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A B S T R A C T   

Pentacyclic triterpene-piperazine-rhodamine B conjugates with ursane or oleanane backbones have been shown 
in the past to be highly cytotoxic thereby acting as mitocans. Starting from betulinic acid or glycyrrhetinic acid, 
new analogues were now made available, and their cytotoxic activity was investigated employing several human 
tumor cell lines [A375 (melanoma), HT29 (colorectal carcinoma), MCF-7 (breast adenocarcinoma), A2780 
(ovarian carcinoma), and for comparison NIH 3T3 (non-malignant fibroblasts)]. For these conjugates it has been 
established that the linking position at ring E governs the magnitude of cytotoxicity. These conjugates were still 
highly cytotoxic but significantly less cytotoxic than those holding a oleanane skeleton. Staining experiments 
showed the rhodamine B conjugates as necrotic compounds and to act as mitocans. The most active compound 
(8) held an EC50 = 0.04 μM for A2780 ovarian carcinoma cells.   

Introduction 

For a long time, the potential of pentacyclic triterpene carboxylic 
acids was underestimated. Although betulin (BN, Fig. 1) was first iso
lated and described by J. T. Lowitz [1] as early as 1788, it was not until 
1995 that the cytotoxic effect of the BN-derived betulinic acid (BA) 
against melanoma was recognized by E. Pisha et al. [2] For decades since 
then, a large number of pentacyclic triterpene carboxylic acids have 
been isolated from a wide variety of different plant sources and also 
studied for their cytotoxic potential. [3–11] However, many of these 
compounds were only weakly cytotoxic or not cytotoxic at all. Even BA- 
derived platanic acid (PA) did not live up to the expectations placed in it, 
since PA itself is also practically not cytotoxic and, in addition, it is even 
more poorly soluble than betulinic acid in biological fluids. [12–21]. 

More recently, a renaissance of this class of compounds has been 
achieved, as acylated amides have been shown to have good cytotox
icity, in particular a diacetylated benzylamide (“EM2”) [22–27] derived 
from maslinic acid or (iso)-quinolinyl amides (“IQAA”) [28] derived 
from augustic acid. 

Triterpenoid piperazine amides also stand out as cytotoxic, but are 
far surpassed [29] by derivatives that have a general structure as an 
acetylated triterpene carboxylic acid-piperazine-rhodamine B conju
gate. [30–36] Thereby, a triterpene carboxylic acid – acetylated one or 

more times in ring A – is linked to rhodamine B via a piperazine residue 
(attached to the triterpene carboxylic acid as an amide) at its distal ni
trogen to form a cationic, lipophilic conjugate. These compounds are 
supposed to interact with mitochondrial membranes and therefore act as 
mitocans (mitochondria targeted drugs) even in the low nanomolar 
concentration range. [29]. 

Thereby, compounds of the ursane or oleanane type were mainly 
investigated. Little is known about derivatives of this type with a lupane 
or with a β-amyrin backbone, such as in compounds derived from 
betulin (BN), betulinic acid (BA), platanic acid (PA) or glycyrrhetinic 
acid (GA). This will be the subject of this study. 

Results and discussion 

BN, BA, PA and GA were selected as starting materials. They are 
available in large quantities and very good purity from local suppliers. 
Their acetylation (Scheme 1) gave the known acetates 1–3. Reaction of 
1–3 with oxalyl chloride followed by reaction with piperazine gave the 
amides 4–6, and their reaction with rhodamine B (which was previously 
converted into the corresponding acid chloride with oxalyl chloride) led 
to the formation of the acetylated piperazinyl-spacered triterpene- 
rhodamine B conjugates 7–9. These compounds are pink colored thus 
indicating the presence of an intact cationic rhodamine B moiety. This is 
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usually regarded as a pre-requisite for obtaining compounds of mito
canic activity. [29]. 

