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Abstract—Reinforcement learning research is sparse in the
German card game of Cego. This work applies deep reinforce-
ment learning to sub-problems of the game. For this task, the
game environment is implemented in the framework RLCard. A
suitable action encoding and an encoding approach for game state
observations are provided. The number of possible states is re-
stricted by the implementation of heuristic rules. Benchmarks are
defined for evaluating sub-problems. Models for a specific sub-
game are trained with the algorithms deep Q-network (DQN),
neural fictitious self-play (NFSP), and deep Monte Carlo (DMC).
In direct comparison, DMC achieves the highest performance.
When training models with DMC for other sub-problems, all
models beat their benchmarks.

Index Terms—artificial intelligence, card games, Cego, machine
learning, reinforcement learning, RLCard

I. INTRODUCTION

Cego is a card game that is mainly played in and around
the German region Baden [1]. Despite its unique properties,
Cego has sparsely been addressed in research on reinforcement
learning (RL). Due to Cego’s unique characteristics, this work
aims to introduce deep RL methods to the game. First of all,
Cego has the game mechanic of having a large blind card
set, which has major ramifications on the outcome of the
game [1], [2]. This mechanic results in Cego having a large
randomness factor from a player’s perspective. Secondly, Cego
can be split into various sub-games, with sometimes variations
within a single sub-game [2], [3]. These aspects make Cego
an interesting test bed for game theory as well as real-life
problems.

RL has seen a resurgence in recent years. In 2016, AlphaGo
[4] achieved the goal of beating the European champion in the
challenging game Go by a significant margin. The following
project AlphaZero [5] has since then advanced the level of
play further and has been implemented for the games Chess
and Shogi [6]. These games all share the property of being
games with complete information states [7]. However, card
games, such as Cego, are games where the information on the
current and previous game states is incomplete. This leads to
card games typically having large game spaces and, therefore,
many possible game states [8]. Due to this level of complexity,
card games are difficult to solve.

RLCard [9] is an RL framework that focuses on the
complexity of card games. It implements state-of-the-art RL
algorithms to compare them over a standardized environment

interface. The provided algorithms are mostly based on deep
neural networks (DNNs). In other problem domains, DNNs
have proven to be effective in solving complex problems [10].
Furthermore, DouZero [11] demonstrated that DNNs can be
applied to the Chinese card game DouDizhu to remarkable
effect.

This work applies deep RL algorithms to the card game
of Cego. The final goal is to train models that effectively
maximize the level of play. The game is split into different sub-
problems to maximize each problem individually. Restrictions
are defined to reduce the complexity of the game. To compare
different algorithms in a generalized environment, the game is
implemented in RLCard. By simulating scenarios for specific
sub-problems beforehand, benchmarks are created. This work
compares the algorithms deep Q-network (DQN) [12], neural
fictitious self-play (NFSP) [13] and deep Monte Carlo (DMC)
[11] with one another on a single sub-problem in order to
identify the algorithm that performs best under the specified
conditions. Hyperparameter optimization (HPO) is applied
to certain algorithms to optimize their performance. After
identifying the algorithm with the most successful results,
this algorithm is applied to train models for other Cego sub-
problems. An evaluation of the sub-game models by using the
defined benchmarks as a base of comparison concludes this
paper.

II. RELATED WORK

In other imperfect information games, specifically poker
variants, counterfactual regret minimization (CFR) has been
popular [14]. Nevertheless, CFR is computationally expensive
because for solving a game, the full game tree has to be tra-
versed. Bowling et al. introduced CFR+ [15], an improvement
to the standard CFR algorithms that solved Heads-up limit
Texas Hold’em poker. It has to be noted that Cego consists of
more players and more cards, making the game tree potentially
orders of magnitude larger. Therefore, other methods might be
deemed more efficient in learning Cego.

