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Abstract: Automated surgical tool classification will improve 

the workflow of surgery. Previous research tackled this task 

mainly in cholecystectomy procedures due to availability of a 

relatively large and labelled set (Cholec80 dataset). However, 

the complexity of the procedure type has an impact on the 

robustness of the deep learning approaches. Therefore, the 

classification capability of CNNs on data of more complex 

procedures with many surgical tools was investigated. In this 

work, laparoscopic videos of 14 gynaecological procedures 

were recorded and labelled for surgical tool presence. Then, 

the DenseNet-121 model was trained to identify surgical tools 

according to functionality.  Experimental results imply high 

classification performance for some surgical tools. The mean 

average precision over all the tools was 67%. This study is an 

initial benchmark for detecting surgical tools in realistic 

settings.

Keywords: Convolutional neural network (CNN), surgical 

tool classification, laparoscopic videos, gynaecology.

1 Introduction

Surgical data science (SDS) involves recording, organising 

and analysing data inside the operating theatre to develop 

models that describe the status of the surgery [1]. The main 

motivation of SDS is improving patient safety and outcome

[1]. However, accessing data from medical devices inside the

operating room (OR) remains a challenging task. This 

difficulty has led to a lack of available labelled datasets. In this 

respect, laparoscopic videos represent a rich source of data. 

Therefore, analysing laparoscopic videos is necessary to 

develop context-aware systems (CASs) that are based on 

detecting surgical phases [2] and/or the surgical tools used.

Surgical tool detection in laparoscopic videos has been 

extensively studied during last years. Recently, convolutional 

neural network (CNNs) approaches have become dominant in 

the surgical tool recognition task by providing superior 

performance compared to traditional machine learning 

approaches. However, purely CNN-based approaches have 

shown some limitations. For instance, training CNN models 

with imbalanced data, a ubiquitous characteristic of 

laparoscopic video datasets, will exhibit bias towards precise 

classification of the more frequently observed classes [3]. 

Additionally, smoke, emerged due to electrocauterization

[4,5], and blood can cover some parts of surgical tools. Thus, 

detect surgical tools in such images is challenging for CNN as 

it learns only spatial features without considering temporal 

dependencies along the laparoscopic video [6]. To overcome 

the previous obstacles, several approaches have been 

introduced. Abdulbaki Alshirbaji et al. employed loss-

sensitive learning and resampling techniques to reduce the 

impact of imbalanced distribution of data on training process 

[3]. The temporal information encoded in the laparoscopic 

video was exploited using different modalities such as hidden 

Markov model [7], recurrent neural networks [8,9] and 

transformer module [10].

The Cholec80 dataset is one of only a few labelled 

datasets that are publicly available [7]. Therefore, methods

proposed to date have generally been evaluated using the same 
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dataset for training and testing [11,12]. Additionally, the 

complexity (i.e. number of surgical phases and tools) of the 

procedure type has an impact on the robustness of the deep 

learning approaches. Jalal et al. showed a large drop in 

performance of a CNN-based method, that achieved high 

performance on cholecystectomy data, when evaluated on 

sigmoid resection surgeries [13]. 

Similar to [13], the performance of a CNN base model 

was evaluated on performing surgical tool classification in 

laparoscopic gynaecology procedures. To this end, videos of 

14 gynaecology procedures were recorded and prepared to 

carry out this study. The performance of DenseNet-121 model 

was evaluated on the gynaecological data after modifying the 

model architecture for a tool classification task. 

2 Method 

2.1 Dataset 

Data acquisition framework was implemented to record data 

of laparoscopic procedures in an integrated operating room 

(OR1, KARL STORZ) at the Schwarzwald-Baar clinic in 

Villingen-Schwenningen, Germany [14]. Fourteen 

gynaecological videos were recorded at 25 Hz and a resolution 

of 1920×1080. The procedures had different execution 

lengths, with median duration of 81.5 minutes (min: 23.0, max 

150.9).  

The videos were labelled for surgical tool presence at 1 

Hz. Surgical tools were used in different sequences, and at 

different rates across the recorded procedures. In total, 28 fine 

surgical tool-classes were observed in the videos. Images 

captured when the camera was outside the endoscope were 

replaced by white images for anonymisation. The white 

images were excluded (~5% of data). Additionally, images 

containing surgical tools which were used in a single 

procedure or for a very short period (≤ 3 minutes) were 

excluded (3.7% of data). 

The 28 surgical tools observed were grouped into 9 main 

classes according to functionality. These groups were grasper, 

bipolar, irrigator, scissors, sling, rotary blade, needle, mesh 

and bag. Figure 1 presents the main classes of surgical tools 

and quantity of images in each class.  

2.2 Model architecture 

In this work, the DenseNet-121 model [15] was employed to 

identify surgical tools in gynaecological images. DenseNet-

121 was selected due to the high performance achieved on 

cholecystectomy data for the same task [8]. The model is 

composed of four convolutional blocks. The model exhibits 

dense connections to enhance information flow through the 

layers [15]. The last layer of the model was replaced with 

another fully-connected layer (Fc-tool). Fc-tool has 9 nodes 

compatible with the defined main tool-classes. A drop-out 

layer was added before the Fc-tool layer with a drop rate of 

30%.  

