
RESEARCH ARTICLE

Genotyping of familial Mediterranean

fever gene (MEFV)—Single nucleotide

polymorphism—Comparison of Nanopore

with conventional Sanger sequencing

Jonas Schmidt1,2,3, Sandro Berghaus1, Frithjof Blessing1,2, Holger Herbeck1,

Josef Blessing1, Peter Schierack3,4, Stefan Rödiger3,4, Dirk RoggenbuckID
3,4☯*,

Folker Wenzel2☯

1 Institute for Laboratory Medicine, Singen, Germany, 2 Faculty of Medical and Life Sciences, Furtwangen

University, Villingen-Schwenningen, Germany, 3 Faculty Environment and Natural Sciences, Institute of

Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany,

4 Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg,

Senftenberg, Germany

☯ These authors contributed equally to this work.

* dirk.roggenbuck@b-tu.de

Abstract

Background

Through continuous innovation and improvement, Nanopore sequencing has become a

powerful technology. Because of its fast processing time, low cost, and ability to generate

long reads, this sequencing technique would be particularly suitable for clinical diagnostics.

However, its raw data accuracy is inferior in contrast to other sequencing technologies. This

constraint still results in limited use of Nanopore sequencing in the field of clinical diagnos-

tics and requires further validation and IVD certification.

Methods

We evaluated the performance of latest Nanopore sequencing in combination with a dedi-

cated data-analysis pipeline for single nucleotide polymorphism (SNP) genotyping of the

familial Mediterranean fever gene (MEFV) by amplicon sequencing of 47 clinical samples.

Mutations in MEFV are associated with Mediterranean fever, a hereditary periodic fever syn-

drome. Conventional Sanger sequencing, which is commonly applied in clinical genetic

diagnostics, was used as a reference method.

Results

Nanopore sequencing enabled the sequencing of 10 target regions within MEFV with high

read depth (median read depth 7565x) in all samples and identified a total of 435 SNPs in

the whole sample collective, of which 29 were unique. Comparison of both sequencing

workflows showed a near perfect agreement with no false negative calls. Precision, Recall,

and F1-Score of the Nanopore sequencing workflow were > 0.99, respectively.
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Conclusions

These results demonstrated the great potential of current Nanopore sequencing for applica-

tion in clinical diagnostics, at least for SNP genotyping by amplicon sequencing. Other more

complex applications, especially structural variant identification, require further in-depth clin-

ical validation.

1. Introduction

Since its first description in 1996, nanopore-based deoxyribonucleic acid (DNA) sequencing has

developed to one of the most powerful sequencing technologies thanks to continuous innovation

and improvements [1,2]. Nowadays, different sequencing devices and protocols are commer-

cially available rendering this technique attractive for various areas of molecular biological

research and diagnostics, including metagenomics, bacterial and viral infectiology, human geno-

mics, and cancer research [3–11]. The core components of current Nanopore sequencing devices

are protein nanopores contained in a membrane [12,13]. As single DNA molecules are passed

through these pores, the resulting changes in an ionic current across the membrane are used to

infer the sequence of nucleic acids [11–13]. This sequencing approach offers the advantages of

real-time sequencing, ultra-long read length (average read length up to 10 kb), high throughput

and the possibility of base modification detection as well as native ribonucleic acid (RNA)

sequencing [1,13,14]. However, a major drawback compared to other next-generation sequenc-

ing (NGS) techniques has been the comparatively high error rate [13]. Although this is a heterog-

enous measure, which is influenced by different parameters including sequencing instrument,

sequencing protocol and sample type, Nanopore sequencing shows a distinct higher error rate

(~6%) compared to PacBio sequencing (~1.5%), Illumina sequencing (~0.5%) and conventional

Sanger sequencing (~0.001%) [15–19]. This is especially critical for medical applications such as

single nucleotide polymorphism (SNP) genotyping, which require high sequencing accuracy to

achieve reliable results [13]. Although the accuracy of Nanopore sequencing has improved con-

siderably by optimization of the underlying sequencing chemistry and bioinformatic analysis

tools, it is important to validate the technique against established gold standard methods such as

Sanger sequencing to assess a possible application in medical diagnostics [13,20].

