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Abstract: Deep learning approaches have been explored for surgical tool classification in laparoscopic
videos. Convolutional neural networks (CNN) are prominent among the proposed approaches.
However, concerns about the robustness and generalisability of CNN approaches have been raised.
This paper evaluates CNN generalisability across different procedures and in data from different
surgical settings. Moreover, generalisation performance to new types of procedures is assessed and
insights are provided into the effect of increasing the size and representativeness of training data on
the generalisation capabilities of CNN. Five experiments were conducted using three datasets. The
DenseNet-121 model showed high generalisation capability within the dataset, with a mean average
precision of 93%. However, the model performance diminished on data from different surgical
sites and across procedure types (27% and 38%, respectively). The generalisation performance
of the CNN model was improved by increasing the quantity of training videos on data of the
same procedure type (the best improvement was 27%). These results highlight the importance of
evaluating the performance of CNN models on data from unseen sources in order to determine
their real classification capabilities. While the analysed CNN model yielded reasonably robust
performance on data from different subjects, it showed a moderate reduction in performance for
different surgical settings.

Keywords: surgical tool classification; generalisability; convolutional neural network; laparoscopic video

1. Introduction

Computer-assisted interventions (CAIs) have been improved by ongoing technological
developments to meet the demands of advancing surgical modalities. Thus, the opera-
tive environment amid progressing advancements has become complicated. Therefore,
processing and integrating data flows from diverse technologies is necessary to enrich
surgical practice rather than expose human operators to overly complex information
streams [1–4]. In turn, this may improve the workflow in the operating room (OR) by
supporting the surgeon in making decisions, anticipating possible complications, and
enhancing cooperation between multidisciplinary OR teams [1,5,6]. Furthermore, surgical
workflow recognition can benefit OR resource management optimisation [2,6,7], automatic
report generation [1,8,9], surgeon training [6], and operative skill assessment [1,6,10].

Accurate surgical tool detection is a key factor in recognising surgical activities and
conceptualizing surgical workflow [6,11]. Research has been conducted to identify surgical
tools using different techniques and methodologies. In early approaches, tool use signals
were acquired using radio-frequency identification (RFID) systems [12]. This technique
requires installation of specific sensors and instruments that may cause interference in
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the intervention workflow. Thus, image-based laparoscopic video signal approaches have
been investigated as modern alternatives. Visual features in different colour spaces can
be employed to separate tool pixels and identify tool types [13,14]. Other studies have
used features of ORB (Oriented FAST and Rotated BRIEF), SIFT (Scale Invariant Feature
Transform), and SURF (Speeded Up Robust Features) to classify surgical tools [15,16].

The expansion of deep learning approaches in object classification tasks has directed
medical researchers to the exploration of convolutional neural networks (CNNs). However,
the paucity of labelled datasets has hindered wider exploration of the potential of CNNs for
analysing laparoscopic images. The Cholec80 dataset, made available to researchers in 2017,
contains labelled laparoscopic videos of 80 surgeries [17]. The first utilisation of Cholec80
was carried out by training a CNN model, EndoNet, to learn visual features for recognising
surgical tools and phases [17]. Subsequent studies alleviated the imbalanced dataset
problem by applying loss weights and resampling strategies [18–20]. In addition to spatial
information captured by the CNN, other studies have leveraged temporal dependencies
along the video sequence using long short-term memory (LSTM) [20–22], convolutional
LSTM [23], gated recurrent unit (GRU) [24], or graph convolutional networks (GCNs) [25].
The proposed methods in the previous studies show good performance for detecting
and classifying surgical tools. However, evaluation is generally carried out using images
belonging to a single dataset, in particular, datasets recorded at one hospital and which
contain only one type of procedure. Thus, robustness in terms of the ability to identify tools
in different datasets has not been investigated yet.

Development of CAIs requires labelled laparoscopic videos. However, such labelled
videos are time-intensive to acquire. Furthermore, validating methodologies requires data
from multiple sites, further exacerbating the cost of data. Therefore, medical datasets are
relatively small and of ambiguous value with respect to different procedures, surgeons, or
hospitals. Transfer learning has been proposed as a solution to remedy the small data size
issue by leveraging learned knowledge of object detection tasks using the large-scale dataset
ImageNet [26] in the medical domain [17]. Nevertheless, there is a need to determine the
generalisability of CNN models despite the low diversity of datasets.