Especially for a comparison with the corresponding glycyrrhetinic 
acid derivatives, two additional compounds were prepared (Scheme 2). 
BN was acetylated to form known diacetate 10 whose reduction with 
BH3 in THF at 0 ◦C [37] gave 11. Jones oxidation of the latter afforded 
12 whose reaction with oxalyl chloride followed by the addition of 
piperazine yielded 13. Reaction of 13 with rhodamine B (activated with 
oxalyl chloride) gave 14. BA acetate 1 was converted into its corre
sponding benzylamide 15 whose reduction with BH3 yielded 16. The 
latter compound was oxidized, and acid 17 was obtained in 52% yield. 
Coupling of this compound with 18 (having been accessed from the 
reaction of rhodamine B with oxalyl chloride followed by the addition of 
piperazine) finally gave 19. 

To assess their cytotoxicity these compounds were subjected to sul
forhodamine B (SRB) assays employing several human tumor cell lines. 
The results of these assays have been compiled in Table 1. 

The results from extra staining experiments employing A375 cells 
(having been incubated with either 14 or 19 at 2 × EC50 concentration 
for 24 h and 48 h, respectively) are depicted in Fig. 2 and Fig. 3. These 
FITC/annexin V/propidium iodide staining experiments allowed a 
quantification of the apoptosis/necrosis inducing activity of compounds 
14 and 19, respectively. Thereby, cells found in R1 (upper left) are 
regarded necrotic, those in R2 (upper right) late apoptotic, in R3 (bot
tom left) viable cells can be found and in R4 (bottom right) apoptotic 
cells are registered. Treatment of A375 cells with 14 for 24 h showed 
42% of the cells being necrotic; after 2 days 50% of the cells were 
necrotic, and only 1.6% of the cells had died by apoptosis. 

As shown in Figs. 2 and 3, the number of necrotic cells after treat
ment with 19 for 2 days amounted to 32.8% and 5.7% of the cells having 
died by apoptosis. This clearly indicates that A375 cells die rather by 
necrosis than by apoptosis. 

Although generalizations are always difficult, betulin derived 14 is 
more cytotoxic than betulinic acid derived 19. Compounds 7–9 are 
approximately equally cytotoxic but significantly better than 14. This 
might be caused by a higher bioavailability of the former compounds 
due to an increased solubility. Tumor/non-tumor cell selectivity is 
approximately the same in all cases but significantly worse than that 
previously measured for EM2. However, the results also show that 
betulin, betulinic acid and glycyrrhetinic acid derived conjugates are 
slightly less cytotoxic than the previously reported corresponding ole
anolic and ursolic-piperazinyl-rhodamine-B hybrids. All compounds 
together, however, are significantly worse than those derivatives pre
viously accessed from maslinic acid [38], tormentic acid [29] or 
madecassic acid [31]. This proves the original assumption that both the 
type of spacer (piperazine being better than ethylenediamine) is crucial, 
but also that the presence of a second acetoxy group in ring A improves 
cytotoxicity, and that the mode of attachment of the rhodamine residue 
(spacered better than directly bound) and the corresponding triterpene 
skeleton are also of crucial importance. Worthwhile to mention that 15 
(albeit being not a rhodamine derivative) seems perhaps to be a more 
valuable compound over both, 14 and 19, because 15 is much less 
cytotoxic to the non-malignant cells than 14 and 19. Moreover, it shows 
certain selectivity in its effect. 

Fig. 1. Structure of betulin (BN), betulinic acid (BA), platanic acid (PA) and the generalized depiction of a piperazinyl spacered triterpene-rhodamine B conjugate as 
well as of most cytotoxic derivatives EM2 and IQAA. 
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Conclusion 

Pentacyclic triterpene-piperazine-rhodamine B conjugates derived 
from betulin, betulinic acid or glycyrrhetinic acid were synthesized and 
screened for their cytotoxic activity. This study is based on previous 
investigations showing similar compounds holding an ursane or ole
anane backbone of high cytotoxicity thereby acting as mitocans. For 

these new conjugates it was shown, however, that the linking position at 
ring E governs the magnitude of cytotoxicity. As a result, these conju
gates were still highly cytotoxic but significantly less cytotoxic than 
those holding a oleanane skeleton. Staining experiments showed the 
rhodamine B conjugates as necrotic compounds and to act as mitocans. 
The most active compound (8) held an EC50 = 0.04 μM for A2780 
ovarian carcinoma cells. 