A common monogenetic autoinflammatory disease is Familial Mediterranean fever (FMF)

which shows a high prevalence among Turkish, Armenian, Jewish and Arabic communities

from the eastern Mediterranean region [21,22]. The disease is a clinical diagnosis and mainly

characterized by recurrent fever and serositis, with amyloidosis being a severe complication in

untreated individuals [22–24]. FMF is considered to be inherited autosomal recessive and is

associated with point mutations (single substitutions) in the Mediterranean Fever (MEFV)

gene [22,24]. This gene consists of 10 exons and is located on the short arm of chromosome 16

in minus strand orientation [22]. It encodes a 781 amino acids containing protein called pyrin,

which plays a key role in apoptosis and inflammatory pathways. It is mainly expressed in neu-

trophils, eosinophils, dendritic cells and fibroblasts [21–23]. Mutated pyrin is thought to cause

an excessive inflammatory response through uncontrolled interleukin-1 (IL-1) secretion

[21,25]. After clinical diagnosis, the diseases is generally treated with colchicine, and IL-1

blockade is suggested in refractory cases [21]. Genetic testing is employed to aid in the clinical

diagnosis of FMF and to screen relatives at risk [23]. This can be done either by testing for the

most common mutations (targeted mutation analysis) or by sequencing of selected exons [23].

According to expert consensus guidelines for the genetic diagnosis of hereditary recurrent

fevers a minimum diagnostic screen should include clearly pathogenic variants which are
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frequently identified in patients [26]. For FMF this incorporates the exons 2, 3, 5 and 10 of

MEFV or a set of nine variants [26]. While DNA sequencing is used in most laboratories for var-

iant analysis, targeted approaches can also be applied by using PCR based or reverse-hybridiza-

tion based assays [26]. However, these targeted approaches as well as conventional Sanger

sequencing suffer from the technological limitation that only a comparably small genetic target

range can be covered within a single run. To overcome this limitation, NGS can be applied to

sequence gene panels including not only MEFV for the diagnosis of FMF but also genes which

are associated with other periodic fever syndromes like mevalonate kinase deficiency (MKD,

gene MVK), tumor necrosis factor receptor-associated periodic syndrome (TRAPS, gene

TNFRSF1A) and cryopyrin-associated periodic syndrome (CAPS, gene NLRP3) [26,27].

In this study, to evaluate the clinical performance of current Nanopore sequencing, we

applied this sequencing technique in combination with a dedicated data analysis pipeline for

SNP genotyping of selected regions of MEFV in 47 patients and validated the results against

diagnostic Sanger sequencing as the gold standard method.

2. Material and methods

2.1 Clinical samples

Samples from 25 female and 22 male patients that were drawn for routine MEFV assessment

were included into this study after routine testing by Sanger sequencing was performed.

Median age was 12.1 years (interquartile range [IQR] 12.9). Primary blood samples were col-

lected in EDTA collection tubes by venipuncture and stored at 4˚C until further processing.

The routine diagnostic workflow includes DNA isolation, polymerase chain reaction (PCR)

amplification of selected targets within MEFV and Sanger sequencing as described below. Sub-

sequent to routine Sanger sequencing, the amplicons obtained from the amplification step

were pooled per sample and Nanopore sequencing was performed.

All included individuals gave their written informed consent. For minor patients, written

informed consent was obtained from the parents. The study followed all relevant national reg-

ulations and institutional policies, has been approved by the ethics committee of the Lande-

särztekammer Baden-Württemberg (F-2018-089) and complies with the World Medical

Association Declaration of Helsinki regarding ethical conduct of research involving human

subjects and/or animals.

2.2 DNA isolation and PCR amplification

DNA isolation from EDTA whole blood samples was performed on chemagic Prepito-D

instruments (PerkinElmer, Waltham, USA) using Prepito NA Body Fluid kits (PerkinElmer)

(expected yield: ~2.5 μg).