Bridge is a trick-taking game similar to Cego. Ginsberg
introduced an AI which uses Monte Carlo (MC) techniques
and perfect information states [16]. This result proves that MC
techniques can create an AI able to beat professional players.
However, the question is whether an AI can achieve the same
level of play with imperfect information states.
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Another trick-taking game originating from Germany is
the card game Skat, which also has blind cards as a game
component. The mathematical and strategic background of
Skat has been well researched [17]–[20].

In 2007, Kupferschmid et al. [21] applied MC simulation
and alpha-beta search to Skat. With the addition of move
ordering, quasi-symmetry reduction, and adversarial heuristics
to improve tree searching algorithms, the final program pro-
cesses the game-theoretical value of a Skat hand in about 10
milliseconds. Furtak [22] solved perfect game states in Skat
for use in an MC-based AI by using search extensions that
are symmetry-based. Both previous named research focused
on perfect information states. In contrast, this work explores
to what degree Cego can be solved without having all the
information at hand.

An imperfect information approach for Skat was introduced
by Edelkamp [23]. His AI applied expert rules, winning
probability aggregation, and fast tree exploration. The final AI
beat human players in some sub-games but was disadvantaged
in others. A similar approach is feasible for Cego. However,
this work deems other approaches as more effective.

The AI DouZero learned the Chinese game of DouDizuh
[11]. This game is no trick-taking game but similar to Cego
has two playerwise unevenly matched sides. In addition,
DouDizuh has the obstacle of having a large action space.
Despite this, the introduced DMC algorithm, which combines
an MC approach with DNNs, was able to beat any other
existing AI in the game. This work compares this algorithm
with other deep RL algorithms on the game Cego.

III. CEGO

Cego is a card game that is typically played with four
players [2]. There are rule sets for different regions. This
work focuses on the generalized rule book employed by the
Schwarzwaldmeisterschaft [24] as well as Cego Online [25],
the web-based game.

A. Cards
Cego uses Tarock cards [1]. A special card set consisting

of the card suits trump, clubs, diamonds, hearts, and spades
(see Figure 1) [1], [2]. The deck includes 54 unique cards.
The cards can be divided into:

• 22 trump cards,
• Each eight,

– Clubs cards,
– Diamonds cards,
– Hearts cards, and
– Spades cards.

Among the trump cards, the Gstieß [2] is considered the
highest card. The other trump cards are numbered. Other suits
can be divided into picture cards and empty cards. Kings (Ger.
König), queens (Ger. Dame), cavaliers (Ger. Reiter), and jacks
(Ger. Bube) are the pictured cards. The empty cards are named
by the number of suit symbols they have on them.

Each card has a value associated with it, which is used to
determine points. The cards have the following values [25]:

Fig. 1. Overview of Cego cards

• Gstieß, 21-trump, 1-trump, and kings: 4.5 points.
• Queens: 3.5 points.
• Cavaliers: 2.5 points.
• Jacks: 1.5 points.
• All other cards: 0.5 points.

B. Rules
At the start of the game, each player gets dealt 11 cards.

The left 10 cards are the blind cards and are laid down in the
middle of the table [2].

After the cards have been dealt, it is decided on what sub-
game to play [2]. For this, a bidding phase, consisting of
multiple rounds, takes place. The bidder tries to win the right
to play against the other three players as the single-player.
When playing as the single-player, the player takes a higher
risk of losing [2], [3]. But as compensation, the number of
points the player can receive may be higher.

When it has been decided on a sub-game, the players
(usually) must win tricks [2], [3]. For that, each player plays a
card in counterclockwise order. After every player has played
a card, the player who played the highest card wins the trick
and receives the points of the trick cards. The first suit that is
played in the trick has to be served. When the suit can’t be
served, a trump card must be played when possible. Any card
can be played when the suit cannot be served and there is no
trump card at hand. This act is called schmieren. Tricks are
played until no cards are left or a sub-game-specific winning
condition is met.

Each card has a rank which can be viewed in Figure 1 in
the reading direction from top left to bottom right descending.
Trump cards beat other suits.

