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Abstract: ML-based applications already play an important role in factories in areas such as visual
quality inspection, process optimization, and maintenance prediction and will become even more
important in the future. For ML to be used in an industrial setting in a safe and effective way, the
different steps needed to use ML must be put together in an ML pipeline. The development of
ML pipelines is usually conducted by several and changing external stakeholders because they are
very complex constructs, and confidence in their work is not always clear. Thus, end-to-end trust
in the ML pipeline is not granted automatically. This is because the components and processes in
ML pipelines are not transparent. This can also cause problems with certification in areas where
safety is very important, such as the medical field, where procedures and their results must be
recorded in detail. In addition, there are security challenges, such as attacks on the model and the
ML pipeline, that are difficult to detect. This paper provides an overview of ML security challenges
that can arise in production environments and presents a framework on how to address data security
and transparency in ML pipelines. The framework is presented using visual quality inspection as
an example. The presented framework provides: (a) a tamper-proof data history, which achieves
accountability and supports quality audits; (b) an increase in trust by protocol for the used ML
pipeline, by rating the experts and entities involved in the ML pipeline and certifying legitimacy for
participation; and (c) certification of the pipeline infrastructure, the ML model, data collection, and
labelling. After describing the details of the new approach, the mitigation of the previously described
security attacks will be demonstrated, and a conclusion will be drawn.

Keywords: machine learning; verifiability; blockchain; cybersecurity

1. Introduction

Artificial intelligence (AI) and machine learning (ML) have emerged as key tech-
nologies in information security due to their ability to rapidly analyse millions of events
and identify a wide range of threats. Blockchain is distinguished by its advantages of
decentralised data storage and program execution, as well as the immutability of the data.
Blockchain and AI can work together to provide secure data storage and data sharing, and
to analyse the blockchain audit trail to more accurately understand relationships of data
changes. Combining the two technologies will give blockchain-based business networks
a new level of intelligence by allowing them to read, understand, and connect data at
lightning speed [1].

ML has been established as the most promising way to learn patterns from data. Its
applications can be found in the data processing of web browsing, financial data, health
care, autonomous automobiles, and almost every other data-driven industry around us [2].
Because of the vast range of applications, ML models are now being run on a wide range
of devices, from low-end IoT and mobile devices to high-performance clouds and data
centres, to offer both training and inference services [3].
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Especially in industrial production, machine downtimes are costly for companies and
can have a significant impact on the entire company [4]. Therefore, AI applications used in
the business world must be fail-safe, secure, and reliable. Trust in AI applications that are
used in industrial production can only be built if they meet the requirements for information
security [5]. Next to the typical cybersecurity threats, the ML-based threats must be added
to these requirements, which are threats against ML data, ML models, the entire ML
pipelines, etc. [6]. To build trust, all actors must make sure they are following the rules,
and their actions must be verifiable and believable to their partners. For accountability, the
goals of security protection are for the assets to be available, safe, private, and handled in a
way that obeys the law (e.g., privacy).

Machine learning applications are, in fact, pipelines that link several parts and rely on
large amounts of data for training and testing [7]. Data are also required for maintaining
and upgrading machine learning models, since they take user data as input and use it to
come up with insights. The importance of data in machine learning cannot be overstated,
as data flows across the whole machine learning process.

Widespread attacks threaten ML security and privacy, these range from ML model
stealing [8], “model inversion” [9], “model poisoning” [10], “data poisoning” [11], “data
inference” [12] to “membership/attribute inference” [13] as well as other attacks. In ML,
security and privacy problems are caused by complex pipelines that use multiple system and
software stacks to offer current features such as acceleration. A full ML pipeline includes
collecting raw data, training, inference, prediction, and possibly retraining and reusing the
ML model. The pipeline may be segmented since data owners, ML computation hosts, model
owners, and output recipients are likely separate businesses [14]. As a result, ML models
frequently have weak resilience, as shown in adversarial cases or poisoning assaults. A small
change in the way training is conducted could have huge negative effects that are hard to
spot.

In comparison, blockchain has an entirely different purpose and characteristics. Blockchain
is a technology to store data, immutable and decentralised. The data are distributed across a
large network of nodes so that it is available even if some nodes fail. Once a block has been
added by agreement among participants, it cannot be deleted or changed, even by the original
authors. The data are publicly available but not publicly readable without a digital key [15].
One obvious use is to save records of success and credit, such as any entity credentials and
trust amounts related to it [16]. The granting institution would upload the certificate data to
the blockchain, which the member may view or connect from web pages [17].

Some research has looked at solutions for attacks on ML models or pipelines [14], but
these solutions are applied to the central system. But as communication and distributed
systems improve, different companies or developers can now work on platforms that use
distributed systems. However, the question is how they can trust each other’s output when
there is no central authority.

In this study, we present a blockchain-based framework to help find answers to ML’s
security, traceability, and privacy problems. In manufacturing, this framework is used
to keep data private and accessible for quality control and to explain those ideas. The
proposed solution has several key benefits, such as a data history that can’t be changed,
which provides accountability and makes quality checks possible. By making a protocol
for the ML pipeline that is used, rating the experts who are part of the ML pipeline, and
making sure that they are legitimate, trust is increased. In addition, pipeline architecture
and the machine learning with its tasks of model data gathering, and labelling are certified.
After the details of the framework are explained, it will be shown how to stop the security
attacks that have already been made public.

The article is structured as follows: Section 2 describes the utilised research method-
ology. The method follows the “Systematic Literature Review” to detect research gaps
and research objectives. Section 3 describes the current state of the art in focusing on ML
pipelines and how blockchain could help secure ML use cases. Section 4 discusses the
security challenges of machine learning models and pipelines, which frequently have the
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potential to destroy the output result of the model. In Section 5, we describe the new
approach to maintain the security of the model. For this purpose, certificates are introduced
which can be evaluated by a trust mechanism within the blockchain. Section 6 explains a
typical use case of visual quality inspection. We provide security analyses and evaluation
in Section 7 and the last section, Section 8, concludes the paper.

