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Abstract: Convolutional neural networks (CNNs) have 

proved to be successful in many applications such as image 

processing. However, even imperceptible perturbations 

applied to the images can make the neural network 

performance unreliable. To guarantee an accurate performance 

in safety critical fields, it is necessary to assess the robustness 

of CNN solutions before launching. Adversarial attack is a 

machine learning approach to generate perturbations on real 

samples to detect the vulnerability of CNN. In this paper, we 

will use an adversarial attack technique to evaluate a CNN at 

different training states. The model was trained to perform 

surgical tool classification task, which was applied to 

recognize surgical tool in Cholecystectomy to further analyze 

surgical process. The experiments demonstrate the relation 

between training states and robustness, i.e. the robustness 

improved at higher training states, especially for some 

particular classes. In future work, additional training with 

generated adversarial images may improve the robustness of 

the model.
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1 Introduction

In recent years, deep neural networks have become 

increasingly popular. They have broadly been applied to many 

different tasks and their efficiency has been proved. 

Nevertheless, deep neural networks have been shown to be 

vulnerable to adversarial attacks, although, the superimposed 

perturbations are invisible to human vision. This safety threat 

turns to be crucial when CNN applications are deployed for 

highly regulated areas such as medicine or automotive 

products[1,2]. Consequently, before launching a neural 

network application, the robustness evaluation is essential for 

the safety requirement. Adversarial attack is a machine 

learning approach and is effective to identify the vulnerability 

of a deep neural network model by attempting to fool the 

model to wrong classification. There are many approaches to 

generate adversarial examples, such as the fast gradient sign 

method (FGSM) [3], the iterative fast gradient sign method (I-

FGSM) [4], the momentum iterative fast gradient sign method 

(MI-FGSM) [5], the saliency map approach [6], Deepfool [7], 

and generative adversarial networks (GANs) [8]. In our 

experiments, we focus on the approaches can be applied to 

generate target-class adversarial samples. Not only to evaluate 

the robustness, but also to monitor the classification 

distribution in the input space of the model at different training 

states.

One of the medical application areas of convolutional 

neural networks (CNN) is surgical tool recognition, aiming to 

classify visual features automatically and provide support to

develop a context aware system in modern operating rooms 

[9]. In this paper, we use an adversarial attack technique on a 

CNN model trained to perform surgical tool classification. 

During the training process, the model learned to identify the 

tool object with corresponding class, however, the robustness 

or resistance ability to input perturbations cannot be witnessed 

in the training. In order to measure the robustness of the model 

at different training states, we use an adversarial attack 

technique and quantify the minimal perturbations of the input 

image required to change the classification result. For 

instance, instead of assigning a limitation on perturbations, 

such as a given radius ε in the vicinity of an input x [10], we 

use the same technique to explore the smallest perturbation 

that could change a given legitimate sample to an adversarial 

sample with a specific target class. These perturbations 

indicate the required effort to modify an image from the 

original class to a target class, and will be utilized as an index 

of safeness around this particular sample. When gathering 

enough samples from the same class, the average modification 

can represent the robustness of the neural network classifier 

for this particular class. To demonstrate its utility, we will 

compare these minimum perturbations at different training 

states. To achieve this goal, instead of using the sign of 
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gradient for a one-step fast calculation approach [3], the 

gradients were directly applied for generating adversarial 

samples with a specific target class.

2 Method

2.1 Material

In this study the convolutional neural network model AlexNet 

[11] is fine-tuned and trained for surgical tool classification 

with a dataset of laparoscopic video images. The Cholec80 

dataset is a large dataset containing 80 cholecystectomy 

videos, including 7 different tools i.e. 7 different classes shall 

be distinguished [12]. From the dataset we extracted 80,190 

images with at most one tool present (1-class images). From 

this derived dataset, 25,000 images were used to train the 

model [13]. The training state of the CNN model was defined 

by training accuracy, the training progress was stopped and the 

model state saved, when the training accuracy reached 75%, 

85%, 95%, and 99%. Those snapshots of the model were 

named as model 75, model 85, model 95, model 99. In our 

experiments, 3 correctly classified images of each class were 

selected to generate the adversarial samples (table 1). That is 

because of low accuracy of model 75 to classify class 5 and 7.

Table 1: The classes and number of images selected for the 
corresponding class.

Class Tool Number

1 Grasper 3

2 Bipolar 3

3 Hook 3

4 Scissors 3

5 Clipper 3

6 Irrigator 3

7 Specimen Bag 3

2.2 Gradient Method

An image x, which is correctly classified, let’s say as class A, 

is selected. A gradient based search in the input space was 

implemented minimizing the cross entropy loss between the 

input (belonging to class A) and an incorrect class (e.g. class 

B) by iteratively subtracting the gradients of loss from the 

input. These iterations are performed till the CNN changes to 

the (incorrect) target class (class B) on presentation of the 

generated image (exp: figure 1).�«Q � �;� Q � � �$Q ) ' �� ��� �$Q o �z| !¢z"3888888888888���

Where � Q   is the generated adversarial image, � �$Q is the 
generated adversarial image from the last iteration. �z| !¢z is 
the target class (e.g. class B). α is set to 10,000.