C. Sub-Games
Cego consists of the following six sub-games [2], [3]:
• Standard-Cego: The single-player exchanges his hand

cards with the blind cards. The discarded cards, called
Legage, consist of hand cards. The Legage is added to
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the player’s point score. In order to win, the single-player
must receive at least 40 out of 79 possible points.

• Solo: The Legage consists of the blind cards and is added
to the single-player’s point score. Out of 79 possible
points, the single-player has to receive at least 40 points.

• Ultimo: The single player must win the last played trick
with the card 1-trump (also called Geiß).

• Bettel: The single-player is not allowed to win a trick.
• Piccolo: The single-player must win exactly one trick.
• Räuber: The player that receives the highest number of

points loses.
The game mode Standard-Cego is commonly called Cego

[2], but to minimize confusion between the game name, it is
termed differently in the context of this work.

In all but Standard-Cego, the blind cards are discarded and,
therefore, out of the game [2], [3].

D. Complexity of Cego
Cegos number of possible starting information states |I0|

can be calculated by multiplying the binomial coefficients of
each hand deck as well as the blind cards:

|I0| =
✓
54

11

◆
·
✓
43

11

◆
·
✓
32

11

◆
·
✓
21

11

◆
·
✓
10

10

◆

⇡ 2.51 · 1034
(1)

This considerably large number of starting states is further
increased by the number of ways to call sub-games in the
bidding phases and the number of possible card play orders.
Therefore, Cego is considered a complex game.

E. Game Theoretic Classification
Cego is a game with imperfect information [7]. Players do

not know the cards dealt to other players.
In the context of most sub-games, Cego is a two-player

zero-sum game [7]. Despite being played by more than two
players, these players can be divided into two directly oppos-
ing factions, the single-player and the non-single-players.

Because Cego is a sequential game, it can be described in
extensive form [7].

IV. GAME ENVIRONMENT IMPLEMENTATION

The game implementation defines four players, of which the
first player is considered the single-player (outside of Räuber)
and the other three players are ordered counterclockwise in
regard to the single-player.

A. Limitations
The bidding phase vastly differs from the sub-games. In

addition, the bidding phase-specific actions have huge ripple
effects on how the rest of the game is played out and
further increase the complexity. Therefore, the bidding phase
is excluded from consideration.

All sub-games have varying winning conditions and priori-
ties. To simplify the problem and take away the complexity of
having to learn multiple sometimes opposing problems, every
sub-game is implemented and trained separately.

Standard-Cego has different bidding levels, which in addi-
tion to playing a card add the actions of keeping, exchanging,
and discarding cards. This expands the action space by a factor
of four. Algorithms such as DQN have problems dealing with
enlarged action spaces [11]. Therefore, this work does not
consider these additional actions and generalizes the bidding
levels of Standard-Cego into one sub-game.

Cego players usually follow specific rules based on heuris-
tics when deciding which sub-game to play [2], [26]. For
the implementation of sub-games, the decision was made to
use these rules to further restrict the sub-games. This has the
advantage of shrinking the number of possible game states.
Aside from that, game states that are unlikely to be played in
a game of Cego with human players are excluded in advance.

B. Action Encoding

Each action gets assigned an index (see Table I). Actions
are cards that can be played. There are a total of 54 actions.

TABLE I
ACTION ENCODING

Actions/ Cards Indices
Clubs 0 – 7
Spades 8 – 15
Hearts 16 – 23
Diamonds 24 – 31
Trumps 32 – 53

C. State Encoding

For an algorithm to be trainable in RLCard, the information
state a player can observe at a certain time step has to be
provided in a machine-readable numerical array [9].

Table II represents the state encoding in Cego. The one-
dimensional observation array consists of 336 binary entries.
Encodings (1)–(6) encode information about the card states.
Each of these encodings has a length of 54 where every index
indicates the existence (one) or the absence (zero) of a card.
Encodings (7)–(9) represent player-specific information, and
each has a length of four. Every index is representative of
a player. For example, when player 2 started the trick, the
encoding of (9) is [0, 1, 0, 0].