The generalisation capability of deep learning models has been addressed in studies
performed on laparoscopic videos. Ross reported a decrease in the performance of tool
segmentation by more than 50% when the testing images were obtained from a different
hospital than the training images [27]. In the 2019 Robust Medical Instrument Segmentation
(ROBUST-MIS) challenge, the segmentation performance of proposed approaches dropped
when they were evaluated with images of different procedure types [28]. Bar et al. studied
the generalisation of a deep model consisting of CNN-LSTM for surgical phase recognition.
A reduction of about 10% in accuracy was reported on videos from an unseen hospital [29].
In prior preliminary studies, the generalisation performance of deep learning approaches
was evaluated across different datasets for classifying surgical tools [30,31].

In this work, we evaluated the generalisation capability of a CNN model to (1) new
subjects, (2) different OR locations, and (3) different procedure types. Moreover, we studied
model generalisation with respect to the size and variability of training data. State-of-the-
art CNN models (mainly DenseNet-121) and laparoscopic images from cholecystectomy
and gynaecology surgeries were used to carry out the study. Laparoscopic videos of
gynaecological procedures were recorded and labelled for surgical tool presence. The
cholecystectomy data was obtained from two publicly available datasets.

The novel contributions of this paper are: (1) Evaluation of CNN generalisation for
surgical tool classification in data of new subjects; (2) Robustness assessment of CNN
for surgical tool classification in multiple source data and multiple types of laparoscopic
procedures; (3) Determination of the generalisation capability of CNNs with respect to
the size of training data; (4) Evaluation of the effect of CNN training with multi-site
data on model generalisability; and (5) Systematic evaluation across three datasets of
cholecystectomy and gynaecology laparoscopic videos.
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2. Materials and Methods
2.1. Dataset Description

Three datasets were used to conduct this study: Cholec80 [17], EndovisChole [32],
and Gyna08. Cholec80 and EndovisChole are publicly available datasets containing laparo-
scopic videos of cholecystectomy procedures. The Gyna08 dataset contains laparoscopic
videos of genecology procedures, and was recorded and labelled specifically for this study.

These datasets contained several surgical tools used to conduct laparoscopic proce-
dures. A few of the surgical tools had different shapes in the different surgical centres,
while others had multiple distinct subtypes to execute different surgical actions during
the procedure. While the various surgical tool subtypes can be visually distinguished,
they typically share similar forms. However, certain surgical tools differed significantly
in appearance across the available datasets. Therefore, those surgical tools that did not
have a similar shape across the datasets were not considered in the study of generalisability
across OR settings. By visually inspecting the tools in the three datasets, five tool classes
(grasper, hook, scissors, irrigator, and bag) were identified to be the similar tools across
the datasets. It is worth noting that each of these tool classes in each dataset can have
different subtypes of tools which have similar functionality and different shapes, e.g., the
grasper class in Gyna08 (Figure 1). All the surgical tools in the Cholec80 dataset were
considered to study generalisation to new subjects within the dataset. Figure 2 shows the
occurrences of surgical tools considered in this work in all three datasets. The percentage
of tool occurrence was calculated for every procedure by dividing the number of images of
each tool over the total number of images in the procedure. Then, the mean and standard
deviation of the calculated occurrence percentages were computed over all procedures in
each dataset (see Table 1).

2.1.1. Cholec80 Dataset

This dataset was made publicly available in 2017. It consists of 80 videos of chole-
cystectomy procedures performed by thirteen surgeons. The data were collected at the
University Hospital of Strasburg, France with an acquisition rate of 25 Hz. Three videos
have a resolution of 1920 × 1080, while the resolution for the other videos is 854 × 480.
The median duration of the videos is 34.9 min (min: 12.3, max: 99.9). The dataset was
manually labelled for surgical tools at 1 Hz and surgical phases at 25 Hz. The labels for
surgical tools were binary, based on whether at least half of the tool tip appeared in the
scene. Seven surgical tools were used to perform Cholec80 procedures, namely, grasper,
hook, scissors, irrigator, specimen bag, bipolar, and clipper. The number of images and the
frequency of their use in the procedures for every surgical tool are shown in Figure 2 and
Table 1, respectively.

Table 1. Mean and standard deviation of the percentage of tool usage in procedures in the Cholec80,
EndovisChole, and Gyna08 datasets.

