
Software Engineers in Transition:
Self-Role Attribution and Awareness for Sustainability

Dominic Lammert
Furtwangen University and

LUT University
lado@hs-furtwangen.de

Stefanie Betz
Furtwangen University
besi@hs-furtwangen.de

Jari Porras
LUT University
jari.porras@lut.fi

Abstract

The Software Engineering process can be seen as
a socio-technical activity that involves fulfilling one’s
role as part of a team. Accordingly, software products
and services are the result of a specific collaboration
between employees (and other stakeholders). In recent
years, sustainability, which Requirements Engineers
often paraphrase as the ability of a system to endure, is
becoming part of the process and thus the responsibility
of Software Engineers (SE) as well.
This study shines the spotlight on the role of the SE: their
self-attribution and their awareness for sustainability.
We interviewed 13 SEs to figure out how they perceive
their own role and to which extent they implement the
topic of sustainability in their daily work. By visualizing
these two sides, it is possible to debate changes and
their possible paths to benefit the Software Engineering
process including sustainability design.
A discrepancy between the current role and the ideal
role of SEs becomes visible. It is characterized
in particular by dwelling on their “classic” or
time-honored tasks as an executive force, such as
coding. At the same time, they point out the still missing
necessity of an interdisciplinary, from communication
coined working method. According to our interviewees
SEs are inefficiently involved in the design process. They
do not sufficiently assume their responsibility for the
software and its sustainability impacts.

1. Introduction

Meade et al. perceive the transition to agile methods
at the beginning of the 21st century as one of the
main reasons why the “traditional role” of the Software
Engineer is dissolving. They describe the software
creation process as a “complex socio-technical activity”,
which is no longer just about coding, but about fulfilling
one’s role as part of the agile group [1].

Sociology seeks to uncover how individuals behave
in groups and how those groups shape their behavior.

Figure 1. The software product as an outcome of the

collaboration of roles and its sustainability impacts [2]

This interaction includes the formation of groups and
their dynamics, as well as their maintenance and
transformation [3]. If the social structures of a company
change, such as the role distribution, this can have
an impact on its products and services. In the last
decades, an obvious paradigm shift has taken place,
especially with regard to the role of the SEs. With
the digital transformation, society as a whole is affected
by a far-reaching change characterized by an easing of
everyday and professional tasks, but also an increase in
complexity due to the constant further development of
existing adding new features and the ongoing emergence
of new technologies, platforms and channels.
Today’s SEs are no longer just an executive. SEs fulfill
tasks that make them necessary in all phases of the
product creation process: from design to completion
[4, 5]. With the increasing involvement of SEs

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 7794
URI: https://hdl.handle.net/10125/80279
978-0-9981331-5-7
(CC BY-NC-ND 4.0)



in the product development process, the question of
taking responsibility with regard to sustainability is
also becoming louder. Software products and services
can have an impact that affects social, individual,
environmental, economic and technical issues. Figure
1 summarizes the process. An ensemble of roles,
including that of the SE, designs and builds the software.
This software in turn brings sustainability impacts .
However, it remains open at this point whether the new
role definitions have sufficiently arrived in the daily
work of SEs. Studies and observations show a lack of
knowledge, experience and methodological support for
entering the paradigm shift, especially when it comes
to integrating sustainability [6]. The question arises
as to whether and to what extent SEs have actually
shed their traditional self-perception in order to meet
the responsibilities imposed on them today. This leads
to the following two research questions: How do SEs
describe their role in daily business? (RQ1) and
What importance do SEs attach to the topic of
Sustainability? (RQ2) To lay the foundations to answer
the RQs we present the background regarding roles and
sustainability in the following section.

2. Background and related work

In this chapter, we lay a basic understanding of the
set of topics that align the three disciplines of Sociology,
Software Engineering and Sustainability. Thus, we use
of a threefold structure: The concept of roles from
a sociological perspective, the changing role of SE
and Sustainability Design as a component in Software
Engineering.

2.1. The concept of roles from a sociological
perspective

At the beginning, it should be said that sociology
does not offer a uniform “understanding of roles”,
but rather a colorful bouquet of theories. In this
paper, we have chosen to rely on the most cited basic
sociological works taught at universities today [3, 7, 8].
The way our social system is constructed affects each
one of us in many ways. Sociological studies range
from the analysis of social processes, structures, and
systems to practical applications in social policy [3].
One sociological theory is that of the division of
individuals into so-called “roles”. The Encyclopedia
Britannica describes roles as follows: “Role, in
sociology, the behaviour expected of an individual who
occupies a given social position or status. A role is
a comprehensive pattern of behaviour that is socially
recognized, providing a means of identifying and
placing an individual in a society. It also serves as a