2. Research Methodology

This section introduces the research methodology used. The method follows the “Sys-
tematic Literature Review” method developed by Okoli and Schabram [18], and adapted
by Dr. Heil of the Justus Liebig University of Giessen [19]. The steps are as follows:

1. Definition of literature research question and research objective: Definition of research
questions, research principle and naming the target of the research

2. Inclusion and exclusion criteria: Define inclusion and exclusion criteria, documenta-
tion of refinements and changes

3. Databases: Determination of databases/search engines
4. Define search components: Definition of search terms, scheme for search term entry,

search for synonyms of search terms
5. Define search strings: Developing search strings with search components, search

terms, synonyms and operations, describing the search procedure, checking the
search strings using the PRESS checklist

6. Conducting the research: Input of search strings, documentation of changes, doc-
umentation of results, application of solution suggestions in case of too few or too
many hits

In the following, these steps are worked through.

2.1. Step 1. Define Literature Research Question and Research Objective

Four literature research questions are to be answered; these are:

• RQ1: What is the definition of an ML pipeline?
• RQ2: What are the benefits of an ML pipeline?
• RQ3: What are security risks of an ML pipeline?
• RQ4: Which of the identified risks can be addressed by blockchain?
• RQ5: How can blockchain and ML pipelines be linked together?

The literature review must cover the domains of ML pipeline, its risks and benefits,
how these risks can be addressed by blockchain and the combination of blockchain and ML
pipelines. The literature review must be a complete (sensitive) analysis in order to answer
the research questions posed. It is expected that there will be surveys covering this. The
methods mentioned in these surveys should also be considered.

2.2. Step 2. Inclusion and Exclusion Criteria

Table 1 shows the inclusion/exclusion criteria for each of the four examined domains.
The literature found should fall within the scope of production. In general, literature

that is not available as full text (via library access Furtwangen University) is excluded.
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Table 1. Inclusion/Exclusion Criteria.

Inclusion/Exclusion Domain Criteria

Inclusion
ML Pipeline

Definition
Benefit

Risk

Exclusion Case Study
Use Case

Inclusion
Blockchain

Addressing security risks

Exclusion Security risks of blockchain itself

Inclusion
Combination of ML Pipeline and Blockchain

Approaches of combining the benefits of ML
Pipeline and Blockchain

Exclusion Any form of performance improvement

2.3. Step 3. Determination of Databases/Search Engines

Google Scholar is selected as the search engine of choice. This is because Google
Scholar indexes a wide range of high quality journals (IEEE, ACM, Elsevier, Springer, etc.)
as well as the preprint service arXiv, where numerous papers have been pre printed over
the years that were later pre-reviewed in one of the before mentioned high quality journals.
In addition, a multidisciplinary comparison of coverage by citations by Martín-Martín
et al. [20] has shown that Google Scholar is the most comprehensive data source (Studied
data sources: Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science,
and OpenCitations’ COCI).

2.4. Step 4. Define Search Components

The keywords are defined for the three domains: “ML Pipeline” (Table 2), “Blockchain”
(Table 3) and “Combination of ML Pipeline and Blockchain” (Table 4), as well as the
combination of keywords per domain. The keyword “survey” is used in each of the 3
domains to find survey papers to uncover literature that may have been excluded by the
chosen keywords. The aim of this is to create a complete literature review.

Table 2. Literature Review Keywords—ML Pipeline.

Keyword Component 1 Keyword Component 2

ML Pipeline
Definition

Benefit
Risk

Table 3. Literature Review Keywords—Blockchain.

Keyword Component 1 Keyword Component 2

Blockchain Addressing security risks
Addressing risks

Table 4. Literature Review Keywords—Combination of ML Pipeline and Blockchain.

Keyword Component 1 Keyword Component 2

Combination of ML Pipeline and Blockchain Combining the benefits of ML Pipeline and
Blockchain

2.5. Step 5. Define Search Strings

The search terms listed below in Tables 5–7 are used to search for literature in Google
Scholar for the three categories mentioned and are represented using logic symbols (OR:
∨, AND: ∧). It should be noted that search string expressions could have been further
simplified, but this was omitted for the sake of clarity. The Peer Review of Electronic Search
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Strategies (PRESS) [21] is used to detect errors in the search strings that could complicate
or compromise the search.

Table 5. Literature Review Search Strings—ML Pipeline.

Search Strings

Machine Learning Pipeline ∨ML Pipeline ∧ (Definition ∨ Benefit ∨ Risk) ∨ Survey

Table 6. Literature Review Search Strings—Blockchain.

Search Strings

Blockchain ∧ (Addressing security risk ∨ Addressing risks) ∨ Survey

Table 7. Literature Review Search Strings—Combination of ML Pipeline and Blockchain.

Search Strings

Combination of ML Pipeline and Blockchain ∨ Combining the benefits of ML Pipeline and Blockchain

2.6. Step 6. Conduct the Research

The following documents the conducted literature review using the “Preferred re-
porting items for systematic reviews and meta-analyses” (PRISMA) [22]. For the domain
“ML Pipeline” five papers were found, “Blockchain” three papers were found, and for
“Combination of ML Pipeline and Blockchain” six papers were found.

3. State of The Art

A machine learning pipeline is an approach to making machine learning models and
all the processes behind them more productive. The pipeline is for large-scale learning
environments that can store and work on data or models better with data parallelism or
model parallelism [23]. As a backbone for distributed processing, ML Pipeline has a lot
of benefits, such as being easy to scale and letting to debug data distribution in ways that
local computers cannot [24,25].
A significant point in the design and implementation of the ML pipeline is the ability to
use the ML models in manufacturing [26]. It is important to pay attention to the sensitivity
and security of the ML pipeline in industry. ML-based communications and networking
systems demand security and privacy. Most ML systems have a centralised architecture
that is prone to hacking since a malicious node only has to access one system to modify
instructions. Training data typically incorporates personal information, and therefore data
breaches may affect privacy. Hackers must be kept away from ML training data [14].

When training an ML model, a lot of data from many different places is often needed,
which raises privacy concerns. To prevent identity exposure, each node in a blockchain
system communicates using a created pseudonymous address. By using pseudonyms,
blockchain may offer pseudonymity and be acceptable for specific use cases that demand
strong privacy [27]. Furthermore, the privacy of data/model owners is protected by
cryptographic techniques, and the confidentiality of data/model sharing across numerous
service providers is assured [28].