PCR amplification of the MEFV target regions was performed stepwise in eight different

PCR reactions using target specific primers (Biomers, Ulm, Germany), Q-Solution (Qiagen,

Hilden, Germany), and the AmpliTaq Gold 360 Master Mix (ThermoFisher Scientific, Wal-

tham, USA). The amplicons were designed to span MEFV exon 1, exon 2, exon 3, exon 4, exon

5, exon 6, exon 7/8, and exon 9/10 (S1 Table). PCR reactions were performed on an Applied

Biosystems Veriti thermal cycler (ThermoFisher Scientific) (S2 and S3 Tables). Nuclease free

water was included in all runs as a no template control.

2.3 Sanger sequencing

Prior to sequencing, a clean-up of the amplicons was performed by using ExoSAP-IT clean-up

kits (ThermoFisher Scientific). Briefly, 7 μL PCR product were mixed with 1 μL clean-up

PLOS ONE Clinical genotyping of single nucleotide polymorphism with Nanopore sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0265622 March 17, 2022 3 / 13

https://doi.org/10.1371/journal.pone.0265622


reagent by pipetting. This reaction mix was incubated for 15 min at 37˚C followed by 15 min

at 80˚C.

Sanger sequencing of the purified amplicons was performed using the BigDye Terminator

Version 3.1 kit (ThermoFisher Scientific) on an Applied Biosystems 3500 Dx Series Genetic

Analyzer (ThermoFisher Scientific) according to the manufacturer’s protocol. Briefly,

sequencing reactions were set up using target specific sequencing primers (Biomers) (S4

Table). After incubation on a thermal cycler, the reaction mix was cleaned by precipitation

with ethanol/EDTA/sodium acetate and loaded on the instrument for capillary electrophoresis

after resuspending in injection buffer. Sequencing was performed using POP-6 Polymer

(ThermoFisher Scientific).

2.4 Nanopore sequencing

Prior to Nanopore sequencing, equal volumes (10 μL) of the amplicons from the target ampli-

fication step were pooled for each individual sample. DNA concentration of the pooled sam-

ples was measured on a Qubit 4 fluorometer (ThermoFisher Scientific) using the 1x dsDNA

HS assay (ThermoFisher Scientific) (S5 Table). Afterwards, a 1.8x AMPure XP bead clean-up

was performed according to the manufacturer’s protocol (Beckman Coulter, Brea, USA).

Sequencing libraries were prepared according to the manufacturer’s protocol using native bar-

coding kits (EXP-NBD104, EXP-NBD114) in combination with ligation sequencing kits

(SQK-LSK109) (Oxford Nanopore Technologies (ONT), Oxford, UK). The libraries were pre-

pared with a total of 12 samples per library for each run to ensure a sufficient read count per

sample and that the relative proportion of a single sample is comparable (S5 Table). DNA

input per sample was 200fmol and 12.5fmol of each barcoded sample were pooled prior to

sequencing. Sequencing was performed on a MinION sequencing device (ONT) for 6h using

R9.4.1 flow cells (ONT). All samples were sequenced in four different runs using two flow

cells. Prior to reuse, the flow cells were purged according to the manufacturer’s protocol using

flow cell wash kits (EXP-WSH003) (ONT).

2.5 Sequencing data analysis

Sanger sequencing data was analyzed using SEQUENCE Pilot Software [v 3.4.2] (JSI medical

systems GmbH, Ettenheim, Germany). Variants were called against the MEFV reference

(ENSEMBL gene: ENSG00000103313; transcript: ENST00000219596). Identified variants were

manually inspected and exported to a comma separated-values (csv) file for comparison with

the Nanopore sequencing results.