Scheme 1. Synthesis of compounds 1–9: a) Ac2O, py, DMAP (cat.), 21 ◦C, 12 h, →1 (75%), →2 (79%), →3 (91%); b) DCM, (COCl)2, DMF (cat.) then piperazine, 
DCM, 21 ◦C, 12 h, →4 (73%), →5 (68%), →6 (67%); c) rhodamine B, DCM, (COCl)2, DMF (cat.), then 4, 5 or 6, DCM, 21 ◦C, 24 h, 4 → 7 (67%), 5 → 8 (70%), 6 → 9 
(64%); the rhodamine B part has been colored in pink. 
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Experimental 

Equipment and general methods are described in the supplementary 
materials file. 

3β-Acetyloxy-lup-20(29)-en-28-oic acid (1) 

Following GPA, from betulinic acid (BA, 5.0 g, 0.011 mol) 1 (4.1 g, 
75%) was obtained as a colorless solid; Rf = 0.71 (toluene/ethyl acetate/ 
n-heptane/formic acid, 80:26:10:5); m.p. 274–277 ◦C (lit.: [39] 
277–278 ◦C); [α]D = +21.5◦ (c = 0.40, CHCl3), lit.: [40] [α]D= + 26.4◦

Scheme 2. Synthesis of conjugates 14 and 19: a) Ac2O, py, DMAP (cat.), 21 ◦C, 12 h, 83%; b) THF, BH3⋅THF, 1 h, 0 ◦C then NaOAc, H2O2, 1 h, 0 ◦C, 67%; c) Jones 
oxidation (CrO3/H2SO4), 0 ◦C, 1 h, 81%; d) (COCl)2, DCM, DMF (cat.), then piperazine, 12 h, 21 ◦C, 91%; e) rhodamine B, (COCl)2, DCM, DMF (cat.), then 13, 24 h, 
21 ◦C, 24%; f) DCM, (COCl)2, DMF (cat.) then Bn-NH2, 12 h, 21 ◦C, 67%; g) THF, BH3⋅THF, 1 h, 0 ◦C then NaOAc, H2O2, 1 h, 0 ◦C, 70%; h) Jones oxidation (CrO3/ 
H2SO4), 0 ◦C, 1 h, 52%; i) (COCl)2, DCM, DMF (cat.); j) piperazine, 12 h, 21 ◦C, 67%; k) DCM, (COCl)2, DMF (cat), then 18, DCM, 21 ◦C, 24 h, 9%. 
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(c = 0.54, CHCl3); MS (ESI): m/z (%) = 497.1 ([M− H]− , 25), 995.3 ([2 
M− H]− , 100). 

3β-Acetyloxy-20-oxo-30-norlupan-28-oic acid (2) 

Following GPA, from platanic acid (PA, 5.0 g, 0.011 mol) 2 (4.3 g, 
79%) was obtained as a colorless solid; Rf = 0.52 (toluene/ethyl acetate/ 

n-heptane/formic acid, 80:26:10:5); m.p. 259–261 ◦C (lit.: [41] 
252–255 ◦C); [α]D = –9.0◦ (c = 0.35, CHCl3), [lit.: [41] [α]D = –9.5◦ (c =
0.80, CHCl3)]; MS (ESI): m/z (%) = 499.0 ([M− H]− , 14), 999.2 ([2 
M− H]− , 100). 

3β-Acetyloxy-11-oxo-olean-12-en-29-oic acid (3) 

Following GPA, from glycyrrhetinic acid (GA, 5.0 g, 0.011 mol) 3 
(5.0 g, 91%) was obtained as a colorless solid; Rf = 0.50 (n-hexane/ethyl 
acetate, 7:3); m.p. 316–318 ◦C (decomp.) (lit.: [42] 310–313 ◦C); [α]D =

+165.7◦ (c = 0.5, CHCl3) [lit.: [42] [α]D = +163.2◦ (c = 1.0, CHCl3)]; 
MS (ESI): m/z (%) = 513.5 ([M + H]+, 100), 535.5 ([M + Na]+, 60), 
567.0 ([M + MeOH + Na]+,69). 