strategy for coping with recurrent situations and dealing
with the roles of others (e.g., parent-child roles).“ [9]
When building a theoretical understanding of roles, the
sociologist Erving Goffman needs to be mentioned.
In his publication “The Representation of the Self in
Everyday Life” [10], Goffman describes how society
creates a whole range of roles and makes them available
to its members. Behavior, word choice, and even
clothing are symbols that are important to this role
creation. They are meant to help us make the social
system functional. The individual members of society
classify these roles classified as “normal”. Here,
Goffman prefers the term “virtual identity”. This is
contrasted with the self-identity we have in private,
where we are not under social control. Goffman calls
it the “actual identity”. When there is a discrepancy
between our virtual identity and our self-identity,
there is a risk of negative labeling that, if repeated,
degenerates into stigma. Under certain conditions, roles
can thus also paralyze a social system.
In contrast, we would like to add a fundamentally
different sociological perspective – that of the
sociologist Pierre Bourdieu. In his most widely
read work “Distinction: A Social Critique of the
Judgement of Taste” [11] Bourdieu recognized that
people who belong to a certain class, class fraction or
subclass are connected by a common taste: They prefer
the same things and they reject the same things. These
tastes turn out to be indicators of whether or not they
”fit” into their class. Socially internalized dispositions
that influence a person’s perceptions, feelings, and
actions are subsumed under the term “habitus”. Habitus
is the result of an interplay between the individual
self, group culture, and social institutions. Acting
out these dispositions strengthens the habitus of the
individual and the group. Deviation, on the other hand,
consequently causes exclusion.
The Goffman and Bourdieu approaches differ in that
one suggests ”people act this way” (Goffman) and
the other asserts “people are this way” (Bourdieu).
What both approaches have in common is that roles
become socially entrenched over a period of time and,
accordingly, involve a difficulty of change – whether or
not a change in role is desirable. For this reason, it may
be worthwhile to become aware of SE’s understanding
of roles. On this basis, strategies could be developed
that entail an improving adjustment for collaboration
in the corporate environment. In research on role
understandings, the respective individual context must
always be taken into account. Instead of committing
ourselves to a specific role theory and applying it to SEs
(inductive approach), we address the field in order to
derive theories (deductive approach).

Page 7795



2.2. The changing role of Software Engineers

Coinciding with the changing role of SE in the 21st
century, one can observe an increase in research on
the connection of social sciences within the discipline
of Software Engineering in numerous studies. By
combining the keywords “Software Engineering” with
“roles” and feed them into “Web of Science” (the
world’s largest publisher-neutral citation index and
research intelligence platform) the increasing number of
papers on this topic becomes apparent (see figure 2).

Figure 2. Output of the relative publication volume

to the connection of “Software Engineering” with

“roles” using “Web of Science”

It is therefore not surprising that a whole range of
topics are touched upon. Michael John et al. assert
that human and social factors have a significant impact
on the success of software development efforts and the
resulting system [12]. Tom De Marco and Tim Lister
claim, “software development is highly dependent
on people”[13]. Wohlin et al. explain that software
development is about “balancing human, social,
and organizational capital” [14]. In the following,
a time-based structuring of the understanding of the
role of SEs is applied, as this clarifies the paradigm shift.

Until the early 2000s: The Waterfall Model Era
The oldest publication we found which directly

addresses the present topic with the title “The Role of
the Software Engineer in the System Design Process”
was written by Reece in 1985 in the “IEEE Military
Communication Conference” [15]. The author criticizes
that in design issues are decided without software
expertise and that SEs should instead be involved from
the beginning. The reason she gives for this is that it
can reduce software implementation problems. She
describes engineers as “problem solvers” and “practical
people”, but she also attributes management tasks to
them. Three characteristics distinguish a capable SE in

her opinion: technical talent, the ability to understand
management concepts, and the ability to communicate.
During this time, work structures were already
necessary to cope with the complexity and scope of
engineering tasks, such as the waterfall model. The
waterfall model consists of a sequential process in
which entry into each new phase requires that the
previous phase has been completed. Meade et al.
state that before the introduction of today’s known
methodologies, projects often suffered from a lack
of communication between the SEs and the users
[1]. Foster recognizes another difficulty. Back then,
systems were managed by the system and process
analysts. As a rule, the SEs were assigned to the finance
department. Most systems were correspondingly
accounting-oriented, which resulted in an imbalance,
which consisted in the fact that the SEs were more
inconspicuous in the overall process. Their role was
largely limited to execution. The work of the systems
and procedures analyst on the other hand was complex,
also by the fact that they had to collect the information
from different departments [16]. Communication with
other departments was thus less common for SEs.What
also characterizes the Waterfall Model Era is that the
tasks of SEs held a much narrower spectrum. They
were not responsible for testing, for example, but
had their own software testers. One can deduct from
this that taking responsibility for their own code only
became important in later years: “Software Engineers
today have become more adaptable and have more
responsibilities in the context of the broader project
[1].”