Blockchain qualities such as decentralisation, immutability, and transparency open
up new opportunities for ML algorithms employed in communications and networking
systems [29–31]. Discuss blockchain for ML in this area, including data and model sharing,
security and privacy, decentralised intelligence, and trustful decision-making.

Ref. [32] envisions a permissionless blockchain-based marketplace for ML profession-
als to acquire or rent high-quality data. As part of sharding, the network is split into several
Interest Groups (IG) to make data exchange more scalable. Users are encouraged to gather
helpful knowledge regarding a subject of interest to them. Each IG has its own dataset that
incorporates data from all of its nodes. IG members might be recognised for the quantity
and quality of their data. Ref. [33] presents ADVOCATE to manage personal data in IoT
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situations. The proposed framework collects and analyses policy data to make decisions
and produce user-centric ML solutions. Blockchain technology is used in the suggested
architecture so that data controllers and processors can handle data in a way that is clear
and can be checked. All consents would be digitally signed by the parties to the contract to
make sure they couldn’t be revoked, and the hashed version would be sent to a blockchain
infrastructure to protect the data’s integrity and keep users’ identities secret.

On the other hand, data dependability is crucial to ML algorithms. For ML approaches
to solve problems more effectively, they need more data sources to train their models on
during the analysis of data resources. However, in today’s sophisticated and trustless
networks, the goal of high accuracy and privacy-aware data sharing for ML algorithms
remains problematic. Because of privacy and reputation concerns, most users are hesitant
to share their data with the public.

The authors of [34] describe a crowdsourced blockchain-based solution to enable
decentralised ML without a trusted third party. A non-cooperative game theoretic strategy
with two workers auditing each other and a cryptographic commitment instrument are
presented to tackle employee interaction (blockchain nodes) and free-riding difficulties in
crowdsourcing systems. The expensive and randomised computation is crowdsourced via
the application layer and “asynchronously” executed. Full nodes/miners may insert the
output into the next block as soon as the result is submitted, rather than waiting for mining
to finish.

In [35], the authors suggest a reputation-based worker selection strategy for assessing
the dependability and trustworthiness of mobile devices in mobile networks. They employ
a multi-weight subjective logic model and consortium blockchain to store and maintain
worker reputation in a decentralised way in order to deliver trustworthy federated learning.
For collaborative federated learning, to enable mobile devices to share high-quality data,
we present an effective incentive system that combines reputation with contract theory.

The study discussed above has the potential to serve as the foundation for developing
decentralised, transparent, secure, and trustworthy ML-based communications and net-
working systems. They are still being discussed based on plausible ideas, but they are still
in their early stages. Some technical concerns, such as scalability and incentive issues, need
more research.

4. Security Challenge of ML Models and ML Pipelines

To achieve trust, security issues have to be considered across the whole pipeline. We
divide current attack vectors into availability, confidentiality, integrity, and accountability,
which are the most important parts of information security. Every vulnerability in the
ML pipeline may be attacked, and this section can only give an overview of the countless
attacks.

4.1. Attacks against Availability

Attacks against the availability should not be underestimated since the pipeline is
complex and spread over several providers. The attack surface is therefore huge, and
attackers steal hardware, crash software, and use denial of service to reduce network
bandwidth or utilize services [36].

4.2. Attacks against Confidentiality

Attacks against confidentiality may happen on sensitive data and model information
while honestly executing ML training and inference without altering the computation
outcomes. Because the data and models are accessible by several stakeholders, these attack
vectors often occur in the pipeline phases of model training, model deployment or inference,
or model upgrades [37].

In federated ML, the host that orchestrates all clients’ local training may access their
updated models and use these models to infer private information about their local data [38].
Among the most common attacks are: data reconstruction attacks [39], which aim to
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reconstruct original input data based on the observed model or its gradients; attribute
inference attacks [40], which aim to infer the value of users’ private properties in the
training data, and membership inference attacks [41], which aim to learn whether specific
data instances are present in the training dataset.

4.3. Attacks against Integrity

An attacker might intentionally undermine the ML’s integrity by exploiting training or
inference results. An integrity attack is a data corruption effort. It’s usually a planned attack
by malware that deletes or changes the information in a dataset. It also involves attackers
encrypting sensitive or critical data. Previous research has demonstrated that model
accuracy may be degraded by just compromising thread scheduling in a multi-threaded
ML pipeline [42].

Another example is a model poisoning attack. In order to obtain an alternative model
decision, an attacker lowers the model’s performance [43]. Poisoning a model involves
replacing a good one with a bad one. In a traditional cyber attack, this is relatively simple.
A model, once trained, is nothing more than a file on a computer, similar to a picture or
a PDF document. Attackers may breach the systems that hold these models, then edit
or replace the model file with a corrupted one. Even if a model has been trained on an
uncorrupted dataset, it may be substituted by a corrupted model at different points of the
distribution pipeline. Furthermore, the training set may be manipulated, for example, by
including data with calibrated noisy labels [44]. This causes the classifier to have incorrect
bounds for certain data points.

4.4. Attacks against Accountability

Another common method for categorising ML attack surfaces is whether an attack
needs access to the internal architecture of an ML model [45]. In black-box attacks, model
theft usually starts from the outside, with no prior knowledge, and the goal is to learn the
model itself. Membership inference attacks on data privacy are often black-box attacks
because they are much more effective than white-box attacks. White-box access has no
discernible effect on the attack’s “advantage” in revealing membership privacy. White-box
attacks include almost all data reconstruction attacks, some adversarial example attacks,
attribute inference attacks, and so on. An overview of security challenges in industrial
machine learning pipelines is shown in Table 8.

Table 8. Overview of security challenges in industrial machine learning pipelines.