TABLE II
INFORMATION STATE ENCODING

No. Description Indices
1 hand cards 0 – 53
2 playable cards by other players 54 – 107
3 card that wins the trick 108 – 161
4 first trick card 162 – 215
5 second trick card 216 – 269
6 third trick card 270 – 323
7 same team players 324 – 327
8 current trick winner 328 – 331
9 player that started the trick round 332 – 335

Along with the player’s observation, the indices of legal
actions at a certain time step also need to be included in the
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game state. The selection of legal actions is abbreviated from
the game rules described in Subsection III-B.

D. Reward Handling
Two reward systems are considered:
• Variant 1: Players receive one point for winning a game

and zero points for losing a game.
• Variant 2: The point system of Standard-Cego and Solo

is used. Players can receive a maximum of 79 points and
a minimum of 0 points.

Variant 2 has the advantage that the range of possible values
is broader. Therefore, the reward system has more nuances.
The only disadvantage is that this reward system can only
be applied to the sub-games Standard-Cego and Solo. For this
reason, Variant 2 is used for these two sub-games. Meanwhile,
the other sub-games use Variant 1.

Note that for Standard-Cego and Solo, the reward system
is designed in a way so that the single-player is maintaining
a separate point score. The score of the other three players is
mirrored. Considering, the point score started with [17, 0, 0, 0],
with the single-player earning 17 points from the Legage.
Player 3 received 5 points by winning a trick, so the resulting
point score is [17, 5, 5, 5].

For both Variants, it should be noted that RLCard handles
rewards sparsely [9]. Therefore, the full reward is always
received at the end of the game.

E. High and Low Cards
Some heuristic rules for sub-games rely on the loosely

defined concepts of high and low cards. In order to construct
a definition, the generalized probability of a card i winning
a trick P (Wi) over all trick rounds is approximated over 106
simulation games for each card in games with random agents
(players that select random actions) on the random seed of
12. Based on the approximations, low cards are defined as the
biggest possible set of unique cards that, on average, account
for less than 20% of all trick wins. The cards left out of this
definition are considered the high cards.

Figure 2 illustrates the card win probabilities in descending
order and the classification of high cards (violet) and low cards
(blue). Note that i has no relation to the action indices in Table
I. The 24 high cards account for around 81.72% and the 30
low cards for around 18.28% of all trick wins.

F. Sub-Game Restrictions
For each sub-game, the following restrictions, based on

heuristics, are defined:
• Cego-Standard: The single-player has to have at least 15

combined card points in hand [26].
• Solo: The single-player has to have either at least eight

trump cards or seven trump cards, of which at least two
are ranked higher or equal to 17-trump and not more than
two suits outside of trump [2].

• Ultimo: The single-player has to have at least eight trump
cards, of which at least two are ranked higher or equal
to 17-trump and of which one is the card 1-trump.

Fig. 2. Distribution of High and Low Cards

• Bettel: All cards of the single-player must be low cards.
• Piccolo: 10 cards of the single-player must be low cards

and one card has to be a high card.
• Räuber: No restrictions are made.

V. DEFINING BENCHMARKS

This section defines benchmarks for each sub-game consid-
ered for evaluation and comparison.

A. Metrics
To evaluate the sub-games, the following metrics are de-

fined:
• Win percentage (WP): The number of games won by the

player divided by the total number of conducted games
[27].

• Average points per game (APPG): The number of total
points received by a player divided by the number of
games conducted. This average is in the range of 0 
x  79.

B. Method
For each sub-game, 106 games are conducted with random

agents and the defined game selection rules. Only in Standard-
Cego and Solo can the APPG be determined. For all other
sub-games, the WP is calculated.

C. Results
Table III visualizes the resulting benchmarks. The on-

average winning side is marked in bold. It can be observed
that the balance between player sides varies between sub-
games. In the context of random agents, the sides in the sub-
games Standard-Cego and Räuber are most evenly balanced.
The biggest discrepancy can be seen in Ultimo, with a large
disadvantage for the single-player.

