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Abstract: The use of high-frequency (HF) generators for HF 
surgical treatment of biological tissue has become an 

Generally, HF alternating electric currents between 300 kHz 
and 1 MHz are used to induce hemostasis by heating at the 
cellular level. This effect can be attributed to Joule heating, in 
which a current dissipated conductor converts the electrical 
energy into thermal energy. However, sound evidence on the 
reliability and effectiveness of application-specific HF 
generator modes is not sufficiently available. Usually, the 
evidence takes place empirically by means of preclinical or 
clinical studies. Nevertheless, a corresponding empirical data 
collection is time- and cost-intensive. Therefore, physiological 
and statistical modeling provides the opportunity to relate 
tissue response to the applied electrical energy to obtain a 
prediction of the tissue reaction. 

In this contribution, we establish a monopolar coagulation 
model of an already well-known model approach based on 
Pennes bioheat equation. Additionally, the vaporization of 
tissue water at the water boiling point is considered. 
Furthermore, a variation of temperature-dependent tissue 
parameters was performed to analyze their impact on the 
model output. 

The simulation results demonstrate that the initial 
electrical conductivity has the greatest influence on the 
temperature distribution as well as on the time until the tissue 
temperature reached the boiling point of water. In contrast, the 
tissue water content has the least impact on the model output. 
Depending on the desired coagulation effect, HF power 
control as a function of electrical conductivity or its reciprocal, 
tissue resistance, must be added next in an improved model. 

Keywords: monopolar coagulation, HF modeling, FEM 
simulation, temperature-dependent tissue parameter 

1 Introduction 

High-frequency (HF) surgery is a commonly used surgical 
procedure and can be utilized in many different applications. 
Generally, it is used to achieve hemostasis by means of HF 
electric current. A sufficiently reliable modeling approach for 
HF current-induced heating can predict tissue behavior to 
provide evidence for the functionality of a system device in 
use or can be used for developing purposes, which can save 
time and money for clinical approval. 

Various mathematical approaches have already been 
developed and investigated by many other research groups. 
Mainly, their research aspects were focused on radiofrequency 
ablation (RFA) for tumor treatment [1] or bipolar application 
method vessel sealing [2]. However, these two specific HF 
techniques have limited applicability when modeling a 
standard HF application method, such as monopolar 
coagulation with a ball electrode in the here considered case. 

An often-used model is the bioheat transfer model or the 
so-called Pennes Bioheat equation [3]. Over the last years, 
many researchers investigated Pennes bioheat equation to 
further optimize it [2, 4] and compared it to other mathematical 
approaches [5]. All in all, the bioheat equation has proven to 
be a good approximation for heat distribution in biological 
tissue. Therefore, this model is also used in this contribution 
to analyze temperature distribution in a monopolar coagulation 
process with variations of initial values for electrical and 
thermal conductivity. Additionally, the influence of the initial 
tissue water content was analyzed. 

2 Materials and methods 

A finite element (FE) model was established with a 4 mm ball 
electrode in contact with biological liver tissue. The model 
represents a monopolar coagulation process. The temperature 
distribution in the tissue was simulated. For the simulations of 
the distribution of the applied electrical field as well as the 
resulting heat distribution, we used COMSOL Multiphysics 
6.0 (Burlington, MA). The simulations were performed on a 
workstation with AMD Ryzen 7 3700x 8-Core processor 
(3.59 GHz) and 64 GB RAM. 
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2.1 Mathematical model 

When modeling heat distribution in biological liver tissue 
induced through HF surgical applications, a partial differential 
equation (PDE), the so-called bioheat equation [3] can be used 
to represent the thermally and electrically coupled problem.  
This equation is applied to govern the heat distribution in the 
biological tissue 

  (1)

where  represents the tissue density (1079 kg/m³) [7], 
is the temperature-dependent effective heat capacity 
(J/(kg K)), T is the temperature (°C), t is the time (s),  is 
the temperature-dependent thermal conductivity (W/(m K)), 
and  are the current density (A/m²) and the electrical field 
intensity (V/m) respectively,  is the effective capillary 
blood perfusion parameter (0.0064 1/s) [6],  is the blood heat 
capacity (3617 J/(kg K)) [7],  is the blood density
(1050 kg/m³) [7],  is the capillary blood temperature (37 °C) 
and  is the metabolic heat generation rate (W/m³) of the 
tissue. Since the applied electrical energy and therefore, the 
dissipation due to Joule heating  in this model is 
orders larger than the impact of the metabolic heat generation 
rate,  can be neglected, i.e., . Furthermore, the 
electrical field intensity is defined by  and the current 

. 
The electrical field is determined by a quasi-static 

electrical approach using the Laplace equation to obtain the 
electrical field in the ball electrode and the tissue 

o8 8 8 8 ���8
where  is temperature-dependent electrical conductivity 
(S/m) and  is the voltage (V).  