Attack Against Attack Type Caused Phase of ML Impact Reference

Availability Dos Attacks ML model Triggers a buffer overflow in image
processing [36]

Confidentiality Data Reconstruction Attacks ML training Modify data [11,37]

Confidentiality Attribute Inference Attacks ML training Inferring the value of users’ private
properties [46]

Confidentiality Membership Inference Attacks ML training Learning specific data [13]

Integrity Adds calibrated noises Data Collection, ML training Exploit training/inference result [42–44,47]

Accountability Model stealing ML model Learn the model [45,48]

5. Proposed Method for Mitigation
5.1. System Overview

The proposed system is a machine learning pipeline built on a private blockchain
using InterPlanetary File System (IPFS) [49] for a distributed storage. As indicated in
Section 4, there are several security and trust issues in the machine learning pipeline that
can cause unpredictable progress. The collaboration and tracking of the action of each
participant in the pipeline, the stages of transparent ML progress given by the blockchain,
enable the establishment of trust and assurance of the quality of the pipeline’s output. To
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ensure data protection, the entities in this system are located in a private blockchain, where
the participants are registered and certified members. The trust manager nodes, which
review certificates and adjust stakeholders’ trust levels based on their actions. Because the
ML pipeline is safe, stakeholders can request its development so that pipeline stakeholders
can monitor tracing and exchanging information.

The proposed system is shown in Figure 1 and will be discussed in detail in the next
subsections.

Figure 1. System overview.

5.2. Blockchain Infrastructure

In this proposed architecture, a private blockchain with participants of the ML pipeline
are offered to host their own blockchain node. It is shown in Figure 2. Blockchain members
can include the owner of a factory or company, the IT department, machine learning
specialists, the consultant share for each project, employees from each area who need
to prepare data, and data analysts. Authorisers from each area can also be blockchain
members. Each participant in this scenario must be a member of the Blockchain, as in
any other real-world initiative. Some authoritative organisations may have permanent
members who specialise in blockchain or machine learning. Each member must be certified
by the blockchain authority and have a trust value as feedback from the blockchain about
its activities.

Clients, IT consultancies, data providers, data analysts and government agencies are
all examples of nodes in this blockchain (see Figure 2). Each node may have a different level
of trust depending on its previous activity, but all must be accredited. The most trusted
nodes can be part of the blockchain committee that approves new nodes and validates and
creates blocks in the ledger. Smart contracts can also be used by nodes to set up sidechains
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and send certain information to the main chain. The blockchain infrastructure is the main
trust anchor of the total system.

Figure 2. Private Blockchain.

5.3. Authenticate and Enrolment

Due to the importance of model security and privacy when accessing and analysing
datasets, only certified and authorised individuals should have access to the data and
participate in the process of building machine learning models. It is therefore recommended
to use a private blockchain to regulate the registration of new nodes and to monitor existing
blockchain nodes. Current nodes cannot provide blockchain services in this case, if they do
not have a valid certificate and a sufficiently high trust level in their profiles. Depending on
the application driven security level, the attributes, that are part of the certification, varied.
Here are some examples of possible certificates and their attributes, (see Table 9).

Table 9. Certification entities and their possible attributes.

Certification Entity Possible Attributes

Companies Legal entity of the participating company

Customer Identity of the person, Affiliation, Company certificate

Domain expert, Identity of the person, Affiliation, Company certificate
Data scientist Expertise degree

ML model A detailed description can be found in Section 5.4.1

Data sources Identity of the source
Data Data sources, Type of data, Data boundaries (e.g., min, max)

Public data set Source, Signature (Hash)

Enrolment of New Nodes

If a new stakeholder/participant wants to join the ML pipeline and additional nodes
are required to join the blockchain, the new node can request registration by executing
a smart contract that contains the required information (e.g., certificate) and links to the
documents uploaded by the IPFS. If the information in the received enrol transaction
is correct, the committer issues a certificate for the node and adds the node ID to the
associated group of the node role. This can be automatically added in case of non-critical
participations (e.g., viewing ML results) or can be with further interactions (data owner
has to give access permission, . . . ).
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5.4. Sidechain

For each new pipeline project, the primary stakeholder should execute a smart contract
to create a sidechain and add the remaining stakeholders if they are blockchain members,
or enrol them if they are not. This ensures isolation in a multi tenant environment.

In the next step, they allocate an IPFS environment to share the data between sidechain
members. Each member can store data in a specific IPFS and sign data with his blockchain
signature. Each transaction submitted by a member involves an IPFS link that contains data
files. After review of the transactions by members, a block is created inside the sidechain
that contains the transactions, feedback, and trust score for that transaction.

All generated information that needs to be certified, such as the model’s birth certificate
(see Section 5.4.1), is saved in the sidechain as a local certificate. Figure 3 shows one
sidechain instantiated by the main chain and depicted a second sidechain to show the multi
tenant feature of the main chain. After completing the project, depending on the level of
privacy, it can be sent to the main blockchain as shows in Figure 3 and after being reviewed
by experts and receiving their trust, the local certificate can be upgraded to blockchain
certificate level.

Figure 3. Sidechain Process.

5.4.1. Create Birth Certificates

After each stakeholder within the blockchain has been made traceable through certifi-
cates and trust management, two further important components of this machine learning
pipeline need to be secured. These two components are the ML models and their creation,
and the machine learning pipeline (components, software, configurations) itself. The aim is
to make all software and its configuration involved in the ML pipeline traceable.

Machine Learning Model Birth Certificates

The Machine Learning Model Birth Certificate stores all relevant information that
allows conclusions to be drawn about its creation. These are, as described in more detail in a
previous paper [16], information about the model life cycle phases (1. Model Requirements,
2. Data Collection, 3. Data Cleaning, 4. Data Labeling, 5. Feature Engineering, 6. Model
Training, 7. Model Evaluation, 8. Model Deployment, 9. Model Monitoring) [50].

The most important information for each phase are presented below:

1. Model Requirements: Goal of the model, decision made to achieve the model goal.
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2. Data Collection: Information about data acquisition, sensor model, environment
parameter.

3. Data Cleaning: Description of the cleaning method, parameters and software.
4. Data Labelling: Description of the labelling method, instructions, software and person

who carried out the labelling.
5. Feature Engineering: Method and parameters of data augmentation.
6. Model Training: Hyperparameters, etc.
7. Model Evaluation: Accuracy, precision, etc.
8. Model Deployment: Information about machine learning pipeline (described in more

detail later).
9. Model Monitoring: Alert threshold.

These machine learning model birth certificates are stored in the blockchain and contain a
reference to the certificate of the creator of each phase.

Machine Learning Pipeline Birth Certificates

As with machine learning model birth certificates, a birth certificate is created for the
machine learning pipeline that includes the architecture, the structure and processes within
the individual components, software versions and configurations to make it traceable; the
selection of this information is justified below.