2.3 Training setup  

The training set was composed of the labelled images of 10 

videos. The remaining 4 videos were used to evaluate the 

model performance. The distribution frames containing each 

tool in the training and testing sets, respectively, is presented 

in Figure 1.    

ImageNet pretraining weights were used for model 

initialisation. The activation function for the Fc-tool layer was 

a sigmoid function as the layer performs multi-object binary 

classification. The model was trained with an initial learning 

rate of 2×10-4 and a decay of 27×10-4. Training was conducted 

using a batch size of 40 images and the Adam optimiser. 

Each surgical tool had a different number of images and 

therefore, the distribution of the data was imbalanced. When 

this problem is not addressed, it leads to bias towards majority 

classes. To alleviate this effect, the losses of the surgical tools 

were weighted according to the inverse of the number of 

frames the corresponding tool appears in the training set [3]. 

The binary cross-entropy function was employed to compute 

the losses [8]. 

This work was conducted using the Keras framework and 

a graphics processing unit (GPU) on a PC with Intel Xeon 2.20 

GHz CPU. The GPU was NVIDIA GeForce RTX 2080Ti. The 

Figure 1: Data distribution for main classes of surgical tools. 
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training time was approximately 84 minutes per epoch. The 

inference time for complete testing set took ~30.6 minutes.  

3 Results

The average precision (AP) metric was used to evaluate the 

classification performance of the model. AP represents the 

area under the precision-recall curve. Figure 2 shows AP for 

the defined surgical tool-classes and the mean average 

precision (mAP) for the surgical tools. Figure 3 presents 

receiver operating characteristics (ROC) curves that illustrate 

the performance at different classification thresholds.

To analyse classification results, misclassified instances 

were examined. Figure 4 shows two images from the testing 

set with visualisation of gradient weighted class activation 

(Grad-CAM) [16] and the prediction probability for (a) class 

grasper and (b) class scissors. 

4 Discussion

In this work, we addressed the problem of detecting the 

presence of surgical tools in gynaecological images. Initially, 

laparoscopic videos were recorded and labelled for surgical 

tool presence. The DenseNet-121 model was adapted to 

perform surgical tool classification.

The CNN model achieved moderate classification 

performance for the surgical tools, except for sling with an AP 

of 39% (see Figure 2).  The grasper and bipolar had the highest 

AP of 86% and 91%, respectively. While there were a low 

number of bag samples in the training set (about 1% of training 

data), the model was able to distinguish bag with AP of ~77%. 

Weighting losses of the surgical tools helped to compensate

biasing effect of imbalanced training data. However, 

classification performance for other low-represented tools like 

sling and mesh were less improved. 

The DenseNet-121 model had lower classification 

performance on gynaecological data compared with 

cholecystectomy data. The mAP over the main tool classes is 

67% (see Figure 2), while DenseNet-121 model reached a 

mAP of 92% over seven surgical tools on cholecystectomy 

images from Cholec80 dataset, as reported in [8]. In the 

Cholec80 dataset, the same surgical tools were utilised in all 

procedures. In contrast, various types of surgical tools were 

used in the gynaecological procedure data. For instance, seven 

types of graspers appeared in the recorded videos, and only 

one of them was used in all procedures. Although, the various 

types of graspers shared similar functionality, they did not 
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Figure 2: Average precision of classification results for the 
surgical tools.

Figure 3: ROC curve for the main classes of surgical tools.
Figure 4: Two examples of model misclassification. (a) test image 

containing scissors and activation map with prediction 
probability of grasper class. (b)test image containing grasper 
and activation map with prediction probability of the scissors.
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necessarily have the same shape and visual appearance. 

Considering different makes of a particular surgical tool as a 

single class helps the model to learn general features, but not 

the optimal discriminating features for every tool type. 

 Scissors have more training samples (17% of training 

data) compared to irrigator, rotary blad, needle, mesh and bag. 

However, scissors have a lower classification result than these 

tools. In fact, scissors are used mostly in conjunction with 

grasper. In 54% of the frames that contained scissors in the 

training data, graspers were also present. Thus, the model had 

difficulties to learn accurate classification boundaries between 

those classes. Figure 4 (a) shows an image containing scissors, 

but the model classified it as grasper. The activation maps 

illustrate that the classification decision was based on the 

scissors’ region. On the other hand, the grasper presented in 

Figure 4 (b) was wrongly classified as scissors with a 

probability of 80%. Those examples demonstrate the lower 

sensitivity of the scissors compared to almost all other tools, 

as shown in ROC curve (see Figure 3). 

5 Conclusion 

The complexity of surgical procedures affects CNN model 

training and classification performance. This study 

demonstrates classification capability of DenseNet-121 model 

on gynaecology data. The presence of various makes of some 

tools affected the model performance. Thus, more 

investigations are required to improve classification 

robustness for tools that have various types. Moreover, in 

future work, temporal information could be modelled and 

combined with spatial features.   
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