To analyze the Nanopore sequencing data, a dedicated data analysis pipeline was established

by us and implemented into a bash shell script for automation purpose (Fig 1). Raw data in

FAST5 file format was basecalled and demultiplexed using the Guppy Basecalling Software [v

5.0.11+2b6dbffa5] (ONT). Basecalling was performed using the “super-accurate” basecalling

model (dna_r9.4.1_450bps_sup.cfg). Basic run quality control was performed by applying

pycoQC [v 2.5.2] (github.com/tleonardi/pycoQC). To remove chimeric and low-quality reads,

read filtering was done with NanoFilt [v 2.7.1] (github.com/wdecoster/nanofilt). The filter was

set to keep only reads with a read length between 250 and 1200 bases and a quality score equal or

larger 15. After filtering, the reads were aligned to chromosome 16 of the hg19 reference genome

(NC_000016.9) using minimap2 [v 2.20-r1061] (github.com/lh3/minimap2). The resulting

Sequence Alignment Map (SAM) files were sorted and indexed with Samtools [v 1.7] (github.

com/samtools/samtools). Afterwards, bcftools [v 1.13] (github.com/samtools/bcftools) was used

for variant calling. The tool was set to include only SNPs and skip insertions and deletions. Vari-

ant filtering was performed by applying bedtools [v 2.30.0] (github.com/arq5x/bedtools2). Only
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calls in MEFV regions covered by the amplicons were included into the final data set. Finally, the

identified variants were annotated using ANNOVAR [v 2018-04-16] [28].

Once the automated data analysis pipeline was complete, the results for each individual

sample were manually reviewed using the Integrative Genomics Viewer [v2.10.3] (github.com/

igvteam/igv).

2.6 Results comparison

Method comparison was done in R [v 3.6.3] (R Foundation for Statistical Computing, Vienna,

Austria) [29]. After importing the data sets, Nanopore sequencing variant calls were compared

to the Sanger sequencing reference for genomic position, nucleotide change, zygosity, amino

acid position, and amino acid change. Nanopore sequencing calls were only classified as true

positive (TP) if all five criteria matched to the corresponding Sanger sequencing reference.

Variants without a complete match as well as variants which were missed by Nanopore

sequencing were classified as false negative (FN) and variants, which were solely identified by

Nanopore sequencing as false positive (FP). Based on these classifications, comparative mea-

sures including Precision (TP/(TP + FP)), Recall (TP/(FN + TP)) and F1-Score (2 � (Precision
� Recall)/(Precision + Recall)) were calculated [30].

Data visualization was performed in R as well using the packages ggVennDiagram, ggplot2,

gggenes, and ggpubr. Sequencing depth information was extracted from the SAM files prior to

visualization using Samtools.

3. Results

To evaluate the performance of Nanopore sequencing for SNP genotyping, we performed

amplicon sequencing of selected MEFV regions in 47 clinical samples using a MinION

sequencing device and compared the results to conventional Sanger sequencing.

Fig 1. Data analysis pipeline applied for the assessment of the Nanopore sequencing data. Tools used for the

different tasks are shown. Step 1 to 7 were implemented in a bash shell script for automation purpose. SNP; single

nucleotide polymorphism.

https://doi.org/10.1371/journal.pone.0265622.g001
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By using Nanopore sequencing in combination with a dedicated data analysis pipeline, it

was possible to sequence the eight amplicons covering the relevant MEFV regions of all 10

exons with a median read depth of 7565x (IQR 4025) over all 47 samples (Fig 2B). A reduced

read depth was observed at the edges of individual amplicons (minimum 13x). Furthermore,

differences in the median read depth between different amplicons were observed (Fig 2A).

Overall, amplicon 1, 2, and 8 showed a lower median read depth compared to the remaining

amplicons.

In total, 433 SNPs were identified in the investigated sample collective by Sanger sequenc-

ing (284 heterozygous and 149 homozygous). They include 28 unique variants of which 13 are

non-synonymous (Table 1). The most common non-synonymous variants include p.E148Q

(40.4%), p.R202Q (34.0%), p.M694V (25.5%), p.P369S (12.8%) and p.R408Q (12.8%). In addi-

tion, the most common synonymous variants were p.R314R (76.6%), p.E474E (70.2%), p.

Q476Q (70.2%), p.D510D (70.2%), and p.P588P (68.1%).