• Architecture:

– The architecture of the ML pipeline determines the order of execution of the
individual components. Since the components change the state of the data, a
change in the order results in a different outcome.

– Certain pipeline architectures are to be considered invalid. Determined results
are therefore also to be considered invalid.

• Components:

– As with the entire ML pipeline, the order in which the subcomponents are exe-
cuted must also be known in the components, since a change in order changes
the state of the data.

– Since the components change the state of the data, it must be known which
processes take place in these components.

• Software versions:

– It is important for the traceability in case of errors in the ML pipeline to be able to
determine afterwards which software versions were used.

– If it is known which software versions are used in the ML pipeline, it is possible
to react more quickly to known errors in the software by updating.

• Configurations:

– Software usually has configuration options. If this configuration is changed from
the standard configuration, unintentional errors may occur in certain cases.

– Saving the software versions can be used not only to find errors, but also to
quickly update the configuration in case of known errors.

5.5. Pipeline

After the architecture of the ML Pipeline is described by the combination of the
individual components by the respective stakeholders in the ML Pipeline Birth Certificate,
which is stored in the project specific sidechain, the architecture is built by the stakeholders.
For this purpose, the configuration is used for each of the components and the necessary
software is installed with the corresponding version and configuration. For the components
of the ML usage, the corresponding ML birth certificate is loaded from the project specific
sidechain and the ML model described there is retrieved and loaded into the inference
engine. Once the ML pipeline is built, it can be used for the intended use case.
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5.6. Trust Evaluation

The trust management system is embedded in the blockchain and defined by a series
of smart contracts to obtain the trust score of each member as a local reputation system,
calculate trust value, and update the trust table of members inside the main chain.

5.6.1. Trust Value

Trust evaluation is the process of quantifying trust with attributes that influence trust.
It is a challenging process, because of lack of essential evaluation data, demand of big data
process, request of simple trust relationship expression, and expectation of automation.
Mostly, the essential trust attributes are use case dependent. Assuming the use case (see
Section 6), these attributes could be:

• Human ML pipeline participants, e.g., work experience: the more the more trust
• ML pipeline infrastructure, e.g., software versions: the higher the more trust
• Data source dependent, e.g., age of the machine: the older the less trust
• etc.

Above show some examples a trust value can be calculated. Our approach simplifies
it by categorizing the trust value into 7 level, as see in Table 10.

Table 10. Possible Trust Values for Entities.

Trust Values Label

>0.75 to 1.0 Very High Trust

>0.5 to 0.75 High Trust

>0.25 to 0.5 Medium Trust

>−0.25 to 0.25 Low Trust/Distrust

>−0.5 to −0.25 Medium Distrust

>−0.75 to −0.5 High Distrust

−1.0 to −0.75 Very Distrust

The determination of trust can be modelled more precisely, if you use more historic
data of the behavior of the trust entity. The paper [51] gives an overview of trust evaluation
using machine learning for predicting the trust.

5.6.2. Four Steps of Trust Management

The procedure consists of four steps:

1. Each member inside the sidechain should, by submitting the transaction, send a
request for feedback on the transaction. We name it an “attached transaction” because
the feedback to it will be sent by the main transaction number. Other stakeholders
can provide feedback and a trust score for the transaction after it has been reviewed
and investigated. After mining, the block transactions and attached transactions are
immutably stored in the sidechain.

2. The blockchain executes a smart contract after a specific time per day to collect local
trust values from sidechains.

3. After getting the request for trust value, the sidechain executes a smart contract to
gather and calculate trust scores saved in blocks and submit the trust table to the main
chain as a transaction.

4. After receiving transactions from all sidechains, the results calculate and update the
trust value table inside the main chain.

5.7. Storage Certificates and Trust Level

During the pipeline project, each certificate related to the pipeline, the ML model’s
birth certificate, the raw data certificate, and the dataset certificate are stored in a sidechain.
In parallel, certificates for new members, such as experts or businesses, are being stored in
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the main chain. In addition, the trust value, which is calculated in Section 5.6 is updated
and stored in the main blockchain. If approved by the rest of the blockchain experts, each
of the local certificates can be stored in the main blockchain and upgraded to a global
certificate.

6. Case Study: Machine Learning Application in Manufacturing

This section talks about a typical application of machine learning in a manufacturing
SME, as well as the ML pipeline and the people who are involved.

6.1. Use Case: Visual Metal Surface Quality Inspection

As an example use case for the presented concept of the “Blockchain Secured Dynamic
Machine Learning Pipeline” (Blockchain Secured Dynamic Machine Learning Pipeline
(bcmlp)), the application of machine learning for visual metal surface quality inspection is
presented, as seen in Figure 4.

Figure 4. Visual Metal Surface Quality Inspection.

Figure 4 shows the input parameters that influence the quality inspection process for
the machine learning model. They are: process data (process parameter, tool parameter) of
the machine, workpiece data (surface image), order data (quality requirements, material, etc.).
From the collected data in the history data base, a data scientist trains a machine learning
model, which afterwards is used for model inference. The model is always being trained
and updated to take into account changes in parameters and the quality changes that come
from them. The results of the model inference are visualised for the machine operator, and
workpieces that do not meet the required quality requirements are sorted out.

6.2. ML Pipeline and Stakeholders

Typically, a machine learning pipeline consists of five components that build on each
other, are continuously monitored by a monitoring system, and are based on CRISP-DM
(CRoss-Industry Standard Process for Data Mining) [52]. Through a series of intermediate
steps and components, the raw data that comes in (process parameters, workpiece data,
and order data) is turned into a quality index.

Step 1 “Data collection” (see Figure 5), where the data to be processed is collected,
is the entry point into the ML pipeline. Step 2 “Data preprocessing”, the collected data
are preprocessed based on methods and rules. Step 3 “Model training” the existing model
is retrained based on the preprocessed data and historical data; this step takes place in
parallel with the other steps. Step 4 “ML usage” the model that was trained in step 3 is
used on the data that has already been cleaned up. Step 5 “Result” is the end of the pipeline.
It shows the quality index that the machine learning model came up with.
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Figure 5. ML Pipeline and Stakeholder.