3β-Acetyloxy-28-(1-piperazinyl)-lup-20(29)-en-28-one (4) 

Following GPD, from 1 (2.5 g, 5 mmol) and piperazine (1.6 g, 20.0 
mmol), compound 4 (2.1 g, 73%) was obtained as a colorless solid; Rf =

0.38 (chloroform/methanol, 9:1); m.p. = 166–173 ◦C (lit.: [38] 
162–167 ◦C); [α]D = − 1.4◦ (c = 0.21, MeOH), [lit.: [38] [α]D = − 1.8◦

(c = 0.32, MeOH); MS (ESI): m/z (%) = 567.3 ([M + H]+, 100). 

3β-Acetyloxy-28-(1-piperazinyl)- 30-norlupane ¡20,28- dione (5) 

Following GPD, from 2 (2.5 g, 5.0 mmol) and piperazine (1.6 g, 20.0 
mmol), 5 (1.93 g, 68%) was obtained as a colorless solid; Rf = 0.40 
(chloroform/methanol, 9:1); m.p. = 126–129 ◦C (lit: [38] 115–125 ◦C); 
[α]D = − 20.3◦ (c = 0.13, CHCl3); MS (ESI): m/z (%) = 569.3 ([M + H]+, 
100). 

3β-Acetyloxy-30-(1-piperazinyl)-olean-12-ene-11,30-dione (6) 

Following GPD, from 3 (0.5 g, 1.0 mmol) and piperazine (0.3 g, 4.0 
mmol), 6 (0.4 g, 67%) was obtained as a colorless solid; Rf = 0.30 
(chloroform/methanol, 9:1); m.p. 162–164 ◦C [lit.: [38] 160 ◦C 
(decomp.]; MS (ESI): m/z (%) = 581.4 ([M + H]+, 42). 

9-[2-[[4-(3β-Acetyloxy-28-oxo-lup-20(29)en-28-yl)-1- 
piperazinyl]carbonyl]phenyl]-3,6-bis(diethylamino]- 
xanthylium chloride (7) 

Following GPE, from 4 (360 mg, 0.64 mmol) and rhodamine B, 7 
(440 mg, 67%) was obtained as a dark purple solid; Rf = 0.37 (chloro
form/methanol, 9:1); m.p. 246–251 ◦C (lit.: [38] m.p. 246–250 ◦C); MS 
(ESI, MeOH): m/z (%) = 991.6 ([M− Cl]+, 100). 

Table 1 
SRB assay EC50 values [µM] after 72 h of treatment; averaged from three inde
pendent experiments performed each in triplicate; confidence interval CI = 95%. 
Human cancer cell lines: A375 (melanoma), HT29 (colorectal carcinoma), MCF- 
7 (breast adenocarcinoma), A2780 (ovarian carcinoma), NIH 3T3 (non-malig
nant fibroblasts); cut-off 30 µM, n.d. not determined; n.s. not soluble under the 
conditions of the assay; doxorubicin (DX) has been used as a positive standard.  

Compound A375 HT29 MCF-7 A2780 NIH 3T3 

1 19.2 ±
1.7 

21.3 ±
2.0 

11.0 ±
0.5 

18.3 ± 0.5 >30 

2 >30 >30 >30 >30 >30 
3 >30 >30 >30 >30 >30 
4 1.5 ± 0.3 1.0 ± 0.1 1.4 ± 0.1 1.9 ± 0.1 0.9 ±

0.06 
5 1.9 ± 0.4 3.9 ± 0.2 2.7 ± 0.3 2.6 ± 0.4 1.3 ± 0.1 
6 3.7 ± 0.4 4.5 ± 0.6 8.4 ± 0.8 8.2 ± 0.5 8.7 ± 0.7 
7 0.1 ±