VI. COMPARISON OF ALGORITHMS

The following three algorithms are considered for the train-
ing of a Cego AI.
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TABLE III
BENCHMARKS

Player
Position

Standard-Cego:
APPG

Solo:
APPG

Ultimo:
WP

1 40.795 48.996 8.42
2 38.205 30.004 91.58
3 38.205 30.004 91.58
4 38.205 30.004 91.58

Player
Position

Bettel:
WP

Piccolo:
WP

Räuber:
WP

1 73.081 39.275 73.848
2 26.919 60.725 74.839
3 26.919 60.725 75.425
4 26.919 60.725 75.887

Results rounded to three decimal places.

1) DQN: DQN is an algorithm that combines the concept
of Q-Learning [28] with DNNs. In Q-learning, at each step of
a game episode, the current state-action pair’s value in the Q-
Table is adjusted by observing the action, reward, and follow-
up state. The Q-value of the current state-action pair is adjusted
with the current reward and the discounted highest neighboring
Q-value. The following update rule describes this process [29]:

Q(St, At) Q(St, At)+

↵
h
Rt+1 + �max

a
Q(St+1, a)�Q(St, At)

i (2)

In DQN, a DNN minimizes the difference between the
expected target Q-Value and the approximated Q-Value of the
DNN with gradient descent and backpropagation [12]. Moves
are randomly selected from a memory of experiences. This
memory is filled by sampling actions with an ✏-greedy policy.

In addition, RLCard implements a double DQN [30], where
there is a separate online and target network. The target
network copies the weights of the online network every r steps
[9].

2) NFSP: NFSP is an implementation of fictitious self-
play (FSP) [31] utilizing DNNs for the approximation of the
best response policy as well as the average response policy
[13]. Two separate memories are managed. The first memory,
MRL, is filled with player experiences and is used to train
the best response network. The second memory MSL relies
on reservoir sampling and, consequently, only is filled when
the experience follows the best response policy. This memory
trains the average response network. Furthermore, NFSP uses
anticipatory dynamics, which allows an NFSP agent to select
actions from the best response network as well as the average
response network. The weighting of action selection between
the two networks is regulated by the anticipatory parameter
⌘. This parameter defines the probability at which actions are
selected based on the best policy network weights.

RLCard implements the best response network as a DQN
[9].

3) DMC: DMC approximates every-visit MC with DNNs
[11]. MC Methods are RL methods where returns of full game
episodes are sampled, and a value table is updated with the

average of (discounted) returns that were received visiting a
state [29]. In every-visit MC, multiple visits to a state in the
same episodes are considered when calculating the average
return.

The loss function of DMC consists of the mean square error
(MSE) between the calculated target state value and the DNN
approximation of the state value [11]. As an innovation to
speed up training, DMC parallelizes the sampling of game
episodes. Actions are sampled by multiple actors with an ✏-
greedy policy.

A. Method of Comparison
Throughout all phases, the focus is on Standard-Cego. An

additional constraint is that all algorithms train a model for
the single-player position. This restricts the comparison to a
manageable scope.

1) Phase 1: In the first phase, all models are compared
against random agents. The models play a total of 50,000
games with the random seeds 12, 17, 20, 30, and 33, resulting
in a total of 250,000 games.

2) Phase 2: In the second phase, the models are compared
with each other. It starts with 250,000 games split into 50,000
games with the random seeds 12, 17, 20, 30, and 33 in the
following constellation:

1) Model A
2) Model B
3) random agent
4) random agent
After this, Model A and Model B swap places, and another

250,000 games are played with the same random seeds. This
ensures that both models are an even number of games in both
advantaged and disadvantaged positions.

B. HPO
In RLCard, DQN and NFSP hyperparameters are lightly

tuned [8]. Therefore, the decision was made to optimize the
hyperparameters of both DQN and NFSP for better training
results. For DMC, the HPO is excluded, and the hyperparam-
eters tuned on DouDizuh [11] are used in the comparison.