2.2 Material properties of the model 

Properly defined material properties especially temperature-
sensitive parameters are essential for reliable results of the 
simulation. However, it is not necessary to model all material 
properties, e.g., as a function of the temperature. Therefore, 
the material properties of stainless steel for the electrode tip 
( , , 
and ) and the electrode shaft are 
considered to be constant. Conversely, tissue properties like 
the thermal and electrical conductivity as well as the specific 
heat can have an impact on the simulated results when their 
temperature dependence is not taken into account. In addition, 
the water content in the tissue plays a crucial role in electrical 
conductivity and specific heat. Heating the tissue leads at a 
certain temperature to evaporation of tissue water and, thus, 
desiccation of tissue. This water loss changes the tissue 
properties. Therefore, the approaches from Yang et al. [4] and 
Chen et al. [2] are taken into account.  
Both the thermal and the electrical conductivity were 
considered as function of the temperature. For the thermal 
conductivity, we used , where 
is the thermal conductivity at  and  is the 
coefficient (0.001161 W/(m K °C)) [8] to control the increase 
of  according to the temperature. For the electrical 
conductivity, an increase of 2 %/°C [2] was used for 
temperatures below 100 °C. Accordingly, 

 when T < 100 °C where  is the electrical 
conductivity at . Due to evaporation of tissue 
water, an electrical conductivity of 0.01 S/m, following Chen 
et al. [2], was applied for T  °C. For a smooth transition 
at the boiling point of 100 °C in the function , the 
continuous first derivative was selected as smoothing option 
in COMSOL. To consider the effect of tissue desiccation, the 
amount of tissue water can be described by a logistic function 
in the style of Chen et al. [2]. Therefore, the tissue water 
content is given by 
where  is the water amount at ,  is the 
coefficient (0.35) to control the steepness of water loss,  is 
the boiling temperature threshold (100 °C) and  is the 
assumend remaining water amount (0.001 %) after the 
coagulation process. Due to the dependence of the electical 
conductivity from the tissue water content, we multiplied 
by the relative water amount. 

The effective specific heat of tissue was modeled 
regarding Chen et al. and consists of the specific heat of liver 
tissue (  = 3540 J/(kg ) [7], water ( = 4178 J/(kg ) [7], 
and latent heat (  = 2.26e6 J/kg) through water loss [2]. 
Thereby  and  depend on  and the first derivative of 

, respectively. All properties not mentioned so far and 
used in the model are listed in Table 1. 

Figure 1: 2D axisymmetric schematic of monopolar coagulation 
with 4 mm ball electrode. The tissue was separated into three 
different regions (1, 2, and 3) depending on the distance to the 
touching electrode tip.
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Table 1: List of material properties used in the FE model and 
for the parametric sweeps. 

Parameter Table head 2 Source 

Thermal conductivity [0.42 0.52 0.62] [W/(m K)] [7] 

Electrical conductivity [0.13 0.33 0.55] [S/m] [7] 

Water content [60 70 80] [%]

2.3 FE model and boundary conditions 

The software COMSOL Multiphysics was used to create a 2D 
axisymmetric FE model of a 4 mm ball electrode in contact 
with biological tissue. The insertion depth of the electrode into 
the tissue was 0.2 mm. The electrode was built of three parts, 
the electrode shaft (only for illustrative purposes), the 
electrode tip, and an electrode bar (0.11 cm in diameter and a 
length of 0.2 cm) to connect shaft and tip. The tissue itself was 
modeled with a side length of 2.5 cm. For a better mesh control 
in the tissue region near the contact area to the ball electrode, 
we added two layers on the left and the top side of the tissue. 
The first layer has a thickness of 0.25 cm and the second one 
0.3 cm. Through the added two layers, the tissue has nine 
partitions which were grouped into three different regions 1, 
2, and 3 (see Figure 1). 

The automatic meshing generator of COMSOL 
Multiphysics was used for triangular meshing of the build 
geometries. However, we predefined different mesh sizes for 
the tissue regions 1 to 3. For region 1 being in contact with the 
electrode, a maximum element mesh size of 0.01 mm was 
chosen. The maximum element size of region 2 and 3 was 
defined as 0.02 mm and 0.0345 mm, respectively. 
Furthermore, a fine mesh size was predefined for the electrode 
tip, bar, and shaft. To prevent the model from running into a 
singularity during the calculation, a corner refinement for the 
electrode tip and tissue region 1 with an element size scaling 
factor of 0.1 was used. The model consisted of 17001 elements 
in total. 

This FE model is the basic prerequisite for solving the 
already described thermally (see eq. (1)) and electrically (see 
eq. (2)) coupled problem of HF induced tissue heating. 
Nevertheless, well-set initial conditions and boundary 
conditions are required. For the electrical problem, the ball 
electrode (65 V), as well as the neutral electrode (the bottom 
and right side tissue boundary (0 V)), were defined as a 
Dirichlet boundary condition. The top side of the tissue, which 
is not in contact with the ball electrode, the passage from 
electrode bar to electrode shaft, and the outer boundary of the 
ball electrode, which has no contact with the tissue was 
defined as Neumann boundary conditions, i.e., . 