2001 to 2011: The Agile Methods Era
The paradigm shift was apparently initiated in the

year 2001, when SEs published the “Manifesto for
Agile Software Development” [17]. It stands for a
profound review and reorientation of the practice of
Software Engineering. Meade et al. cite that as software
development has evolved, the role of a SE has become
“broader and more heterogeneous.” Technological
advancements had resulted in a change in the role
of SEs and changed the needs of companies. This
development is not standing still, as new technologies
– the authors cite artificial intelligence and machine
learning as examples – are constantly being added [1].
Open source software likewise contributed to the
paradigm shift by creating the path to communities of
collaborators and contributors on a variety of projects
[1]. Today’s employees can no longer limit themselves
to their so-called department and what they were
“classically” trained to do. The change in job titles,
the renaming of departments and the repartitioning of

Page 7796



organizations attest to this shift [18]. Foster attributes
to today’s SEs that they serve in an advisory capacity to
the entire organization, and they are a change agent who
advocates (and implements) system improvements from
a wide variety of viewpoints. In doing so, they must be
aware of all planned organizational changes that relate
to the software system they develop [16].
At this point, it can be observed that the role of
SEs is becoming more versatile. New areas of
responsibility, in which they have to familiarize
themselves depending on the project, are added.
(Interdisciplinary) communication is gaining in
importance. A SE has a say in the design of the
software.

Since 2011: The Start up Era (or Agile Methods
2.0)

Based on that, the start-up scene and its mentality
brought an additional level of agility to the stage. The
next level agile methods are characterized by iterations,
as can be seen for example in the “Lean Startup Circle”
by Eric Ries. It is about constantly building, measuring
and learning where Business Economists, Marketers,
SEs and other stakeholders need to put their heads
together strategically as team members to move the
company forward [19]. In addition, a differentiation of
a psychological component regarding SE can be seen
in current publications. The number of types of SEs is
immeasurable. Feldt et al. detect correlations between
SE personality views and attitudes [20]. Soomro et
al. find an influence of SEs’ personality traits on team
climate and performance [21]. Karimi et al. seek
to understand the influence of a bundle of personality
factors on programming styles and performance [22].
Capretz and Ahmed offer a mapping of soft skills and
psychological traits to the main phases of the software
lifecycle to reflect the complexity and importance of
the topic. For this mapping, the researchers used the
Myers-Briggs Type Indicator (MBTI), a well-known
instrument for measuring and understanding individual
personality types. They conclude that software
developers are “introverted (I), feeling (S), thinking (T)
types.” [23] Gorla and Lam explain that the variation of
personalities in a project can have a balancing effect in
the workplace [24].
SEs today contribute to a large extent to the design of
the software, which was not a matter of course in the
past. Depending on how much importance is attached to
the topic of sustainability, software has different positive
and negative impacts for which SEs share responsibility.

2.3. 2014 until our-days: The Software
Sustainability Era

We would like to start this section with a famous
quote from Grady Booch: “every line of code has
a moral and ethical implication.” [25] This statement
requires an explanation.
According to a study of Wolfram et al., the increasing
concern with climate change as well as a growing
awareness of social inequality have led to the topic
of sustainability being accorded increasing importance
overall, from which Software Engineering is not
unaffected. In 2017, the researchers set up a systematic
mapping study with the aim of identifying where and
how the issue of sustainability is being addressed in
Software Engineering. To this end, they evaluated 1035
studies on the topic of sustainability and green IT [26].
In 2014, Becker et al. established the “Sustainability
Principles for Software Engineering” in the so-called
“Karlskrona Manifesto for Sustainability Design”
[27], which can be considered the starting point
for the current era. As can be seen from the
website www.sustainabilitydesign.org, the authors and
signatories of the manifesto (software practitioners and
researchers) write that their intention is to align concern
for the planet and society with Software Engineering.
According to them, the narrative about sustainability and
the role it plays in the profession of SEs, among others,
needs a redefinition. The work of SEs is accompanied
by a responsibility regarding sustainability impacts of
the software systems they design that they have to face.
The signatories establish a broad understanding of the
term ”sustainability” by pointing out its five correlated
dimensions:

• Social: includes relationships between
individuals and groups.

• Individual: includes the ability of individuals to
flourish, exercise their rights, and develop freely.

• Environment: includes the use and management
of natural resources.

• Economic: includes the financial aspects and
business value.

• Technical: includes the ability of the technical
system to adapt to change.

Furthermore, a distinction is made between three
different effects: immediate effects (start with the
production, use, and disposal), enabling effects (arise
over time), and structural effects (changes on the
macro level that alter our society). This is also the
definition of sustainability as it applies to software for