All 433 SNPs confirmed by Sanger sequencing in the sample collective were also identified

by Nanopore sequencing with matching genomic position, nucleotide change, zygosity, amino

acid position, and amino acid change (Fig 3). Additionally, the Nanopore sequencing results

showed a transversion from guanine (G) to thymine (T) in the 3’ untranslated region (UTR) at

genomic position 3293090 in two patients which has not been identified by initial Sanger

sequencing (Figs 3 and S1). Read depth at this genomic position was >7000x in both cases. A

data base research, including ClinVar and dbSNP, did not reveal any further information on

this SNP. Remarkably, both individuals in whom this SNP was identified were related. By

sequencing an additional amplicon, spanning this region, it was possible to confirm the trans-

version in both samples also by Sanger sequencing (S2 Fig).

For further method comparison, performance parameters such as Precision, Recall, and

F1-Score were calculated from the results. The SNP which was only identified by Nanopore

sequencing was treated as false positive, since it was not identified during the initial diagnostic

Sanger sequencing runs. Based on this assumption, the Nanopore sequencing method in com-

parison to Sanger sequencing showed a Precision of 0.995, a Recall of 1 and a F1-Score of

0.998.

Fig 2. Visualization of the read depth distribution achieved by Nanopore sequencing. (A) Median read depth

achieved by amplicon sequencing of selected regions in the MEFV gene in 47 clinical samples using a MinION

sequencing device. The target regions cover the relevant regions of all 10 exons of this gene. (B) Read depth

distribution in the target regions over all 47 samples. A median read depth of 7565x (IQR 4025) was achieved. Outliers

with a reduced sequencing depth were observed at the edges of individual amplicons.

https://doi.org/10.1371/journal.pone.0265622.g002
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4. Discussion

To evaluate the performance of Nanopore sequencing for SNP genotyping by amplicon

sequencing, we performed a comprehensive method comparison with conventional Sanger

sequencing using 47 clinical samples from patients with suspicion of FMF. The number of

studies comparing Nanopore and Sanger sequencing in diagnostics has been limited [31–33].

Routine diagnostics using Sanger sequencing, the current gold standard for point-mutation

detection so far, revealed the presence of various SNPs, including the non-synonymous vari-

ants p.E148Q, p.R202Q, p.M694V, p.P369S and p.R408Q in this sample collective [34]. All of

these mutations have been previously described in FMF patients [22,35].

Table 1. Unique MEFV variants identified in 47 patients. Variant frequency in the sample collective under investigation is shown. One variant in two patients was only

identified by Nanopore sequencing and could not be confirmed by initial Sanger sequencing.