Random search is utilized as HPO method [32]. Searching
spaces are created for each algorithm. 20 unique hyperparam-
eter sets are sampled for each reward system. The models are
trained for 50,000 episodes with random seed 12. Then 1000
games, each with the random seeds 12, 17, 20, 30, and 33,
are conducted, and the APPG is compared. In addition, the
training slopes created by performing a linear regression are
considered in the comparison. Rankings are created for both
APPG and training slopes. The model that receives the highest
combined average ranking is selected for the training of a final
model.

1) DQN: For DQN the replay memory init size is fixed to
100, the epsilon decay steps to 50,000, and the epsilon start
to 1. Outside these parameters the following searching space
is defined:

• Replay memory size: 50000, 100000, 200000
• Update target estimator every: 1000, 2000, 10000
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• Discount factor: 0.75, 0.8, 0.95, 0.99
• Epsilon end: 0.1, 0.05, 0.01
• Batch size: 32, 64
• Multilayer perceptron (MLP) layers: [512, 512, 512],

[512, 256, 128], [512, 512]
• Learning rate: 1 · 10�4, 5 · 10�5, 1 · 10�5, 5 · 10�6

2) NFSP: Because the DQN hyperparameters were opti-
mized beforehand, these parameters are taken as a base for
the in NFSP utilized DQN to counteract the higher number
of hyperparameters to optimize in NFSP. The min buffer size
to learn is fixed to 100. In addition, the following searching
space is defined:

• Hidden layers sizes: [128, 128], [256, 256], [512, 512],
[512, 512, 512]

• Reservoir buffer capacity: 20000, 50000, 100000, 200000
• Anticipatory param: 0.1, 0.2, 0.25, 0.35, 0.5
• Batch size: 128, 64, 32
• Supervised learning (SL) learning rate: 1 ·10�3, 1 ·10�4,

5 · 10�5, 1 · 10�5, 5 · 10�6

A single hyperparameter set has been determined for DQN
and NFSP each. The final hyperparameters are presented in
the next subsection.

C. Training
The hyperparameters used for training are displayed in Table

IV. All algorithms use the same random seed of 20 for training.
DMC was trained for a total of 2.5 ⇤ 109 environment frames.
DMC trained four agents in parallel, where only the single-
player model is considered in the comparison.

DQN and NFSP train in an environment, with the first player
being the algorithm and all other players being random agents.
DQN and NFSP are each trained in 50,000 episode steps. The
epsilon decay steps are adjusted to 100,000 to account for the
longer training duration. Every 1000 episodes, 1000 evaluation
games are conducted against random agents to calculate the
current APPG as training progress. After 50,000 episodes, the
APPG of the last training progress points of these episodes
is determined. When the APPG is lower than the average of
the 50,000 episodes before, the training is terminated. DQN
terminated after 450,000 episodes and NFSP after 250,000
episodes. For comparison, the model checkpoint of the 50,000
previous episodes is used, where no training regression has
occurred.

D. Discussion of Results
1) Phase 1: The results of Phase 1 are displayed in Table

V. DMC overall performs the best against random agents, with
an average margin of 2.619 points over the next best algorithm,
DQN. NFSP comes in last with a margin of -1.334 points to
DQN. All models are able to beat the benchmarks.

2) Phase 2: In Table VI, the results of Phase 2 are repre-
sented. The highest scores are achieved by DMC against both
DQN and NFSP. When combining and calculating the results
of all rounds for each algorithm. DMC achieves the highest
APPG with 42.105 and the highest WP with 58.001%. The
second-best averages are recorded by DQN, with an APPG of

38.777 and a WP of 48.136%. NFSP takes the last place with
an APPG of 37.618 and a WP of 43.864%.

In both phases, DMC performs the best in the single-player
position.

It should be noted that these results depend on the setting
of Standard-Cego. In order to prove the superiority of DMC
in the full game of Cego. This experiment would have to be
repeated for all sub-games and players. In addition, the choice
of random seeds can largely affect the results of training in
RL algorithms [33]. Therefore, these results should be viewed
in the context of the stated restrictions and random seeds.