0.04 
0.2 ±
0.04 

0.1 ±
0.05 

0.05 ±
0.002 

0.2 ±
0.05 

8 0.1 ±
0.03 

0.1 ±
0.04 

0.1 ±
0.03 

0.04 ±
0.006 

0.2 ±
0.06 

9 0.1 ±
0.05 

0.1 ±
0.05 

0.1 ±
0.05 

0.1 ± 0.05 0.1 ±
0.03 

10 18.7 ±
0.9 

15.9 ±
1.3 

20.4 ±
2.6 

11.1 ± 1.4 >30 

11 10.0 ±
0.3 

18.2 ±
1.5 

11.5 ±
1.7 

9.9 ± 0.8 15.9 ±
0.8 

12 21.5 ±
1.1 

27.7 ±
0.8 

16.1 ±
1.3 

12.5 ± 1.8 25.3 ±
0.6 

13 n.s. n.s. n.s. n.s. n.s. 
14 0.5 ±

0.05 
0.3 ±
0.04 

0.3 ±
0.05 

0.2 ± 0.06 0.5 ±
0.07 

15 4.1 ± 0.2 >30 26.8 ±
6.8 

6.3 ± 0.8 >30 

16 >30 >30 25.1 ±
5.7 

16.8 ± 2.6 >30 

17 16.2 ±
1.4 

26.1 ±
1.2 

13.6 ±
0.9 

14.1 ± 1.1 21.2 ±
1.5 

18 >30 >30 17.8 ±
3.9 

26.4 ± 2.1 >30 

19 1.3 ± 0.1 0.7 ± 0.1 0.6 ± 0.2 0.5 ± 0.1 1.6 ± 0.1 
DX n.d. 0.9 ±

0.01 
1.1 ± 0.3 0.01 ±

0.006 
0.4 ±
0.07  

Fig. 2. FITC/Annexin V/Propidium iodide assay utilizing compounds 14 and 19 (A375 cells, 24 h, 2 × EC50 concentration).  
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9-[2-[[4-(3β, 20R) 3-Acetyloxy-20,28-dioxo-30-norlupan-28-yl)- 
1-piperazinyl]carbonyl] phenyl]-3,6-bis(diethylamino)- 
xanthylium chloride (8) 

Following GPE from 5 (360 mg, 0.64 mmol) and rhodamine B, 8 
(460 mg, 70%) was obtained as a dark purple solid; Rf = 0.35 (chloro
form/methanol, 9:1); m.p. 246–252 ◦C (lit.: [38] 235–243 ◦C); MS (ESI, 
MeOH): m/z (%) = 993.7 ([M− Cl]+, 100). 

9-[2-[[4-(3β, 20β)-3-Acetyloxy-11,29-dioxo-olean-12-en-29-yl) 
piperazinyl]carbonyl] phenyl]-3,6-bis(diethylamino]- 
xanthylium chloride (9) 

As previously described, 9 (214 mg, 64%) was obtained as a violet 
solid; Rf = 0.32 (chloroform/methanol, 9:1); m.p. 237–240 ◦C (lit.: [38] 
235–238 ◦C); MS (ESI): m/z (%) = 1005.8 ([M− Cl]+, 100). 

3β, 28-Diacetyloxylup-20(29)-ene (10) 

Following GPA, betulin (20.0 g, 39.0 mmol) was acetylated, and 10 
(16.6 g, 83%) was obtained as a colorless, crystalline solid; Rf = 0.66 (n- 
hexane/ethyl acetate, 7:1); m.p. 216–219 ◦C (lit.: [43] 223–224 ◦C); 
[α]D = +21.0◦ (c = 0.20, CHCl3) [lit.: [44] [α]D = +23◦ (c = 0.46, 
CHCl3)]; MS (ESI, MeCN): m/z (%) = 549.7 ([M− Na]+, 34), 1075.7 ([2 
M + Na]+, 100). 

(3β, 20R) 3,28,29-lupanetriol-3,28-diacetate (11) 

Following GPB from 10 (5.7 g, 10.8 mmol) and chromatographic 
purification (silica gel, chloroform/n-hexane/ethyl acetate, 8:7:1) 11 
(2.6 g, 67%) was obtained as white solid; Rf = 0.30 (silica gel, chloro
form/n-hexane/ethyl acetate, 8:7:1); m.p. 231–233 ◦C (lit.: [45,46] 
235–236 ◦C); [α]D = -13.4◦ (c = 0.15, CHCl3) (lit.: [45,46] [α]D = -14.0◦

(c = 0.65, CHCl3)); MS (ESI, MeOH): m/z (%) = 567.6 ([M + Na]+, 85), 
1111.3 ([2 M + Na]+, 100). 