Page 7797



purposes of this research.
In the same year, Betz et al. introduced the concept of
“sustainability debt”. This metaphor, borrowed from
economics, is intended to help discover, document,
and communicate sustainability issues in Requirements
Engineering: “Sustainability matters for all software
systems, even if the application domain of the system is
not related to sustainability, because any new software
creates dependencies and obligations as it becomes
part of our technical infrastructure, and its on-going
use may entail new burdens on social and ecological
systems.” [28] SEs usually focus on technical issues.
However, software systems also affect non-technical
systems. Only at a second glance we perceive their
societal, environmental, and economic interactions. SEs
should not abdicate this responsibility [27].
In 2016, Becker et al. agreed to this circumstance by
claiming that the social role of software, which is often
considered critical, necessitates a paradigm shift in the
mindset of SEs. The authors explain that designing
for sustainability poses a major challenge. Complex
software-intensive systems influence sustainability in
the five correlated dimensions. In terms of sustainability,
SEs would have to adopt a mindset different from that
of the puzzle solver. Rather, they now face “wicked
problems”, or problems that are entrenched in a complex
system. Responsibility can only be sufficiently taken
into account if there is an awareness of sustainability
[27].
Oyedeji et al. present concepts that can be used to
evaluate green and sustainable software systems. This
includes measurement of the five software sustainability
dimensions [29]. On the other hand, in 2016, Chitchyan
et al. addressed the relevance of sustainability in
Software Engineering discipline while emphasizing that
there is little knowledge about how it is perceived by SEs
and, as a result, how sustainability design can become
part of the design process. The 13 respondents in this
study only associated sustainability with the availability
of natural resources and the reduction of waste, only
with the environmental dimension. There is a lack of
knowledge and therefore awareness of the other four
dimensions [30]. The measurement methods thus still
need to be further developed and established.
2019, Duboc et al. stated that software occupies
every component of social life (from commerce,
communication, education, to energy, entertainment,
finance, governance, and defense, etc.), making
socio-technical systems a key factor in sustainability
[31]. As recently as 2020, however, Duboc et al.
emphasized that Requirements Engineers lacked the
knowledge, experience, and methodological support
for this task. For several years, various tools have

been developed to help Requirements and SEs consider
sustainability in the software development process [6].
In summary, the number of publications in this thematic
field is likewise growing. We can divide these
as follows. First, scientists publish the basics in
sustainable Software Engineering and call for awareness
and responsibility. Second, they teach methods that help
to take account of the “sustainability debt”. Thirdly,
they carry out studies that examine software companies
according to their approach to the issue of sustainability.
The topic of sustainability is still quite new in Software
Engineering, so that a formalization of sustainability as
part of the Software Engineering “have yet to make their
way into official standards and models” [26]. Going
back to Fig. 1, the software is the result of collaboration
between different roles. The software in turn leads to
sustainability impacts. Scientists worldwide agree that
SEs must take their responsibility into account more
strongly than has been the case to date. We concur with
the scientific findings cited in this section and proclaim
that SEs integrate the five dimensions of sustainability
as well as its three effect levels into their work.

3. Research gaps

Figure 3. Self-role attribution and sustainability

awareness of SEs in the past and today

Putting the last chapter together, we can say that
over the past decades, the role of SEs has been subject
to numerous upheavals. Until the transition from
the “Waterfall Era” to the “Agile Methods Era”, they
move closer and closer to colleagues from other areas
with whom they formed teams. Specific tasks that
made them the executive force of companies became
interdisciplinary task areas that integrated them in
different work steps. This inevitably increased the
responsibility for the product. SE can no longer
be measured only by the quality of their code; they
also bears responsibility for the design of the overall
project. This also applies to the responsibility for

Page 7798



sustainable Software Engineering. Figure 3 summarises
this development.
One of the questions that has not yet been adequately
answered is how the transition actually looks like
in practical implementation. It is about the given
circumstances in companies towards the combination of
the self-role attribution of SEs on the one hand and on
the other hand their awareness for sustainability. The
purpose of this explorative study is to get a closer look at
the actual state of software companies in order to check
to what extent the current status corresponds to this
transition. This study serves to provide initial answers
to this research gap in order to build a bridge for the
development of follow-up studies.

4. Interview study design

This study is part of a broader investigation
on the connection between Software Engineering
and sustainability design. Here, we conducted an
exploratory qualitative research by conducting 13
interviews with SEs. Within the qualitative research
guidelines, we followed scientific rules in the field of
interviews summarized by Elmer [32]. We did not
ask the SEs directly for a description of their self-role
attribution, nor did we ask them directly for a definition
of sustainability. If we had asked for these two, there
would be a risk that the answers would correspond to
social desirability. The first part of the interview was
about the SEs’ profession in general and their role in
the company. Here it was interesting to see if the
interviewees bring in the term sustainability themselves
and if any of the described activities can be related to
sustainability. The second part of the interview was
about the impact of software. Here, too, the interviewees
were to be as free as possible in describing their view of
things, the ”status quo”, when it comes to impacts. We
have chosen a semi-structured form in order to achieve
a flexible survey, although it can be time-consuming
to conduct and evaluate and it also means that the
number of respondents is rather small. On the other
hand, it is a recommendable form of research to ensure
understanding and to obtain extensive statements.
In the planning phase, we opted for a deductive sample,
since there is of course already knowledge about the
people who can provide information about the question.
The respondents should be employees whose job title
falls under the term “Software Engineers”. To remain
constant, we left it at this company size (including those
who consider themselves as startups) for all interviews.
We do not intend to aim for representativeness for the
“typical” SE.
We conducted half of the data collection through