VII. TRAINING AND EVALUATION OF SUB-GAMES

After identifying DMC as the algorithm that performs the
best in the conducted comparison, models for all left sub-
games are trained with DMC and subsequently evaluated.

A. Training

Because of long training times and DMC converging earlier
than expected in the training of Standard-Cego, the number
of total environment frames is reduced to 1.5 · 109 for the
training of the left sub-games. Other than this adjustment, the
hyperparameters are the same as in Table IV.

B. Evaluation Method

After training, a model for every player and sub-game,
these models are compared in various tournament setups. Each
tournament consists of 50,000 games with the random seeds
31, 43, 67, 78, and 112 each, resulting in a total of 250,000
games per setup. The following setups are considered:

1) Player 1 = DMC model; Other players = random agents
2) Player 2 = DMC model; Other players = random agents
3) Player 1 = DMC model; Other team = 1 DMC model +

2 random agents
4) All players = DMC models

In the game mode Räuber, where the team dynamics are
different compared to the other sub-games, only the following
three setups are evaluated:

1) Player 1 = DMC model; Other player = random agents
2) Player 1 and 2 = DMC models; Player 3 and 4 = random

agents
3) All players = DMC models

C. Discussion of Results

Table VII presents the results of the evaluation. The on-
average winning side is marked in bold. As can be perceived,
single-player and non-single-player models improve on the
specified benchmarks.

In both Standard-Cego and Solo, the single-player model
improves on similar levels.

The highest improvement over the benchmarks achieves the
single-player model of Ultimo with an increase of more than
1000%. A reason for this high discrepancy between benchmark
and evaluation reward could be that there is an underlining
logic that is trivial for the AI to learn. The key component
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TABLE IV
HYPERPARAMETERS

DQN NFSP DMC
Hyperparameter Value Hyperparameter Value Hyperparameter Value
Replay memory size 100,000 SL hidden layers sizes [512, 512] Num actor devices 1
Replay memory init size 100 SL reservoir buffer capacity 100,000 Num actors 5
Update target estimator every 10,000 Anticipatory param 0.5 MLP size [512, 512, 512, 512, 512]
discount factor 0.95 SL batch size 32 Exp epsilon 0.01
Epsilon start 1 SL learning rate 10�4 Batch size 32
Epsilon end 0.1 SL min buffer size to learn 100 Unroll length 100
Epsilon decay steps 100,000 RL replay memory size 100,000 Num buffers 50
Batch size 32 RL replay memory init size 100 Num threads 4
MLP layers [512, 512] RL update target estimator every 10,000 Max grad norm 40
Learning rate 10�5 RL discount factor 0.95 Learning rate 10�4

RL epsilon start 1 Alpha 0.99
RL epsilon end 0.1 Momentum 0
RL epsilon decay steps 100,000 Epsilon 10�5

RL batch size 32
RL MLP layer [512, 512]
RL learning rate 10�5

TABLE V
COMPARISON PHASE 1 – RESULTS

Algorithm APPG WP
DMC 46.462 69.958
DQN 43.843 62.761
NFSP 42.509 57.658

All values rounded to three decimal places.

TABLE VI
COMPARISON PHASE 2 – RESULTS

A
B DQN DMC NFSP

APPG WP APPG WP APPG WP
DQN - - 42.133 57.115 44.033 63.506
DMC 46.54 70.139 - - 46.787 70.85
NFSP 42.520 57.94 40.771 51.871 - -

All values rounded to three decimal places.

most likely is the 1-trump card that has to be played at a
specific point in time to have a winning chance.

Small improvements can be seen from the single-player AI
in Bettel. Sub-game-specific HPO might improve this model
further.

The single-player model of Piccolo improves on the bench-
marks by a solid margin but achieves less than a WP of 50%
in a full setup against random agents. More improvements are
needed in the sub-game Piccolo to push the single-player AI
to a higher WP.