Genomic positiona cDNAb Proteinc Region Exonc Count (%) Functiond Agreemente

3299749 c.942C>T p.R314R exonic 3 36 (76.6) S yes

3298865 rs224212 - intronic - 33 (70.2) - yes

3297181 c.1422G>A p.E474E exonic 5 33 (70.2) S yes

3297175 c.1428A>G p.Q476Q exonic 5 33 (70.2) S yes

3297073 c.1530T>C p.D510D exonic 5 33 (70.2) S yes

3293888 c.1764G>A p.P588P exonic 9 32 (68.1) S yes

3293922 rs1231123 - intronic - 30 (63.8) - yes

3296616 rs224205 - intronic - 29 (61.7) - yes

3296429 rs224204 - intronic - 29 (61.7) - yes

3304762 c.306T>C p.D102D exonic 2 21 (44.7) S yes

3304654 c.414A>G p.G138G exonic 2 21 (44.7) S yes

3304573 c.495C>A p.A165A exonic 2 21 (44.7) S yes

3304626 c.442G>C p.E148Q exonic 2 19 (40.4) NS yes

3304463 c.605G>A p.R202Q exonic 2 16 (34.0) NS yes

3293407 c.2080A>G p.M694V exonic 10 12 (25.5) NS yes

3299586 c.1105C>T p.P369S exonic 3 6 (12.8) NS yes

3299468 c.1223G>A p.R408Q exonic 3 6 (12.8) NS yes

3293310 c.2177T>C p.V726A exonic 10 4 (8.5) NS yes

3297100 c.1503C>T p.R501R exonic 5 3 (6.4) S yes

3294246 rs77380520 - intronic - 3 (6.4) - yes

3293257 c.2230G>T p.A744S exonic 10 3 (6.4) NS yes

3293205 c.2282G>A p.R761H exonic 10 3 (6.4) NS yes

3293403 c.2084A>G p.K695R exonic 10 2 (4.3) NS yes

3293090 - - UTR3 - 2 (4.3) - no

3304380 c.688G>A p.E230K exonic 2 1 (2.1) NS yes

3304317 c.751G>A p.E251K exonic 2 1 (2.1) NS yes

3304158 c.910G>A p.G304R exonic 2 1 (2.1) NS yes

3293447 c.2040G>C p.M680I exonic 10 1 (2.1) NS yes

3293369 c.2118G>A p.P706P exonic 10 1 (2.1) S yes

aGenomic position on the hg19 reference genome (NC_000016.9).
bdbSNP identifiers are shown for variants in non-coding regions.
cAmino acid information and exon number are only shown for variants in exonic regions.
dS = synonymous; NS = non-synonymous.
eAgreement between Nanopore sequencing and initial Sanger sequencing results.

https://doi.org/10.1371/journal.pone.0265622.t001
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By performing Nanopore sequencing on a MinION sequencing device in combination with

a dedicated data analysis pipeline, it was possible to sequence the relevant regions of all MEFV
exons with a very high read depth. All variants previously identified by diagnostic Sanger

sequencing were also accurately detected. Furthermore, Nanopore sequencing revealed only

one SNP in two related patients, which had not been identified during initial Sanger sequenc-

ing. This SNP was located in the 3’ UTR at the edge of the amplicon covering this region. Since

current Sanger sequencing is based on PCR amplification and capillary electrophoresis, poor

sequence quality due to primer binding and insufficient base resolution is a very common

problem at the beginning and end of an individual read [36]. Therefore, low-quality regions

are trimmed prior to data analysis. For this reason, the diverging SNP is located in a region of

amplicon 8, which cannot be properly sequenced by Sanger sequencing on either the forward

or reverse strand. In Nanopore sequencing, a similar problem does not occur since the

sequencing adapters are ligated to the ends of the PCR products during library preparation

[37]. By sequencing an additional amplicon, spanning the relevant region of the 3’ UTR, we

were able to confirm the transversion in both patients also by Sanger sequencing. Taking these

additional results into account, our data show a complete agreement between Nanopore and

Sanger sequencing. Nevertheless, a comprehensive data-base research did not reveal any infor-

mation about the clinical relevance of this transversion. Since the initial diagnostic Sanger

sequencing runs did not identify this variant, the corresponding variant calls were treated as

false positive in the calculation of performance measures.

The obtained Precision, Recall, and F1-Score of> 0.99 each demonstrate the excellent

agreement between Nanopore and Sanger sequencing for SNP genotyping in our study [38].

This is consistent with other studies that also reported a high degree of agreement for various

applications, especially in microbiology and cancer genomics [31,39–41].

The limitations of our study were the small sample size and the focus on targeted SNP geno-

typing alone. By using targeted amplicon sequencing on the MinION, we were able to

sequence the relevant regions of the MEFV exons at a high read depth (median read depth

7565x). However, there is a substantial amount of variation in read depth between different

Fig 3. Genetic variants which were identified in selected regions of MEFV. (A) Frequency of single nucleotide

polymorphisms (SNPs) identified in 47 clinical samples by Sanger and Nanopore sequencing. cDNA labels or dbSNP

references are given for the most common variants. Variants with a complete agreement between Sanger and

Nanopore sequencing in all 47 clinical samples are coloured in blue and differing variants are coloured in orange. (B)

Gene map of MEFV and the amplicons used to sequence selected regions of this gene (S1 Table). Genomic positions

on the hg19 reference genome (NC_000016.9) are shown in minus strand orientation.

