subjects
tended to abdominal breath and while during maximal breathing, subjects used the entire
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capacity of the lungs and maximised both abdominal and thoracic breathing. Thus, during
maximal breathing, the tendency to recruit the thorax or abdomen was mitigated in partici-
pants, and there was greater inter-participant consistency in motion for maximal breathing.

This study investigates the individual correlation of each parameter with the spirome-
ter volume Vspiro. In general, these correlations were higher at maximal breathing volumes
than at low breathing volumes. This could be due to the fact that larger amplitudes and
lower respiratory frequencies occurred during larger respiratory volumes, and thus there
were almost no fast changes of the parameters, which usually implies a better signal-to-
noise ratio.

The upper body circumferences were well correlated to breath volume (Figures 15 and 16).
However, a simpler approach to capture this outcome was published as early as 1965 by
Agostoni et al. [31]. The present study supports these results, as the highest correlations with
spirometer volume of all measured data were found for mean upper body circumference
between the level of thoracic vertebra T4 and lumbar vertebra L1. Correlations of 0.97 were
found for maximal breaths (Figure 15 and Table 4), while the highest correlations for shallow
breaths ranged from 0.7 to 0.9 (Figure 16).

The highest correlations between VSpiro and distance changes between markers (R ≈ 0.97)
were found in the lower dorsal region and laterally on the torso (Figures 13 and 14). Tilt angle
changes correlated with Vspiro predominantly ventral in the higher chest area and in the lower
abdominal part (Figures 17 and 18). As expected, the dorsal tilt angle changes were only
partially correlated with the spirometer volume. Accelerations themselves did not correlate
well with the volume signal. In practice, acceleration data from surface mounted IMU sensors
would most likely undergo a two-fold integration to obtain the spatial positions, which are
then correlated to inspired volume changes. However, the raw acceleration observed in the
spontaneous breathing data (Figures 11 and 12) does not appear to provide a useful correlation
to inspired volume in this study.

It should be noted that some of the parameters of the markers carrying system in-
formation were highly correlated with each other. In particular, especially the markers
at the thorax generally moved in unison and thus, simply selecting the markers with the
highest individual correlations may lack information uniqueness and may not represent the
highest information content with respect to respiratory volumes possible [38]. Therefore,
further increasing the number of sensors could have a very minor effect on the information
content of the overall measurement system. Thus, the identification of a sensor set carrying
a maximum of respiratory information is only supported by this and not carried over.

An appropriate selection of sensors and their locations in a smart shirt approach must
be optimised to enable accurate and precise volume estimation from surface motion. This
article presents the ranges and tidal volume correlations for a number of metrics that could
be obtained with common sensors. The correlations with respiratory volume provide an
indication of how much respiratory information the corresponding metric carries. If sensors
are placed at a location in a smart shirt where the corresponding metric has little correlation
with respiratory volume, that sensor adds little additional respiratory information to the
measurement system. Therefore, the knowledge of correlation is critical to the selection,
placement and implementation of sensors in the smart shirt. To the authors’ knowledge, no
such compilation of knowledge exists in the current literature.

One more potential diagnostic and clinically relevant aspect would be to check sym-
metry of the upper body motions using a smarts shirt. A smart shirt with appropriate
sensor technology could reveal symmetries or asymmetries of the movement of the upper
body and could be used to diagnose associated diseases. In particular, asymmetric upper
body movement patterns can help to diagnose diseases such as pneumothorax, broken
ribs, unilateral lung disease, severe atelectasis, or emphysema [40,41]. It is reasonable
to suspect that even with circumferential measurements alone, a clever arrangement of
optical encoders could determine symmetric properties of upper body motion and possibly
provide further insight into diagnosis. Hence, in typical breathing, chest and abdomen
motions are either both expanding, or both contracting. In the case of diaphragmatic
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dysfunction, the chest and abdomen motions occur in opposite directions, which is called
the Hoover sign [42–44]. As such, if validated in clinical research, it may be possible to
diagnose diaphragmatic dysfunction with only circumferential measurements.

Limitations in these measurements were mainly due to the fact that the size of the
shirt introduced some error. The variance in fit of the compression shirt across participants
with distinct morphology imply that there would be slightly different marker locations.
However, care was taken during fitting to ensure the certain markers were located on
specific physiological features, and thus mitigating this concern.

Further limitations were that during maximal breathing, it was likely that the shirt
moved in relation to the skin surface [45]. However, this would generally also occur
with a smart shirt, and thus, represent a typical systematic error that seems difficult to
avoid without irritating the participant. In particular, it may be possible to reduce the
shirt-to-skin movement with a very tight fit of the smart shirt and/or an adhesive or high
friction inner-fabric to adhere better to the skin. However, the potential benefit of such
an approach may not lead to improved results. In particular, there are multiple tissue
interfaces between the alveolar and the skin, which shift with breathing activities. Adding
a further layer of relative motion at the skin-shirt interface hardly seems like a confounding
factor. Furthermore, since the correlations shown in Table 4 are of sufficient strength to
imply a precise estimation of Vspiro, it may not be profitable to pursue higher precision for
increased cost or discomfort. In addition, measurements with more subjects of different
ages and with different body shapes could confirm the results of this study and give a better
insight into the systematic nature of the changes in the parameters studied. In particular,
most of the participants were male (13/16), young adults (13/16 ≤ 30) and in the healthy
BMI range (15/16). As the study examined changes in measurable parameters on the
upper body and by varying fitness levels of the subjects, as indicated by vital capacities
ranging from 3.1 L even up to 6.8 L, a very wide range of surface motion was obtained.
Measurements with more subjects of different ages and with different body shapes would
be advantageous.

Furthermore, a study with subjects suffering from lung disease, e.g., patients with
chronic obstructive pulmonary disease or cystic fibrosis, could show the applicability and
the special requirements of a smart shirt for this field of application.

This research offers a survey of measurement ranges and correlations to determine
tidal volumes with common sensors. It is an important contribution in the field of smart
clothing/wearables, as this work shows the required measurement ranges and the expected
correlation to respiratory volume depending on the placement of the sensors on the upper
body and thus significantly supports the development of a smart shirt for respiratory
volume determination and breath analysis.

5. Conclusions

This study provides a basis for the development of a smart shirt to estimate respiratory
volume. The measurements obtained may help in the selection of the type and optimal
location of candidate sensors that would allow tidal volumes to be measured with sufficient
accuracy for clinical applications. Such a smart shirt could expand the availability of
respiratory diagnostics and would allow more convenient and long-term measurement of
respiratory parameters in home care or in the clinic.
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Abbreviations
The following abbreviations are used in this manuscript:
α Tilt angle
CiMeD Circumference measurement device
Cx Cervical vertebrae x (1 ≤ x ≤ 7)
DOF Degrees of freedom
IMU Inertial measurement unit
L Length along main movement axis
Lx Lumbar vertebrae x (1 ≤ x ≤ 5)
MoCap Motion capture system
OEP Optoelectronic plethysmography
P Examined parameter
p p-value
R Pearson correlation coefficient
RIP Respiratory inductance plethysmograph
std Standard deviation
Tx Thoracic vertebrae x (1 ≤ x ≤ 12)
VC Vital capacity
Vspiro Volume obtained by the spirometer
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