Figure 5 depicts four stakeholders who are often from different companies and are
typically involved in the development and operation of a machine learning application for a
SME as well as blockchain nodes (e.g., manufacturer, ML consultant, machine manufacturer,
condition monitoring service provider, quality check auditor, etc.). For the goals to be
met, the stakeholders must work together to manage their parts of the machine learning
pipeline and affect the outcome. In the use case presented in Section 6.1, the actors are
each from a different company. The actors are the company that is using ML, the company
that is modelling training, the company that is conditioning monitoring, and the company
that is quality control. However, stakeholders do not just influence parts of the pipeline;
they influence each other by their reactions and also rate each other for trust value. A
company that uses machine learning has control over and manages the following parts:
data collection, data preprocessing, ML use, and results. So, these are the parts that make
up the processing of data and the use of the ML model.

Company Model Training controls and manages the Model Training component and
the certificate, which use machine learning and historical data to create a model from the
company’s collected and preprocessed data. This is where the first mutual influence between
stakeholders can be found: Company using ML and Company Model Training.

Company Quality Control checks the history data to see which of the recorded images
of the workpiece show a good surface. Quality control checks output data and assigns a
trust level rating to it. This is the second mutual influence that can be found among the actors:
Company Quality Control, Company Model Training, Company using ML.

Company Condition Monitoring manages and affects the monitoring of the following
parts: data collection, data preprocessing, model usage, results of company ML use, and
model training for company model training. This is the third mutual influence between
stakeholders that can be found: Company using ML, Company Model Training and Company
Condition Monitoring.

Lastly, it can be said that the people who have a stake in this pipeline can make
decisions that affect the quality of the ML model, whether they are aware of it or not.
Because of this, it is important that all stakeholders, all parts, and all data used to train the
model can be tracked.
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7. Evaluation

It is vital to construct the ML such that it is aware of the intricacies of the computing
environment. To do this, ML frameworks will identify the maximum workload to be
executed, which will require certain information such as memory capacity, processor
speed, secured storage, and maybe additional capabilities such as multi-threading and
secure communication channels. Then, from the most sensitive to the least sensitive, ML
calculations are deployed into a pipeline that must be secure and specified as transparent
to other stakeholders.

One essential trust increasing component is the “trust evaluation”. This component
allows to make overall decisions based on the trust level of the entity involved.

Protecting the whole pipeline is impossible without the engagement of many stake-
holders in a trusting atmosphere. The proposed system can provide numerous trusted
zones for more devices and, as a result, additional pipeline parts. To establish such “multi-
party computation” based on blockchain, one must offer a verification mechanism for
numerous participants, allowing stakeholders from other organisations to participate. For
example, one certified pipeline might help in confirming the specifics and right setup,
allowing stakeholders to cover many sites of the ML pipeline.

In addition to the pipeline workflow, selecting the most vulnerable areas of ML for
security is not easy. On the most basic level, the proposed architecture provides a more
trustworthy area in the ML pipeline, such as an additional trust base for experts or a model
certificate. Furthermore, research on the privacy or integrity of pipeline components other
than training and inference protection, such as data preparation, are very missing. Similar
to training stage protection, such protection on a specific component of the pipeline will
include threat (privacy and integrity) characterization, dataset certificate protection design,
and performance evaluation. Following such work on future levels of the pipeline, full ML
pipeline protection will be concretely developed and deployed to a greater degree and on a
bigger scale. Table 11 lists countermeasures for potential ML pipeline attacks.

Table 11. Relevant Attacks and Countermeasures on the ML pipeline.

Attacks on Pipeline Countermeasures

Spoofing, Tampering on Data Collection

TLS is used by the system to read data from the
server and to confirm the server’s authenticity. Audit
trails in the blockchain mitigates identity frauds and

therefore data manipulation.

Tampering, Elevation of Privilege on Pre-Processing Validate TLS use and data certificate verification. The
blockchain ensures tamper resistance.

Tampering, Repudiation on ML Model
The model was distributedly stored on IPFS. Keeping
the model’s certificates and hash in the blockchain

ensures tamper resistance.

8. Conclusions

The safeguarding of AI-based solutions for the industry is essential to enabling trust
in this new technology and allowing certification of products in the future, especially in
sensitive manufacturing where ML is somehow involved in the producing process.

The use of blockchain as a framework to facilitate collaboration and authenticate
and authorise stakeholders in the ML pipeline process is proposed in this paper. At the
moment, changing the training data or the ML model to change the output or steal the ML
model poses a security risk. By implementing our proposal for collaboratively registered
stakeholders and using trust value for ML products and ML creators, we can reduce the
risk of malicious data or codes when using a blockchain community certificate. A trust
management system also aids in deterring malicious behaviour and encouraging more
honest and qualified work from stakeholders. It can be shown that the proposed framework
based on blockchain ensures data security and transparency in manufacturing for quality
control and elaborates on the major benefits of the proposed approach, which are:
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• a tamper-proof data history, which achieves accountability and supports quality
audits;

• increases the trust by protocolling the used ML pipeline, by rating the experts involved
in the ML pipeline and certifies for legitimacy for participation;

• certifies the pipeline infrastructure, ML model, data collection, and labeling.

In the evaluation section the mitigation of the security attacks threaten the framework
have been demonstrated.

In future work, it can be possible to use benchmarking to evaluate by experts addi-
tionally on our proposal to improve the quality of ML certificates.

Author Contributions: Writing—original draft, F.S. and J.S.; Writing—review & editing, C.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Federal Ministry of Education and Research (BMBF) under
reference number COSMIC-X 02J21D144, and supervised by Projektträger Karlsruhe (PTKA).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The contents of this publication are taken from the research project “COSMIC-X-
Kollaborative Smart Services für industrielle Wertschöpfungsnetze in GAIA-X”, funded by the Federal
Ministry of Education and Research (BMBF) under reference number COSMIC-X 02J21D144, and
supervised by Projektträger Karlsruhe (PTKA). The responsibility for the content is with the authors.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Tsai, C.W. Toward blockchain for intelligent systems. IEEE Consum. Electron. Mag. 2021. https://doi.org/10.1109/MCE.2021.3076611.
2. Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of

clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng.
Appl. Artif. Intell. 2022, 110, 104743.

3. Stodt, J.; Reich, C. Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data,
Model and Development Process. Int. J. Comput. Inf. Eng. 2021, 15, 187–193.