For the initial condition, we set the electric potential for all 
relevant surfaces to zero.  

For the bioheat transfer, an initial condition of 37 °C was 
set for all tissue regions and the ball electrode. The tissue 
surface on top that has no ball electrode contact and the ball 
electrode surface, which has no contact with the tissue was 
defined to have no heat flux (Neumann boundary condition). 
The other tissue surfaces were defined to stay at a constant 
temperature of 37 °C.  

The linear direct solver PARDISO from COMSOL 
Multiphysics was used to solve our model. As HF application 
time, we assumed 2 seconds with a step size of 0.05 seconds. 
The parametric sweep of ,  and  were performed 
for all possible combinations. The considered values are listed 
in Table 1. The computation time was 1 h 16 min. 

Figure 2: Temperature distribution in biological tissue with three 
different initial electrical  (S/m) and thermal  (W/(m K)) 
conductivity values when either of the limits is reached, (1) tissue 
temperature reached the boiling point of water, or (2) end of 
simulation time reached without reaching the boiling point. Thereby,
the electrical and the thermal conductivity is increasing from left to 
right and from top to bottom, respectively.  was 80 %.

Figure 3: Sensitivity of the maximum output temperature by varying 
, and  when 100 °C is reached. (a) shows the 

comparison of  over  at  after a simulation 
time of 1.75 s. (b) shows the comparison of  over  at 

 after a simulation time of 0.15 s. 
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3 Results and Discussion 

Figure 2 shows the simulated temperature distribution in the 
tissue at different initial values for  and  at  of 
80 %, when either the temperature in the tissue has reached the 
boiling point of water or the maximum simulation time of 2 s 
has been reached. The results revealed that the temperature 
output of the model highly depends on the electrical 
conductivity of the tissue. This is illustrated by the time t 
required to reach the boiling point. The time to reach the 
boiling point is reduced by about 82.5 % when  is initially 
increased from 0.13 S/m to 0.33 S/m and can be further 
reduced by more than half from 0.33 S/m to 0.55 S/m. Another 
indicator of the dependency on  is the propagation depth of 
the temperature, which we defined as the point at which the 
tissue still reaches 60 °C. The propagation depth along the 
symmetry axis is reduced on average by about 45 % from 
0.13 S/m to 0.55 S/m. The faster the boiling point in the tissue 
near the electrode is reached, the least temperature can 
distribute into deeper tissue regions. In real applications, a 
variation of  can occur due to mixed tissue, the transition 
from one tissue to another, or simply due to desiccation of the 
tissue. This can lead to an increase of tissue resistivity. Since 

 can thus change significantly, it is important to control the 
power as a function of the measured tissue resistivity to 
achieve the desired coagulation effect. This also means that the 
required coagulation effect needs to be known. For deep 
coagulation, it is necessary to increase the tissue temperature 
slowly  less power over a longer period (a few seconds). 
Superficial coagulation, on the other hand, requires a faster 
temperature rise  higher power over a short period (a few 
milliseconds). Thus, the electrical conductivity or its 
reciprocal value, the resistivity, has to be included in the 
calculation of the power output of the generator for the desired 
coagulation effect. In modern HF generators, a control loop is 
already integrated, but not in this simulation. To consider this 
in future simulations, we need to improve the model. 

Increasing the initial thermal conductivity leads to a better 
temperature distribution in the tissue and therefore, increases 
the time until the boiling point is reached by about 30 % from 
0.42 W/(m K) to 0.62 W/(m K). However, a temperature 
hotspot near the tissue surface at the edge of the electrode-
tissue junction is noticeable in all combinations.  

Figure 3a demonstrates that an increase in thermal 
conductivity leads to a bigger impact on the maximum output 
temperature than a variation of the initial tissue water content. 
Comparing the impact of electrical and thermal conductivity, 
a change in electrical conductivity has a larger effect on the 
model output (Figure 3b). It also shows that a linear increase 

in  does not result in a linear increase in temperature above 
0.33 S/m. 

Finally, the following additional limitations identified for 
this study included: no tissue compression at the electrode to 
tissue contact area, use of direct electric current instead of 
alternating HF current, no tissue shrinkage due to desiccation, 
no changing contact resistance, and no heat convection to 
ambient air. These limitations need to be further investigated. 

4 Conclusion 

In this contribution, we presented a monopolar coagulation FE 
model with varying temperature-dependent tissue parameters 
solved by the bioheat equation. The influence of the varying 
model parameters on the temperature distribution in the tissue 
was investigated. Thereby, the simulation results revealed that 
the initial tissue water content has the least and the electrical 
conductivity has the biggest impact on the tissue temperature. 
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