face-to-face interviews and the other half through voice
over IP platforms. Twelve software practitioners worked
in Germany and one in France. All interviewees have
been working in their professional field for more than
one year: between 2 and 22 years. The average
was 7.7 years. We made sure to cover different
industries to create versatility. The 13 interviewees
belong to the following industries: Finance (2x), IT
Security (2x), Web and App Development (2x), Big
Data, eCommerce, Energy, Environment, Language
Learning, Marketing, and Social Media. Five of
them had a close connection with universities in their
daily work. Four of the SEs received a one-year
scientific start-up grant, which provides guidance from
a university professor as well as the relevant university
start-up office. Two startups are based on a business
concept developed during proseminars at the university.
Here, there are contacts to the former lecturers of
these seminars as well as to student founder initiatives,
which support the respective startup with know-how
and networking. One of the startups was a university
project in which several universities are involved in the
founding. The respondents were all male and their age
ranged from 29 to 55 years. They all had a diploma,
master’s or bachelor’s degree. All interviews we carried
out in English. They were recorded and transcribed
(anonymised). The implementation took place in the
months of May to September 2020. The interviews took
about an hour each.
In the data analysis, to structure the responses, we
developed an open coding strategy. Two researchers
read through each of the interviews, coded them,
and additionally peer-reviewed each other’s work to
establish a codebook on which all agree. For
qualitative content analysis, we selected the approach of
a deductive category application. We used text analysis
software as a tool here. The results of this interview
study fall into two categories: self-role attribution and
sustainability awareness.

5. Study findings

In this chapter, we present our most important results
and findings. We divide the study findings in two parts:
Self-role attribution and Awareness for Sustainability.

5.1. Self-role attribution

With the first part, we want to get an insight into
how SEs would describe their role within the company
itself. We asked this question directly: “How would you
describe your role as a software developer within your
company to others?” Next, we asked them to describe a
regular working day and what they thought would make

Page 7799



an ideal working day. Explicitly, we asked about the
skills and competences a SE needs. Finally, we asked
about the advantages and disadvantages of integrating
the SE into the overall product development process.
The answers to these questions should contribute to
the overall picture of the role. We started coding job
description, which led us to a bundle of tasks mixed up
with required skills and competencies. This includes
a list of codes, which constitute a regular and an
ideal working day in the eyes of the SEs. Here, the
relationship and a distinction from other stakeholders
became clear. The interviewees also answered by letting
us know about framework conditions or the working
environment. Finally, we created two code lists that we
divided into the opportunities and the risks that lie in the
integration of the SEs into the entire product creation
process: from generating an idea until the market entry.

Tasks, skills and competencies. The SEs describe
their areas of responsibility as diverse. We divided the
tasks, and thus the required skills and competencies,
into five areas based on the respondents’ answers:
Technology, Communication, Project Management,
Finance and Others.
The focus is clearly on the first area and its complexity:
Technology. In total, the interviewees count on 25
different technical tasks when it comes to their regular
work. It turned out that it is not enough to go into
everything in an interview lasting around an hour.
One interviewee stated: “So my role in my company
is to develop projects and software from A to Z.”
An idealization of programming skills is particularly
evident. Terms such as “efficient code”, “good coding”,
“satisfying outcome of code”, “clear code”, “clean
code” and “working code” are used. The respondents
describe a comprehensive knowledge and understanding
of programming languages, software architecture and
the system as equally important.
The communication area appears second most
frequently. They address it in both the current
and the ideal role conception. Discussions, mutual
understanding and efficient communication with
meetings and digital communication (chats and e-mails)
are clearly considered relevant.
Project management tasks are in third place. Activities
such as organising, planning and coordinating tasks are
standard in this profession. This aspect also applies to
some SEs in the fourth area: Finance. One interviewee
speaks of the relevance of a “business-oriented mind”,
which SEs should ideally have. Other tasks, skills and
competencies differ from company to company. It can
be about generating ideas, learning, presenting, holding
workshops or even campaigning and political work.

Relationship with other stakeholders. One of the

most obvious things in the entire evaluation is that SEs
distinguish themselves from their other colleagues by
identifying themselves as the “doers”, as those who
“get things done”: “In my experience, the developer
is at least the one who is doing the things, who has to
get the things done. And many times he has a lot of
people around him who are talking, and planning, and
organizing money and other political things. But finally
the core product is my daily work, is my job. And yeah,
so I have to be the one who gets things done.”
This narrative is often encountered, also concerning the
ideal SE: “[...] someone who is really focusing on
getting stuff done.” Accordingly, clear tasks are ideally
expected: “I think really important is to have a clear
task that we can focus on.” This circumstance does
not coincide with the responsibility that SEs have to
participate in the product design and thus also in the
accompanying task orientation. Some of them prefer to
be given tasks that they then only have to carry out rather
than participating in defining them.
In contrast, the interviewees often mentioned the
term “teamwork” as well as their relationship to
other “professional groups”: product / project owner,
customer, designer, facilitator, marketer, project
manager and scientist. SEs have to sit at the table here
because (unlike the other groups of colleagues) they
knows what is feasible and what is not. Here is one
example about the connection between the designer and
the SE: “[. . . ] the designer knows what the best practices
are for example, or best workflows with some interfaces,
but the programmer knows what is doable and what
is, according to that time and that amount of money,
this project tests, what is doable.” Therefore, they also
mentioned social skills. One interviewee emphasizes
that the software is the result of teamwork. “And then
also there’s this cliché of software developers of being
the weird nerds down in the basement, and that is totally
wrong. It does have that part as well, but it’s not like this
is 90 percent. [...] It’s always teamwork. And so, the
team aspect and the social aspect is very important for
communicating problems and getting things done well.“