2.3 Evaluation Metric

First, we select the correctly classified images and apply a 

gradient method to generate adversarial images. Due to the low 

accuracy of model 75 to classify class 5 and class 7 tools, we 

select just 3 correctly classified images for each class for 

further evaluation. There were 21 images in total. These 

images are modified such that they are classified by the CNN 

model to any of the other 6 (incorrect) tools.

� The iterations of the gradient descent in the input space 

stop as soon as the generated image is classified as the 

target class. Maximum iterations in this experiment were 

100. If the image cannot be modified to the target 

adversarial class within 100 iterations as the trial was 

considered a failed case.

� The difference between the original image and the 

generated adversarial image was summed as pixel-wise 

L1-norm distance:

¸��o �Q� � $  }�Q ) �}$ � $  �*�Q ) �*88888888888888���
µ is the number of pixels. � is the original image and �Qis 

the generated adversarial image.

3 Result

In the gradient method, we add perturbations to the correctly 

classified image to modify it from one class to a target 

Figure 1: The original image x, the perturbation subtracted from x 
using the gradient method and the generated adversarial 
image x*.
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adversarial class. These perturbations are calculated using the 

gradient of loss iteratively. The iterations were stopped as soon 

as the classification of the CNN changes to the target class. 

The iterations and pixel-wise distance required on average for 

every model was depicted in figure 2. All four models could 

successfully generate adversarial samples. Figure 2 (left) 

shows, that the number of iterations required to generate an 

adversarial image is decreasing if the training state improved. 

As expected, on the contrary, the pixel-wise distance increased 

with training quality. Therefore, after each iteration, the model 

99 could generate larger gradients to apply on the image. This 

observation indicates, that the well trained model has stronger 

features developed to solve the classification task. It has 

expressed better abilities to distinguish between different 

classes. 

Further insight can be gained by analysing the results achieved 

for the different classes. Figure 3 displays the mean pixel-wise 

modifications on the image of Model 75. The distances of class  

1,2,3 are higher than other classes. The distance is an index to 

estimate the ability to distinguish between different classes, 

i.e. for the other classes (4-7) the training did not yet achieve 

a comparable level of robustness. In figure 4 the same data is 

presented for Model 99. The distances for Model 99 range 

from 1 to 2.2, much higher than the range in Model 75. In 

addition the distance of class 4, 5, 6, 7 also increased during 

training to Model 99 from Model 75. It is inferred from these 

results that  Model 99 has better learned the embedded feature 

space than Model 75. 

4 Discussion 

With a gradient based search in the input space adversarial 

samples can be generated with a wanted incorrect target class. 

However, the result highly relies on some parameters. We 

modified the parameter α and evaluated the influence on the 

outcomes. Figure 5 shows the pixel-wise distances obtained 

with different values of α. All three figures show a similar 

ascending trend when the training state improves. However, 

when the α is set to be 1000, Model 75 could not generate 

adversarial samples for some original images within 100 

iterations. But the success rate increased from Model 75 to 

Model 99. When the α set to be 10,000 or more, all the models 

could successfully generate adversarial samples for the given 

target class. Compared to the experiment with α = 10,000, 

when α is set to 100,000, the pixel-wise distance is 

Figure 2: The average number of iterations needed to generate 
the adversarial images (left) depending on the model state. 
The pixel-wise distance between the adversarial image and 
the original image is depicted on the right. 

Figure 4: The mean pixel-distance to generate an adversarial 
image of Model 75. 

Figure 3: The mean pixel-distance to generate an adversarial 
image of Model 99. 
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approximately 10 times larger. To make sure the perturbations 

are as small as possible, the α = 10,000 was found to be a 

reasonable choice in our implementation. 

To monitor the training states, we use the ‘Pixel-wise 

distance’ to evaluate classification performance on tested 

image samples. However, these samples selected are quite 

small, having potential to lead to the contingency on statistics 

of specific samples. To further generalize the result using 

gradient method, we need to consider including the wrongly 

classified images as the evaluation objects. 

5 Conclusion 

In this research, we generate adversarial samples by using a 

gradient descent method. We generate some borderline 

samples right alongside the original class and target class. The 

pixel-wise distances is an indicator for the safeness interval 

around the original samples against noise influence on 

classification. Assuming that the hardness of adversarial 

image generation is linked to the robustness of the model’s 

classification performance, these results provide some hint 

about better understanding of CNN classification distribution 

on a given input space, and how this distribution is changing 

with training progress.  

       In future work, we will use other adversarial attack 

approaches to evaluate the CNN model to compare its 

robustness or its resistance to different generated input 

perturbations, especially to develop a less complex 

computational method to investigate the training state of a 

CNN. In addition, these generated adversarial images with 

invisible perturbations might be helpful to add further training 

samples to enhance the robustness of the model, another 

question that needs further evaluation. 
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Figure 5: The parameter α influence the pixel-wise distance. 
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