https://doi.org/10.1371/journal.pone.0265622.g003
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amplicons within one sample and different samples. This was based on the varying DNA input

and varying efficacy of the eight PCR reactions used to amplify the MEFV target regions. A

more homogeneous read depth distribution could be achieved by determining the concentra-

tion of the individual amplicons prior to pooling and subsequent pooling of equimolar

amounts. Although this would increase the complexity of the protocol, it would contribute to

more homogenous results and probably facilitate a higher degree of multiplexing. Multiplexing

of different clinical samples is a key factor in diagnostic NGS as it significantly improves cost

efficiency (Table 2) [31]. According to Leija-Salazar et al. a read depth of>100x could be suffi-

cient for accurate variant identification by Nanopore sequencing [10]. Such a threshold would

remarkably increase the possible degree of multiplexing in our experimental design. However,

due to the inhomogeneous read depth distribution between different amplicons we were not

able to evaluate this accurately by subsampling of the data.

Due to the high read depth achieved by amplicon sequencing, we were able to use bcftools

for accurate variant calling. This tool employs Bayesian statistics to determine the most likely

genotype [38,42]. However, modern diagnostic NGS applications mainly involve gene panel

sequencing, whole exome sequencing, and whole genome sequencing [38]. Due to the obvi-

ously larger target space, the median read depth in such applications is normally much lower

than in amplicon sequencing. Therefore, under these circumstances, it may be necessary to

apply more modern tools for accurate variant calling, such as Nanopolish and Medaka

(github.com/nanoporetech/medaka), that can handle the unique Nanopore sequencing error

profile even at low read depth [43]. Further, structural variant calling including deletions,

inversions, tandem duplications, insertions, transpositions, and translocations from Nanopore

sequencing data requires also specialised tools [44].

Another important limitation of our study is that we did not utilize the full potential of

Nanopore sequencing regarding long read sequencing. By using long reads and tiling ampli-

con sequencing, it should be possible to sequence the whole gene without the need of amplify-

ing individual exons. While providing the same diagnostic information, this approach would

simplify the protocol and reduce the variability in read depth distribution.

Further, prior to clinical application a standardized workflow for sample processing is required.

In the future, in addition to modern bioinformatic data analysis tools, recently announced inno-

vations in nanopores and sequencing chemistry (R10.4 flow cells and Q20+ sequencing chemistry),

that increase raw read accuracy, may further improve the performance of Nanopore sequencing

for variant identification [45]. Furthermore, they may enable competitive use compared to other

Table 2. Comparison of Nanopore and Sanger sequencing based on various aspects relevant for use in clinical

diagnostics.

Aspect Sanger sequencing Nanopore sequencing

Capital costs (Instrument, Computing unit, Software)a High (~200000 €) Low (~3500 €)

Price per MEFV sample [€]b 160 75

Time to result [workdays]c 3 3

Multiplexing No Yes

Data analysis Simple Complex

Application in clinical genetics Reference method Validation needed

aBased on current list prices.
bApproximate price per sample. To archive highest diagnostic accuracy, 11 sequencing reactions must be performed

to sequence all target regions with Sanger sequencing, since amplicon 2 and 8 are sequenced in three and two

sequencing reactions, respectively. For Nanopore sequencing, the price decreases with increasing degree of

multiplexing. cIncludes DNA isolation, PCR amplification, sequencing and data analysis.

https://doi.org/10.1371/journal.pone.0265622.t002
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NGS technologies. As mentioned earlier, Nanopore sequencing is especially attractive compared to

other technologies like Illumina sequencing, Ion Torrent sequencing or PacBio sequencing due to

its fast processing time, lower costs, and ability to generate long reads [45,46].

Summarized, the results of our study show that state-of-the-art Nanopore sequencing in

combination with a dedicated data analysis pipeline has a comparable performance to conven-

tional Sanger sequencing for diagnostic SNP genotyping by amplicon sequencing in a clinical

setting. Due to continuous technological improvements, after further in-depth clinical valida-

tion, this sequencing technique could be applied in clinical genomics and simplify diagnostic

workflows in the future.
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