Cholec80 EndovisChole Gyna08

Grasper 56.58 ± 16.18% 61.48 ± 14.4% 27.72 ± 13.12%
Hook 55.17 ± 10.87% 44.85 ± 17.55% 0.51 ± 1.45%

Scissors 1.88 ± 1.18% 2.76 ± 3.35% 12.71 ± 7.7%
Irrigator 5.07 ± 5.47% 6.20 ± 6.84% 12.93 ± 13.73%

Bag 6.59 ± 3.01% 10.29 ± 6.33% 0.52 ± 1.43%
Bipolar 4.96 ± 4.43% - -
Clipper 3.44 ± 1.74% - -
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Figure 2. Distribution of surgical tools in Cholec80, EndovisChole, and Gyna08 datasets.

2.1.2. EndovisChole Dataset

This dataset was introduced in the sub-challenge “Surgical Workflow and Skill Anal-
ysis” within the Endoscopic Vision (EndoVis) challenge 2019. The dataset consists of
33 videos of cholecystectomy procedures collected at three hospitals in Germany. The organ-
ising team of the challenge split the data into training and testing sets. The training data in-
clude 24 videos of cholecystectomy procedures, which were released in 2021. Twelve videos
in the training set were recorded at Heidelberg University Hospital (Heidelberg, Germany)
and twelve were obtained from Salem Hospital (Heidelberg, Germany). The resolution and
recording rate for the training videos in the Endovis challenge 2019 are presented in Table 2.
The testing set of the Endovis challenge 2019 consists nine videos recorded at Heidelberg
University Hospital (three videos), Salem Hospital (three videos), and GRN-hospital Sin-
sheim, Sinsheim, Germany (three videos). To the best of our knowledge, the testing set
has not been released, and thus only the training data, termed the EndovisChole dataset,
were used in our study. The median length of procedures in the EndovisChole dataset is
32.9 min (min: 21.2, max: 85.1).
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Table 2. Resolution and recording rate for the released training set of Endovis challenge 2019.

Hospital Number of Videos Resolution Recording Rate

Heidelberg
University Hospital 12 960 × 540 25 Hz

Salem Hospital
3 720 × 576 25 Hz
2 1920 × 1080 25 Hz
7 1920 × 1080 50 Hz

Labels for surgical tools, actions, and phases are provided for every frame. There
were 21 surgical tools used in the EndovisChole procedures. The labels for these tools
are included in the dataset, and the frames of each video are continuously labelled with
the tool classes. If a tool shaft appears in a frame and is not manually determinable by
searching preceding frames, the label “undefined instrument shaft” is assigned for that
tool. However, if the tool tip can be recognised from the preceding frames, a tool presence
label is assigned to that frame. The tools are grouped into seven categories based on tool
function; for example, the grasper category has twelve subtypes of grasping tools. The tool
category is provided for every frame.

In this study, frames at 1 Hz were used. Only tools that had similar appearance to
corresponding tools in the Cholec80 and Gyna08 datasets were included. Thus, the curved
atraumatic grasper, toothed grasper, fenestrated toothed grasper, atraumatic grasper, atrau-
matic grasper short, and flat grasper were all used under the grasper class. Additionally,
the electric hook, scissors, irrigator, and specimen bag were considered when conducting
the experiments in this work.

2.1.3. Gyna08 Dataset

Eight gynaecological procedures were recorded at Schwarzwald-Baar Clinic in Villingen-
Schwenningen, Germany. The study received ethical approval from the ethics commission
of Furtwangen University (application Nr. 19-0306LEKHFU) and consent forms were
obtained from all subjects by the anaesthesiologist. A data acquisition framework [33] was
implemented in an integrated operating theatre (OR1, KARL STORZ) to record laparo-
scopic procedure data. Laparoscopic videos were recorded at 25 Hz with a resolution of
1920 × 1080. The procedures commenced after inserting the laparoscopic camera inside
the patient’s body and lasted until the camera was removed from the body. However, the
surgical team may have taken the laparoscopic camera out during the procedure to clean
its lenses. To ensure anonymisation, all frames which were captured when the camera was
not in the trocar were replaced with white images. The median duration of the procedures
was 81.5 min (min: 23.0, max: 150.9).

The gynaecological videos were labelled for surgical tool presence at 1 Hz. Tool
labelling was performed by three engineers. The tools were labelled as present in the image
if any part of the tool tip appeared in the scene. However, if the tool tip was not in the
scene or was covered by an anatomical structure, the tool was labelled as not present in the
image. However, certain surgical tools, such as the irrigator, did not have a characteristic
tip, in which case the shaft was sufficient to identify the tool type. Such surgical tools were
labelled based on the presence of the shaft.