Working environment. The interviewees did not
mention much about the general situation of the working
environment. Some said that they do not have a regular
working day and the term “home office” came up, which
can be attributed to the consequences of the regulations
due to the current Corona situation.
More interesting was what they made known about
their ideal ideas of a work environment. They
made statements that can be put under the heading
of “undisturbed work”. One interviewee explained:
“Not to be disturbed by other colleagues or customers,
who can work normally, straight way.” Another one

Page 7800



found similar words: “Room for silence” and “room
for concentration” are necessary to “dive in and be
un-disturbed and work for like three hours on some
development topic.” The need for privacy can be
transferred to programming, because only in this activity
is the presence of other colleagues not needed. Seen in
this light, the question arises as to whether SEs do not
need two rooms: a common one for exchange and a sole
one for execution.

Integration throughout the design process.
The advantages of involving SEs in the entire
product development process clearly outweighed
the disadvantages. They were primarily recorded
in bringing in a technical perspective, to “find the
compromise between this perfect design and what’s
really doable.” Additionally, answering financial
questions also played a role here: “So, I think software
developers generally should have an entrepreneurial
mind and understand what is the value of that what they
are building?” A third reason lies in the enrichment
through a different way of thinking and working: “I
think the developer should be part of the whole process
because they bring in another point of view, a technical
point of view.” The disadvantages referred to the fact
that the greatest strength, the technical focus, can
degenerate. SEs tend to slow down processes because
they become rigid on technical aspects: “I would say the
biggest threat for a self-motivated developer is working
too long on unnecessary things. A classical problem
would be early optimization or working on features that
nobody requests. That is, I think the biggest problem.”
Another threat is that they are not involving themselves
into the discussion: “And software development is
sitting on the site is listening, is not saying something.”
One respondent mentioned the lack of communication
skills by stating that someone is necessary “who can
speak as well the language of developers”.

5.2. Awareness for sustainability

The second part of the questions we started by asking
about the use of tools and frameworks. Our intention
was to check whether the topic of sustainability is
addressed here on its own. We then asked if they also
use tools or frameworks that address questions about
ethics, consequences or sustainability. Afterwards, we
addressed questions about the importance of such issues
within the company. Finally, the questions focused on
the integration of these issues into the training of SEs.
Not a single SE interviewed uses ethical frameworks or
tools as a guidance. Twelve of them have never heard
of the ACM Code of Ethics and Professional Conduct,
only one of them knew the term.

When it comes to moral issues within their work, eleven
of them raise the issue of data security. The other
dimensions of sustainability and their effect levels (see
section 2.3) do not come up. Two SEs claim not to
encounter any moral issues. From this, a truncated
understanding of sustainability could be derived. Four
SEs attach importance to ethics in their work, compared
to nine who do not share this view. In the case of the
importance of impacts, nine attribute an importance to
the topic. Two see an importance here, but classify it as
rather low. Two others do not assign any importance to
impacts.
Accordingly, with nine, the majority of SEs thinks about
impacts when creating a product or service. In contrast,
four interviewees answered this question in the negative.
Nine of the interviewees are also of the opinion that the
topics dealt with here should be integrated more strongly
into Software Engineering.
The question of whether SEs should be trained
differently in the future was mostly not addressed in
terms of ethical questions or questions about impacts
and sustainability. Six of the interviewees answered
this question in the negative. Of these, four claim that
it is more about personal issues. Another interviewee
claimed that SEs need to acquire knowledge on these
topics themselves. In addition, one stated that SEs do
not need to be strong in every area. Three interviewees
stated that they had absolved a training in these topics
during their training. In contrast, there were ten for
whom this was not the case. Only one of the SEs needs
help in dealing with these issues. Five of them showed
openness or interest. Seven answered in the negative.

6. Discussion

RQ1: We can conclude that the SE has evolved into
a team member who communicates closely with other
team members, who covers interdisciplinary task areas
and who is involved in various work steps. However,
we cannot say that the SE does yet seem to have fully
arrived in this new role. The focus lies on technology
and seems to be so strong and the interdisciplinary
way of working so low that non-technical tasks in
communication become more difficult and even being
perceived as disturbing. SEs have not yet completely
dissolved their role as a purely executive force. They
continue to see themselves in the role of doers who need
clear tasks.
RQ2: At the same time, SEs shy away from their
responsibilities, which can be seen in particular in
the sustainability consequences. The application of
methods regarding sustainability is not part of their
toolbox; the consequences are mainly seen in data

Page 7801



security. However, this does not mean that they are not
aware of sustainability issues. With nine interviewees,
the majority stated that these topics should be integrated
more strongly into the Software Engineering process
than before. They were not usually trained in this topic,
but half of them brings up a motivation to catch up
(six out of thirteen). This can be seen as motivation
to tackle the issue.Standards are required as well as an
expansion of the scope of activities in order to meet the
sustainability debt.
Overall, there are still uncertainties in the “right” way
to deal with this issue. We know from sociology
that roles solidify over time and that it is not possible
to dissolve and transform them overnight. As far
as sustainability design as a component in Software
Engineering is concerned, we are also dealing with a
relatively new research topic. Developments with regard
to both research questions can certainly be identified,
but the desired theory and the real practice still diverge
significantly.