4. Bounazef, D.; Chabani, S.; Idir, A.; Bounazef, M. Management Analysis of Industrial Production Losses by the Design of Experiments,
Statistical Process Control, and Capability Indices. Open J. Bus. Manag. 2014, 2, 65–72. https://doi.org/10.4236/ojbm.2014.21009.

5. Lockey, S.; Gillespie, N.; Holm, D.; Someh, I.A. A Review of Trust in Artificial Intelligence: Challenges, Vulnerabilities and Future
Directions. 2021. Available online: https://aisel.aisnet.org/hicss-54/os/trust/2/ (accessed on 1 April 2021).

6. Al-Rubaie, M.; Chang, J.M. Privacy-preserving machine learning: Threats and solutions. IEEE Secur. Priv. 2019, 17, 49–58.
7. Cong, Z.; Luo, X.; Pei, J.; Zhu, F.; Zhang, Y. Data pricing in machine learning pipelines. Knowl. Inf. Syst. 2022, 64, 1417–1455.
8. Orekondy, T.; Schiele, B.; Fritz, M. Knockoff nets: Stealing functionality of black-box models. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4954–4963.
9. Fang, M.; Cao, X.; Jia, J.; Gong, N. Local model poisoning attacks to {Byzantine-Robust} federated learning. In Proceedings of

the 29th USENIX Security Symposium (USENIX Security 20), Boston, MA, USA, 12–14 August 2020 2020; pp. 1605–1622.
10. Chen, X.; Liu, C.; Li, B.; Lu, K.; Song, D. Targeted backdoor attacks on deep learning systems using data poisoning. arXiv 2017,

arXiv:1712.05526.
11. Zhao, B.; Mopuri, K.R.; Bilen, H. idlg: Improved deep leakage from gradients. arXiv 2020, arXiv:2001.02610 .
12. Yin, H.; Mallya, A.; Vahdat, A.; Alvarez, J.M.; Kautz, J.; Molchanov, P. See through gradients: Image batch recovery via

gradinversion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 16 337–16346.

13. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings
of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–24 May 2017; pp. 3–18.

14. Mo, F.; Tarkhani, Z.; Haddadi, H. Sok: Machine learning with confidential computing. arXiv 2022, arXiv:2208.10134.
15. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018,

14, 352–375.
16. Stodt, J.; Ghovanlooy Ghajar, F.; Reich, C.; Clarke, N. Verifiable Machine Learning Models in Industrial IoT via Blockchain. In

Proceedings of the International Advanced Computing Conference, Hyderabad, India, 16–17 December 2022; Springer: Berlin,
Germany, 2022.

https://doi.org/10.4236/ojbm.2014.21009
https://aisel.aisnet.org/hicss-54/os/trust/2/


Appl. Sci. 2023, 13, 782 17 of 18

17. Gayathiri, A.; Jayachitra, J.; Matilda, S. Certificate validation using blockchain. In Proceedings of the In Proceedings of the 2020
7th International Conference on Smart Structures and Systems (ICSSS), Chennai, India, 23–24 July 2020; pp. 1–4.

18. Okoli, C.; Schabram, K. A Guide to Conducting a Systematic Literature Review of Information Systems Research. 2010. Available
online: https://asset-pdf.scinapse.io/prod/1539987097/1539987097.pdf (accessed on 29 November 2022).

19. Heil, D.E.A. Methode der Systematischen Literaturrecherche. p. 29. Available online: https://www.uni-giessen.de/de/fbz/fb09
/institute/VKE/nutr-ecol/lehre/SystematischeLiteraturrecherche.pdf (accessed on 29 November 2022).

20. Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus,
Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations. Scientometrics
2021, 126, 871–906.

21. McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS peer review of electronic search strategies:
2015 guideline statement. J. Clin. Epidemiol. 2016, 75, 40–46.

22. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and
meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269.

23. Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Freeman, J.; Tsai, D.; Amde, M.; Owen, S.; et al. Mllib:
Machine learning in apache spark. J. Mach. Learn. Res. 2016, 17, 1235–1241.

24. Draschner, C.F.; Stadler, C.; Bakhshandegan Moghaddam, F.; Lehmann, J.; Jabeen, H. DistRDF2ML-Scalable distributed in-
memory machine learning pipelines for rdf knowledge graphs. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, Gold Coast, Australia, 1–5 November 2021; pp. 4465–4474.

25. Grafberger, S.; Groth, P.; Stoyanovich, J.; Schelter, S. Data distribution debugging in machine learning pipelines. VLDB J. 2022, 31,
1103–1126.

26. Zhou, B.; Svetashova, Y.; Pychynski, T.; Baimuratov, I.; Soylu, A.; Kharlamov, E. SemFE: Facilitating ML pipeline development
with semantics. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual,
19–23 October 2020; pp. 3489–3492.

27. Wu, M.; Wang, K.; Cai, X.; Guo, S.; Guo, M.; Rong, C. A comprehensive survey of blockchain: From theory to IoT applications
and beyond. IEEE Internet Things J. 2019, 6, 8114–8154.

28. Kaaniche, N.; Laurent, M. A blockchain-based data usage auditing architecture with enhanced privacy and availability. In
Proceedings of the 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), Cambridge, MA,
USA, 30 October–1 November 2017; pp. 1–5.

29. Ren, Y.; Zhu, F.; Sharma, P.K.; Wang, T.; Wang, J.; Alfarraj, O.; Tolba, A. Data query mechanism based on hash computing power
of blockchain in internet of things. Sensors 2019, 20, 207.

30. Ren, Y.; Zhu, F.; Wang, J.; Sharma, P.K.; Ghosh, U. Novel vote scheme for decision-making feedback based on blockchain in
internet of vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 23, 1639–1648.

31. Ren, Y.; Leng, Y.; Qi, J.; Sharma, P.K.; Wang, J.; Almakhadmeh, Z.; Tolba, A. Multiple cloud storage mechanism based on
blockchain in smart homes. Future Gener. Comput. Syst. 2021, 115, 304–313.

32. Doku, R.; Rawat, D. Pledge: A private ledger based decentralized data sharing framework. In Proceedings of the 2019 Spring
Simulation Conference (SpringSim), Tucson, AZ, USA, 29 April–2 May 2019; pp. 1–11.