In all sub-games, it can be observed that the single-player AI
can achieve higher reward increases than a non-single-player
AI against random agents. However, it can be observed that
this advantage shifts when combining non-single-player AIs in
a team. This observation is visible in Standard-Cego, where
in Setup 1 the single-player is advantaged, but in Setup 4
this advantage shifts to the non-single-players side. It appears
that non-single-players can achieve at least some degree of

cooperative play.

VIII. CONCLUSION

This work applied deep RL to the card game Cego. The
game environment was implemented in RLCard and divided
into sub-games to maximize each problem separately. An
information state encoding was provided to format the in-
formation observed by players into by DNNs interpretable
numerical arrays. For the encoding of actions, all cards are
encoded separately. To simplify each sub-game, the number of
possible game states is restricted by rules based on heuristic
knowledge.

Simulations were conducted to identify benchmarks for each
sub-game in order to evaluate the models.

Models were trained and compared on the sub-game of
Standard-Cego using the algorithms DQN, NFSP, and DMC.
Hyperparameters of DQN and NFSP were optimized. In two
separate experiments, it was concluded that DMC performed
the best under the defined conditions.

Afterward, models for all players and sub-games were
trained and evaluated based on the previously defined bench-
marks. All models improve on their benchmarks. High im-
provements can be observed in the single-player position of
Ultimo. Solid improvements are examined in the first player
positions of the sub-games Standard-Cego, Solo, Räuber,
and Piccolo. Bettel’s single-player AI has improved slightly.
The combination of non-single-player models leads to higher
average rewards, which indicates that models learn to play
cooperatively.

A. Future Work
The single-player AI in Piccolo improves, but wins less than

half of the games. It is proposed to restrict the number of
game-states by further game selection rules in order to increase
performance.

With the goal of further maximizing the rewards of each
player in all sub-games, it is proposed to hyperparameter
optimize each sub-game individually. Hyperparameter tuning
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TABLE VII
SUB-GAME EVALUATION RESULTS

Player
Position

Standard-Cego:
APPG
Setups:

1. 2. 3. 4.
1 46.48 38.02 43.2 37.98
2 32.52 40.98 35.8 41.03
3 32.52 40.98 35.8 41.03
4 32.52 40.98 35.8 41.03

Player
Position

Solo:
APPG
Setups:

1. 2. 3. 4.
1 54.26 46.01 51.42 44.93
2 24.74 32.99 27.58 34.07
3 24.74 32.99 27.58 34.07
4 24.74 32.99 27.58 34.07

Player
Position

Ultimo:
WP

Setups:
1. 2. 3. 4.

1 94.74 7.61 88.06 69.42
2 5.26 92.39 11.94 30.58
3 5.26 92.39 11.94 30.58
4 5.26 92.39 11.94 30.58

Player
Position

Bettel:
WP

Setups:
1. 2. 3. 4.

1 78.94 67.3 75.79 60.78
2 21.06 32.7 24.21 39.22
3 21.06 32.7 24.21 39.22
4 21.06 32.7 24.21 39.22

Player
Position

Piccolo:
WP

Setups:
1. 2. 3. 4.

1 47.65 34.32 43.76 28.76
2 52.35 65.68 56.24 71.24
3 52.35 65.68 56.24 71.24
4 52.35 65.68 56.24 71.24

Player
Position

Räuber:
WP

Setups:
1. 2. 3.

1 85.70 82.94 74.46
2 71.52 83.85 74.26
3 71.36 66.97 75.02
4 71.41 66.25 76.27

Results rounded to two decimal places.

methods, such as Bayesian optimization [34] could potentially
lead to better results.

The bidding phase is something that hasn’t been addressed
in this work. In the context of future work, it is proposed to
implement this aspect of the game with a classification model.
Here, the problem definition lies in classifying information
states to the sub-game that potentially leads to the highest
reward.

The final models have not been tested to see how they
compare with professional Cego players. Outside of this work,
the AI models have been made available for the relaunch of
the web-based game Cego Online. The relaunch is planned to
be available to all in the near future. Tests are planned and the
first results against real players may follow soon.
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