7. Limitations

We have conducted a qualitative study thus there
are a number of aspects threating the validity of our
findings. We have considered these systematically,
discussing the four threats to validity: construct validity,
internal validity, external validity, and reliability.
Construct validity: A threat to construct validity may
be that interviewees may not understand the questions,
and the interviewer may misinterpret data. To minimize
this threat, we ensured that the interviewees had
sufficient experience in Software Engineering; further
on, to provide a context for some of the questions,
we asked the interviewees to read a small part of the
ACM Code of ethics before the second stage of the
interview started. Furthermore, we piloted the interview
to make sure that the questions were clearly stated
and answerable. Moreover, the interviews were taped
allowing the researchers to listen to the interviews again
to limit misinterpretation. Lastly, coding was then
conducted pairwise. Another threat to construct validity
is reactive bias to the presence of a researcher. To
reduce that threat, interviewees have been assured their
anonymity and we use open questions in the interviews
as a way to reduce interviewer bias. Also, an interview
guideline had been agreed upon the three authors and
followed after the first pilot interview.
Internal validity: To minimize the impact of
confounding factors influencing the analysis we applied
qualitative analysis techniques. Additionally, we do
not claim that we collected any other data but that for
practitioners perceptions and attitudes related to their

work practices and to sustainability, and how these may
shift when an ideal working situation is considered.
However, threat of confounding factors cannot be ruled
out completely.
External validity: The cases presented here are not
statistically representative and are not intended to as
this is a qualitative study, and statistical generalization
is not our goal. Our explorative, qualitative study
was designed to help us identify the perceptions
of the interviewees with regard to their roles, their
responsibilities and possible to enable sustainability
design. By selecting practitioners from different
application domains, and company sizes, we focused on
the collection of a rich set of data.
Reliability: To minimize threats to reliability, coding
was done pairwise. Any mapping disagreements were
discussed until consensus was reached.

8. Conclusion and future work

If we look at software companies through a
sociological lens, we see that every employee has a role
to play in order for the software to be completed. The
role of SEs has changed since the early 2000s with the
rise of Agile Methods. Ideally, SEs no longer limit
themselves to specialized tasks, but to interdisciplinary
task areas. Today, they can no longer be described
as an executive force alone, as they are and must be
involved in numerous work steps. They work less
in outsourced or separated departments and more in
close teams with a high degree of communication. For
some years now, we have been able to observe that the
topic of sustainability is becoming a component that
can only be implemented with the help of SEs. For
this development to gain momentum, it is essential that
SEs receive a sense of responsibility for the fact that
their work has an impact on five dimensions: social,
individual, environmental, economic and technical. In
addition to publications on Sustainability Design to raise
awareness, researchers are publishing methods to help
meet the sustainability debt. With both topics, self-role
attribution and awareness of sustainability, it is evident
due to some discrepancies that the path from former to
today’s desired structures has not been completed. SEs
are insufficiently involved in the design process because
their focus on technical issues is so strong that there are
communication difficulties with team colleagues from
other areas. Their sense of responsibility is thus also
on the technical side, such as whether the code works
adequately. Sustainability concepts intended for the
software design process do not adequately take into
account the fact that SEs lack sustainability awareness
and a general sense of responsibility for their Software.

Page 7802



This is limited to the issue of data security.
For future studies, we consider two areas to be relevant.
First, we plan to complement our qualitative approach
quantitatively to ensure that our findings reveal a broader
problem rather than an isolated one. A qualitative
study such as this entails aspects that threaten the
validity of the results. Second, the existing sustainability
design methods that are already in use in the Software
Engineering process should be reviewed. In this way,
the feedback from the participants can be analyzed so
that readjustments can be made. These adjustments
should take into account the SEs self-role attribution as
well as their sustainability awareness.

References

[1] E. Jones Meade, E. O’Keeffe, N. Lyons, D. Lynch,
M. Yilmaz, U. Gulec, R. O’Connor, and P. Clarke, The
Changing Role of the Software Engineer. Springer,
2019.

[2] D. Lammert, “The connection between the sustainability
impacts of software products and the role of software
engineers,” Evaluation and Assessment in Software
Engineering (EASE) Doctoral symposium, 2021.

[3] C. Thorpe, C. Yuill, and M. Hobbs, The Sociology Book.
DK Publishing, 2015.

[4] I. Sommerville, Software Engineering. Pearson, 2019.
[5] R. E. Bourque, Pierre; Fairley, Software Engineering

Book of Knowledge (SWEBOK). IEEE Computer
Society Press, 2014.

[6] R. Chitchyan, C. Venters, and et al., “Requirements
engineering for sustainability: An awareness framework
for designing software systems for a better tomorrow,”
Requirements Engineering, vol. 25, p. 469–492, 2020.