In total, 26 surgical tools were present in the videos. However, these tools can be
grouped into main classes with respect to functionality. For instance, several types of
tools were used to perform grasping, for such diverse purposes as grasping tissues or
holding a surgical needle. Figure 1 shows six types of graspers used in the procedures in
the Gyna08 dataset. However, only three of those types, which are shown in Figure 1 in the
blue dashed box, were similar to the graspers used in the other datasets, and thus formed
the grasper class.
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2.2. Experiments

Five experiments were carried out to study the generalisation capability of the DenseNet-
121 model [34]. The generalisation performance of the model was evaluated in the
first three experiments. The last two experiments were conducted to explore factors that
may improve model generalisation. A summary description of the conducted experiments
can be found in Table 3 and Figure 3. Table 3 shows the data used for training and testing
the CNN models, the model names, and the number of surgical tools considered.

Table 3. Summary of the conducted experiments.

Experiment Training Set Testing Set Tool No. Model Name

1

40 videos of Cholec80 dataset 40 videos of Cholec80 dataset 7 CNN-40S

~92,512 ± 4480 images from
all Cholec80 videos

Remaining images (~91,986 ± 4480)
in Cholec80 dataset 7 CNN-80S

2
40 videos of Cholec80 dataset

EndovisChole dataset
5 CNN-40-Target

3 Gyna08 dataset

4 In range between 1 to
70 videos of Cholec80 dataset EndovisChole and Gyna08 datasets 5 -

5
Multi-site training EndovisChole videos Cholec80 dataset 5 MST-CNN

Single-site training 25 videos of Cholec80 EndovisChole dataset 5 SST-CNN
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2.2.1. Experiment 1

Model generalisation across subjects was studied. This is a typical training/testing
CNN validation approach. Initially, forty videos of Cholec80 dataset formed the training
set, while the remaining videos were used for testing model performance. This model
was named CNN-40S. Secondly, a CNN model (CNN-80S) was trained on data from all
videos of the Cholec80 dataset. CNN-80S was trained on images randomly selected across
the Cholec80 dataset without consideration for isolating certain patients. Five-fold cross-
validation was performed for both the CNN-80S and CNN-40S models. To ensure a fair
comparison, an equal number of images (~92,512 ± 4480 images) was used for training
CNN-40S and CNN-80S in each fold. Thus, both models were trained on the same size
and type of data obtained from the same surgical location for classifying the seven surgical
tools of Cholec80 dataset. However, CNN-40S was limited to validation in patients not
seen prior, and CNN-80S had no such limitation.
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2.2.2. Experiment 2

CNN generalisation to new surgical sites was evaluated. A CNN model (CNN-
40-Target) was trained on forty videos of Cholec80 dataset to classify tools as grasper,
hook, scissors, irrigator, and bag. Then, the performance of the model was evaluated on
the EndovisChole dataset containing cholecystectomy images recorded at other surgical
locations. To ensure the reliability of the results, five-fold cross-validation was conducted
by randomly selecting 40 videos from the Cholec80 dataset for training.

2.2.3. Experiment 3

In this experiment, CNN generalisation to different types of procedures was evaluated.
The model CNN-40-Target trained on cholecystectomy images from Cholec80 dataset was
tested on images of gynaecological procedures. Similar to experiment 2, only the grasper,
hook, scissors, irrigator, and bag tools were considered.

2.2.4. Experiment 4

Experiment 4 investigated the influence of the amount of training data on model
generalisability. Several training runs were conducted on the DenseNet-121 model using
the Cholec80 dataset with varying amounts of training data. Training data ranged from
1 to 70 videos. However, the classification performance was evaluated on three fixed sets
of data to ensure a fair comparison. The testing sets were the last ten videos from the
Cholec80, EndovisChole, and Gyna08 datasets. Thus, only the surgical tools appearing in
all these sets were considered.

2.2.5. Experiment 5

This experiment compared the generalisation performance of a CNN model that was
trained with data from multiple sites (MST-CNN) to a CNN model that was trained with
data from a single site (SST-CNN). The EndovisChole dataset (~55 k images) was used
for MST-CNN model training; 25 videos from the Cholec80 dataset (~55 k images) were
used to train the SST-CNN model. Thus, both models had the same data size and type
of procedure (cholecystectomy) for training. The generalisation capability of the trained
models was then evaluated using cross-dataset validation. In addition to the DenseNet-121
model, Experiment 5 used EfficientNet-B0 [35], ResNet-50 [36], and VGG-16 [37] for broad
indication of the validity of results.