(3β, 20R) 3, 28-Bis(acetyloxy)-lupan-39-oic acid (12) 

Following GPC from 11 (3.5 g, 6.4 mmol) 12 (3.2 g, 81%) was ob
tained as a white solid; Rf = 0.25 (chloroform/n-hexane/ethyl acetate, 
8:7:1); m.p. 231–234 ◦C (lit.: [45,46] 239–241 ◦C; 238–240 ◦C); [α]D =

-43.2◦ (c = 0.2, CHCl3) (lit.: [45,46] [α]D = -44.0◦ (c = 0.68, CHCl3), 
[α]D = -56◦ (c = 1, CHCl3)[29,38]); MS (ESI, MeOH): m/z (%) = 557.4 
([M− H]− , 75), 1115.3 ([2 M− H]− , 100). 

(3β, 20R) 3, 28-Bis(acetyloxy)-(1-piperazinyl)-lupan-29-amide 
(13) 

Following GPD from 12 (1.4 g, 2.5 mmol) and piperazine (0.86 g, 10 
mmol), compound 13 (1.4 g, 91%) was obtained as white solid; Rf =

0.24 (n-heptane/chloroform/isopropanol, 6:2:2); m.p. 125–128 ◦C (lit.: 
[37] m.p. 127–130 ◦C); [α]D = -19.4◦ (c = 0.20, CHCl3) (lit.: [37] [α]D =

-18.3◦ (c = 0.16, CHCl3); MS (ESI, MeOH/DCM (4:1)): m/z (%) = 627.5 
([M− H]+, 100%). 

9-[2-[[4-(3β-Diacetyloxy-(29-piperazinyl)-lupan-30-amid-37- 
oyl)-1-piperazinyl]carbonyl]phenyl]-3,6-bis(diethylamino]- 
xanthylium chloride (14) 

Following GPE from 13 (0.5 g, 0.8 mmol) and rhodamine B (0.5 g, 
1.0 mmol), 14 (0.2 g, 24 %) was obtained as a dark purple solid; Rf =

0.34 (chloroform/methanol, 9:1); IR (ATR): ν = 2970w, 2935w, 2870w, 
1720 m, 1645 m, 1584 s, 1556 m, 1529 m, 1480 m, 1466 m, 1433 m, 
1410 s, 1394 m, 1334 s, 1272 s, 1245 s, 1196 m, 1177 s, 1160 m, 1130 s, 
1072 s, 1006 m, 976 m, 921 m, 868w, 822 m,758 m,709 m, 681 m, 
666w, 619w, 608w, 580w, 547w, 520w, 496w, 486w, 465w, 456w 
cm− 1; UV–Vis (MeOH): λmax (log ε) = 223 (4.6), 257 (4.6), 556 (5.1) nm; 
1H NMR (500 MHz, CDCl3) δ = 8.28 (d, J = 7.8 Hz, 1H, 47-H), 7.83–7.66 
(m, 3H, 46-H + 39-H + 42-H), 7.40–7.29 (m, 2H, 40-H + 41-H), 
7.08–7.04 (m, 1H, 47-H), 6.89–6.86 (m, 1H, 47-H’), 6.81(m, 1H, 49′-H), 
4.46 (m, 1H, 3-H), 4.20 (m, 1H, 28-Ha), 3.76–3.26 (m, 21H, 28-Hb + 35- 
H + 35′-H + 36-H + 36′-H + 51-H + 51′-H + 51′’-H + 51′’’-H), 
2.24–2.17 (m, 1H, 2-Ha), 2.11 (m, 1H, 19-H), 2.05–2.01(m, 6H, 32-H +
34-H), 1.84–1.71 (m, 3H, 20-H + 16-Ha + 21-Ha), 1.67–1.62 (m, 4H, 1- 
Ha + 13-H + 15-Ha + 2-Hb), 1.55–1.40 (m, 5H, 12-Ha + 6-Ha + 12-Hb +