33. Rantos, K.; Drosatos, G.; Demertzis, K.; Ilioudis, C.; Papanikolaou, A. Blockchain-based Consents Management for Personal Data
Processing in the IoT Ecosystem. ICETE (2) 2018, 298, 572–577.

34. Lu, Y.; Tang, Q.; Wang, G. On enabling machine learning tasks atop public blockchains: A crowdsourcing approach. In
Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2017;
pp. 81–88.

35. Kang, J.; Xiong, Z.; Niyato, D.; Xie, S.; Zhang, J. Incentive mechanism for reliable federated learning: A joint optimization
approach to combining reputation and contract theory. IEEE Internet Things J. 2019, 6, 10700–10714.

36. Pitropakis, N.; Panaousis, E.; Giannetsos, T.; Anastasiadis, E.; Loukas, G. A taxonomy and survey of attacks against machine
learning. Comput. Sci. Rev. 2019, 34, 100199.

37. Hesamifard, E.; Takabi, H.; Ghasemi, M.; Wright, R.N. Privacy-preserving machine learning as a service. Proc. Priv. Enhancing
Technol. 2018, 2018, 123–142.

38. Geiping, J.; Bauermeister, H.; Dröge, H.; Moeller, M. Inverting gradients-how easy is it to break privacy in federated learning?
Adv. Neural Inf. Process. Syst. 2020, 33, 16937–16947.

39. Hitaj, B.; Ateniese, G.; Perez-Cruz, F. Deep models under the GAN: information leakage from collaborative deep learning. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3
November 2017; pp. 603–618.

40. Melis, L.; Song, C.; De Cristofaro, E.; Shmatikov, V. Exploiting unintended feature leakage in collaborative learning. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 691–706.

41. Nasr, M.; Shokri, R.; Houmansadr, A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference
attacks against centralized and federated learning. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, 19–23 May 2019; pp. 739–753.

https://asset-pdf.scinapse.io/prod/1539987097/1539987097.pdf
https://www.uni-giessen.de/de/fbz/fb09/institute/VKE/nutr-ecol/lehre/SystematischeLiteraturrecherche.pdf
https://www.uni-giessen.de/de/fbz/fb09/institute/VKE/nutr-ecol/lehre/SystematischeLiteraturrecherche.pdf


Appl. Sci. 2023, 13, 782 18 of 18

42. Sanchez Vicarte, J.R.; Schreiber, B.; Paccagnella, R.; Fletcher, C.W. Game of threads: Enabling asynchronous poisoning attacks. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, 16–20 March 2020; pp. 35–52.

43. Panda, A.; Mahloujifar, S.; Bhagoji, A.N.; Chakraborty, S.; Mittal, P. SparseFed: Mitigating Model Poisoning Attacks in Federated
Learning with Sparsification. In Proceedings of the International Conference on Artificial Intelligence and Statistics (PMLR),
Valencia, Spain, 28–30 March 2022; pp. 7587–7624.

44. Tolpegin, V.; Truex, S.; Gursoy, M.E.; Liu, L. Data poisoning attacks against federated learning systems. In Proceedings of the
European Symposium on Research in Computer Security, Guildford, UK, 14–18 September 2020; Springer: Cham, Switzerland,
2020; pp. 480–501.

45. Sablayrolles, A.; Douze, M.; Schmid, C.; Ollivier, Y.; Jégou, H. White-box vs black-box: Bayes optimal strategies for membership
inference. In Proceedings of the International Conference on Machine Learning (PMLR), Long Beach, CA, USA, 10–15 June 2019;
pp. 5558–5567.

46. Jia, J.; Gong, N.Z. {AttriGuard}: A practical defense against attribute inference attacks via adversarial machine learning.
In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, 15–17 August 2018;
pp. 513–529.

47. Moosavi-Dezfooli, S.M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal adversarial perturbations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1765–1773.

48. Yeom, S.; Giacomelli, I.; Fredrikson, M.; Jha, S. Privacy risk in machine learning: Analyzing the connection to overfitting. In
Proceedings of the 2018 IEEE 31st Computer Security Foundations Symposium (CSF), Oxford, UK, 9–12 July 2018; pp. 268–282.

49. Trautwein, D.; Raman, A.; Tyson, G.; Castro, I.; Scott, W.; Schubotz, M.; Gipp, B.; Psaras, Y. Design and Evaluation of
IPFS: A Storage Layer for the Decentralized Web. In Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM ’22),
Amsterdam, The Netherlands, 22–26 August 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 739–752.
https://doi.org/10.1145/3544216.3544232.

50. Amershi, S.; Begel, A.; Bird, C.; DeLine, R.; Gall, H.; Kamar, E.; Nagappan, N.; Nushi, B.; Zimmermann, T. Software engineering for
machine learning: A case study. 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), Montreal, QC, Canada, 25–31 May 2019; pp. 291–300.

51. Wang, J.; Jing, X.; Yan, Z.; Fu, Y.; Pedrycz, W.; Yang, L.T. A Survey on Trust Evaluation Based on Machine Learning. ACM Comput.
Surv. 2020, 53. https://doi.org/10.1145/3408292.

52. Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz, T.; Shearer, C.; Wirth, R. CRISP-DM 1.0: Step-by-step data mining
guide. SPSS Inc. 2000, 9, 1–73.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3544216.3544232
https://doi.org/10.1145/3408292

	Introduction
	Research Methodology
	Step 1. Define Literature Research Question and Research Objective
	Step 2. Inclusion and Exclusion Criteria
	Step 3. Determination of Databases/Search Engines
	Step 4. Define Search Components
	Step 5. Define Search Strings
	Step 6. Conduct the Research

	State of The Art
	Security Challenge of ML Models and ML Pipelines
	Attacks against Availability
	Attacks against Confidentiality
	Attacks against Integrity
	Attacks against Accountability

	Proposed Method for Mitigation
	System Overview
	Blockchain Infrastructure
	Authenticate and Enrolment
	Sidechain
	Create Birth Certificates

	Pipeline
	Trust Evaluation
	Trust Value
	Four Steps of Trust Management

	Storage Certificates and Trust Level

	Case Study: Machine Learning Application in Manufacturing
	Use Case: Visual Metal Surface Quality Inspection
	ML Pipeline and Stakeholders

	Evaluation
	Conclusions
	References