[7] P. S. Adler, P. Gay, G. Morgan, and M. Reed, The Oxford
Handbook of Sociology, Social Theory and Organization
Studies. Oxford University Press, 2014.

[8] H. Griffiths, N. Keirns, and E. e. a. Strayer, Introduction
to Sociology. OpenStax, 2015.

[9] T. E. of Encyclopedia Britannica, ed., Role.
Encyclopædia Britannica, Inc., 2020.

[10] E. Goffman, The Presentation of Self in Everyday Life.
Doubleday, 1956.

[11] P. Bourdieu, Distinction: A social critique of the
judgement of taste. Routledge, 1984.

[12] M. John, F. Maurer, and B. Tessem, “Human and social
factors of software engineering: workshop summary,”
ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–6,
2005.

[13] T. DeMarco and T. Lister, Peopleware: Productive
Projects and Teams (3rd Edition). Addison-Wesley
Professional, 3rd ed., 2013.

[14] C. Wohlin, D. Šmite, and N. B. Moe, “A general
theory of software engineering,” J. Syst. Softw., vol. 109,
p. 229–242, Nov. 2015.

[15] M. J. Reece, “The role of the software engineer
in the system design process,” in MILCOM 1985 -
IEEE Military Communications Conference, vol. 2,
pp. 346–349, 1985.

[16] E. C. Foster, Software Engineering: A Methodical
Approach. Appress, 3rd ed., 2014.

[17] K. Beck, M. Beedle, A. v. Bennekum, and et al.,
Manifesto for Agile Software Development. 2001.

[18] I. Alexander and S. Robertson, “Understanding project
sociology by modeling stakeholders,” IEEE Softw.,
vol. 21, p. 23–27, Jan. 2004.

[19] E. Ries, The Lean Startup: How Today’s Entrepreneurs
Use Continuous Innovation to Create Radically
Successful Businesses. Sydney: Currency, 2011.

[20] R. Feldt, L. Angelis, R. Torkar, and M. Samuelsson,
“Links between the personalities, views and attitudes
of software engineers,” Inf. Softw. Technol., vol. 52,
p. 611–624, June 2010.

[21] A. B. Soomro, N. Salleh, E. Mendes, J. Grundy,
G. Burch, and A. Nordin, “The effect of software
engineers’ personality traits on team climate and
performance,” Inf. Softw. Technol., vol. 73, p. 52–65,
May 2016.

[22] Z. Karimi, A. Baraani-Dastjerdi, N. Ghasem-Aghaee,
and S. Wagner, “Links between the personalities, styles
and performance in computer programming,” J. Syst.
Softw., vol. 111, p. 228–241, Jan. 2016.

[23] L. F. Capretz and F. Ahmed, “Making sense of software
development and personality types,” IT Professional,
vol. 12, no. 1, pp. 6–13, 2010.

[24] N. Gorla and Y. W. Lam, “Who should work with whom?
building effective software project teams,” Commun.
ACM, vol. 47, p. 79–82, June 2004.

[25] G. Booch, Software engineering in practice keynote: The
future of software engineering. ICSE’15: Proc. of the
37th Intl. Conf. on Software Engineering, 2015.

[26] N. Wolfram, P. Lago, and F. Osborne, “Sustainability in
software engineering,” in 2017 Sustainable Internet and
ICT for Sustainability (SustainIT), pp. 1–7, 2017.

[27] C. Becker, S. Betz, R. Chitchyan, L. Duboc, S. M.
Easterbrook, B. Penzenstadler, N. Seyff, and C. C.
Venters, “Requirements: The key to sustainability,” IEEE
Software, vol. 33, no. 1, pp. 56–65, 2016.

[28] S. Betz, C. Becker, R. Chitchyan, L. Duboc,
S. Easterbrook, B. Penzenstadler, N. Seyff, and
C. Venters, “Sustainability debt: A metaphor to support
sustainability design decisions,” CEUR Workshop
Proceedings, vol. 1416, pp. 55–63, 2015.

[29] S. Oyedeji, A. Seffah, and B. Penzenstadler, “Classifying
the measures of software sustainability according to the
current perceptions,” in MeGSuS@ESEM, 2018.

[30] R. Chitchyan, C. Becker, S. Betz, L. Duboc,
B. Penzenstadler, N. Seyff, and C. C. Venters,
“Sustainability design in requirements engineering:
State of practice,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion
(ICSE-C), pp. 533–542, 2016.

[31] L. Duboc, S. Betz, B. Penzenstadler, S. A. Koçak,
R. Chitchyan, O. Leifler, J. Porras, N. Seyff, and
C. C. Venters, “Do we really know what we are
building? raising awareness of potential sustainability
effects of software systems in requirements engineering,”
in 27th IEEE International Requirements Engineering
Conference, RE 2019, pp. 6–16, IEEE, 2019.

[32] S. S. Elmer, “Mündliche befragung (oral questioning),”
in Empirical scientific work. A study guide for the
educational sciences (J. Aeppli, L. Gasser, E. Gutzwiller,
and A. Tettenborn, eds.), vol. 4, pp. 177–191, UTB,
2016.

Page 7803