9-H + 11-Hb), 1.37–1.20 (m, 20H, 6-Hb + 7-H + 52-H + 52-H’+52′’-H 
+ 52′’’-H + 11-Hb + 22-Hb + 18-H + 16-Hb + 21-Hb), 1.01 (s, 3H, 26-H), 
0.99–0.92 (m, 2H, 1-Hb + 15-Hb), 0.90–0.77 (m, 15H, 27-H + 25-H +
24-H), 0.77–0.73 (m, 1H, 5-H) ppm; 13C NMR (126 MHz, CDCl3) δ =
175.3 (C-29), 171.7 (C-33), 171.2 (C-31), 167.9 (C-37), 165.6 (C-48), 
159.1 (C-50), 159.1 (C-50′), 157.9 (C-48‘), 155.7 (C-45), 133.8 (C-50‘) 
133.3 (C-46), 133.1 (C-39), 131.4 (C-42), 131.4 (C-47), 130.9 (C-46′), 
130.6 (C-42), 130.4 (C-49), 130.3 (C-41), 129.9 (C-38), 114.3 (C-47′), 
113.7 (C-43), 113.7 (C-45′), 96.6 (C-49‘), 81.1 (C-3), 62.9 (C-28), 55.6 
(C-5), 50.2 (C-18), 48.8 (C-9), 46.9 (C-17), 46.4 (C-35 + C-35′+C-36 +
C-36′), 46.3 (C-51 + C-51′+C-51′’+C-51′’’), 43.9 (C-20), 43.0 (C-14), 
41.0 (C-8), 38.7 (C-1), 37.9 (C-4), 37.2 (C-10), 36.8 (C-13), 34.3 (C-7), 
33.8 (C-22), 29.8 (C-16), 29.8 (C-21), 28.1 (C-23), 27.7 (C-12), 27.0 (C- 
15), 23.8 (C-2), 21.7 (C-19), 21.4 (C-34), 21.1 (C-32), 20.9 (C-11), 18.3 

Fig. 3. FITC/Annexin V/propidium iodide assay utilizing compounds 14 and 19 (A375 cells, 48 h, 2 × EC50 concentration).  
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(C-6), 16.6 (C-24 + C-25 + C-27), 16.2 (C-26), 16.1 (C-30), 12.8 (C-52 +
C-52′+C-52′’+C-52′’’) ppm; MS (ESI, MeOH): m/z (%) = 1051.6 
([M− Cl]+, 100). 

3β-Acetyloxylup-N-benzyl-lup-20(29)-en-28-amide (15) 

Following GPD from 1 (3. g, 6.6 mmol) and benzylamine (1.9 mL, 
17.6 mmol) followed by usual work-up and chromatographic purifica
tion (silica gel, n-hexane/ethyl acetate, 9:1) 15 (2.6 g, 67%) was ob
tained as a white solid; Rf = 0.26 (silica gel, n-hexane/ethyl acetate, 
7:1); m.p. 124–126 ◦C (lit.: [37] 124–127 ◦C); [α]D = +22.3◦ (c = 0.51, 
CHCl3) [lit.: [37] [α]D =+23.2◦ (c = 0.35, CHCl3); MS (ESI, MeOH): m/z 
(%) = 588.4 ([M− H]+, 100). 

(20R) 3β-Acetyloxy-30-hydroxy-N-benzyl-lupan-17-carboxamide 
(16) 

Following GPB, from 15 (7.0 g, 11.9 mmol) and chromatographic 
purification (silica gel, chloroform/n-hexane/ethyl acetate, 8:5:3) 16 
(5.0 g, 70%) was obtained as a white solid; Rf = 0.35 (chloroform/n- 
hexane/ethyl acetate, 8:5:3); m.p. 142–144 ◦C (lit.: [37] m.p. 
143–145 ◦C; [α]D = -0.25◦ (c = 0.11, CHCl3) (lit.: [37] [α]D = -0.2◦ (c =
0.18, CHCl3); MS (ESI, MeOH): m/z (%) = 604.0 ([M− H] − , 100%). 

(20R) 3β-Acetoxy-17-benzyl-carbamoyl-lupan-30-oic acid (17) 

Following GPC from 16 (2.5 g, 4.1 mmol) 17 (1.3 g, 52%) was ob
tained as a white solid; RF = 0.35 (chloroform/n-hexane/ethyl acetate, 
8:7:1); m.p. 163–167 ◦C (lit.: [37] m.p. 162–165 ◦C; [α]D = -26.5◦ (c =
0.15, CHCl3) lit.: [37] [α]D = -27.0◦ (c = 0.12, CHCl3); MS (ESI, MeOH/ 
CHCl3 (4:1)): m/z (%) = 618.1 ([M− H]− , 100%). 

3,6-Bis(diethylamino)-9[2-(1-piperazinyl)carbonyl]-xanthylium 
chloride (18) 

Reaction of rhodamine B (10.0 g, 22.3 mmol) in dry DCM (250 mL) 
with oxalyl chloride (8.84 mL) at 0 ◦C followed by the addition of 
piperazine (10.0 g) as described above gave after 24 h and chromato
graphic purification (silica gel, chloroform/methanol, 9:1) 18 (7.2 g, 
67%) as a dark purple amorphous solid; Rf = 0.12 (chloroform/meth
anol, 8:2); m.p. > 250 ◦C; MS (ESI, MeOH): m/z = 256.2 (26%, [M + H- 
Cl]2+), 511.6 (100%, [M− Cl]+); analysis calcd for C32H39ClN4O2 
(547.14): C 70.25, H 7.18, N 10.24; found: C 69,98, H 7.29, N 9.97. 

9-[2-[[4-(3β-Acetyloxy-17β-benzyl-carbamoyl-lupan-29-amid- 
40-oyl)-piperazinyl]carbonyl]phenyl]-3,6-bis(diethylamino]- 
xanthylium chloride (19) 

Compound 17 (0.4 g, 0.6 mmol) was dissolved in dry DCM (20 mL), 
oxalyl chloride (0.3 mL) and DMF were added at 0 ◦C. After 2 h, the 
volatiles were removed under reduced pressure. The residue was dis
solved in dry DCM (10 mL), and the solution was concentrated again to 
remove excess oxalyl chloride. The acyl chloride of 17 was diluted with 
dry DCM (15 mL) and added dropwise to a solution of 18 in dry DCM 
(20 mL). After completion of the reaction (as indicated by TLC), the 
solvent was removed under diminished pressure, and the residue was 
subjected to column chromatography (silica gel, chloroform/methanol, 
9:1) to yield 19 (51 mg, 9 %) as a dark purple amorphous solid; Rf = 0.30 
(chloroform/methanol, 9:1); 1H NMR (500 MHz, CDCl3): δ = 8.16–8.10 
(m, 1H), 8.09–8.02 (m, 1H), 7.95–7.53 (m, 4H), 7.48–7.14 (m, 8H), 
7.08–6.64 (m, 3H), 4.52–4.43 (m, 1H), 3.96–3.95 (m, 1H), 3.76–3.69 
(m, 5H), 3.69–3.53 (m, 6H), 3.50–3.48 (m, 2H), 3.44–3.42 (m, 1H), 
3.41–3.23 (m, 4H), 3.19–3.08 (m, 1H), 3.04–2.86 (m, 2H), 2.08–2.01 
(m, 6H), 1.99–1.89 (m, 8H), 1.88–1.79 (m, 3H), 1.75–1.57 (m, 6H), 
1.55–1.38 (m, 9H), 1.37–1.30 (m, 9H), 1.28–1.22 (m, 8H), 1.19–1.11 
(m, 3H), 1.10–1.06 (m, 3H), 1.05–0.96 (m, 2H), 0.93–0.79 (m, 12H), 

0.79–0.71 (m, 1H) ppm; 13C NMR (126 MHz, CDCl3): δ = 175.6, 175.3, 
170.1, 168.4, 157.2, 155.8, 155.3, 139.7, 137.2, 136.0, 132.2, 130.6, 
129.4, 129.4, 128.3, 127.6, 114.7, 114.1, 113.4, 113.2, 98.5, 96.5, 80.2, 
55.8, 53.5, 51.3, 50.7, 46.1, 45.7, 45.6, 45.0, 42.6, 42.4, 41.5, 40.0, 
39.6, 38.7, 37.8, 37.0, 33.7, 32.6, 31.5, 29.4, 28.2, 27.4, 25.7, 24.2, 
21.6, 19.0, 17.8, 16.6, 16.2, 15.7, 14.6, 12.4, 12.0 ppm; MS (ESI, 
MeOH): m/z (%) = 1113.9 ([M− Cl]+, 12%) ppm; analysis calcd for 
C71H94N5O6Cl (1148.99): C 74.22, H 8.25, N 6.10; found: C 73.87, H 
8.51, N 5.86. 
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