2.3. CNN Model

An ablation study was conducted on several state-of-the-art CNN models for classi-
fying surgical tools in laparoscopic images. The CNN models were VGG-16, ResNet-50,
EfficientNet-B0, and DenseNet-121. The models had different architectures with varied
depths and different numbers of convolutional layers. To determine the best candidate
architecture for further analysis, a preliminary analysis was undertaken. Each model was
trained on forty videos from the Cholec80 dataset and evaluated on the remaining videos.
The models were trained for ten epochs using the training setup defined in Section 2.4.
The best tool classification performance was achieved by the ResNet-50 and DenseNet-121
models, with a mean average precision of ~92%. VGG-16 and Efficient-B0 showed slightly
inferior performance of 89% and 90%, respectively. Hence, the DenseNet-121 model was
used to perform experiments 1 to 5, whereas the other three architectures were only used
in Experiment 5.

The DenseNet-121 model is composed of four convolutional blocks, called dense
blocks, with a global average pooling layer and a fully-connected layer on top. Every layer
in a dense block is connected to all succeeding layers of the block. These dense connections
enhance data transfer within the block and enable features of previous layers to be fused,
improving utilisation of information learned at different layers [34]. The dense blocks are
connected through convolutional and pooling layers.
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2.4. Training Setup

The CNN model initialised with ImageNet weights [26] was employed. The last fully-
connected layer in the model was replaced with another layer suitable for surgical tool classifica-
tion. The new fully-connected layer was randomly initialised and had a number of classification
nodes equal to the number of tool classes. Therefore, the number of nodes was set to seven in
experiment 1 and to five in the other experiments. The sigmoid activation function was
used in the classification layer, as the task is a multi-label binary classification one.

The loss was computed using the binary cross-entropy function (see Equation (1)).
The loss of each surgical tool was weighted according to the number of tool images in the
training data. This training approach was employed to reduce the influence of imbalanced
distribution of the training data (see Figure 2 and Table 1) [19].

T =
−1
B ∑B

n=1[kn log(σ(δn)) + (1 − kn) log(1 − σ(δn))] (1)

where T is the computed loss for a particular tool, B is the batch size, σ is the sigmoid
function, kn is the binary label, and δn is the prediction confidence. Model training was
conducted using the Adam optimiser [38] with an initial learning rate of 10−4. The clas-
sification layer had a higher learning rate of 2 × 10−3. The images of the training set
were shuffled every epoch. The experiments were conducted using the Keras framework.
An NVIDIA GeForce RTX 2080Ti graphics processing unit (GPU) was used.

2.5. Model Evaluation

Average precision (AP) was used to evaluate the classification performance of the
CNN models. AP refers to the area under the precision–recall curve. Moreover, Gradient-
weighted Class Activation Mapping (Grad-CAM) [39] was employed to depict the image
areas relevant to model prediction. This method was based on backpropagating gradient
information of a particular class into the final convolutional layer in the model. The
visualisations of localisation maps help to understand the models’ focus and explain their
prediction decisions.

3. Results

Generalisation performance of the DenseNet-121 model to new subjects within the
same dataset (Experiment 1) is shown in Figure 4. This figure presents a comparison
between the tool classification performance of CNN-80S and CNN-40S within (at novel
frames) and across subjects, respectively. Figure 4 shows the mean and standard deviation
of five-fold cross-validation using CNN-80S and CNN-40S. The results show a drop in
model performance across subjects. Figure 5 presents class-discriminative activation maps
generated by the CNN-80S and CNN-40S models for an image from the testing set. In this
example, CNN-80S was superior to CNN-40S in identifying graspers despite the partial
appearance of the tool. Figure 6 shows another example in which the CNN-80S did not
focus on the right region (the tool region), as shown by the activation maps.

The results of model generalisation to new surgical sites and types of procedures
(Experiments 2 and 3) are presented in Figure 7. The results include model performance on
unseen cholecystectomy data from the same surgical site (green bars), from other surgical
sites (blue bars), and on gynaecological data (red bars). The model exhibits a reasonable
generalisation ability to EndovisChole data, except perhaps for scissors. However, poor
generalisation performance to gynaecological data (Gyna08 dataset) was observed. In
fact, the surgical tools in the Cholec80 and Gyna08 dataset had distinct appearances, and
thus recognition was inhibited. Figure 8 shows one of the trocars which was used to
insert surgical tools during certain procedures in the Gyna08 dataset. The trocar looks
quite similar to the irrigator used in procedures in the Cholec80 dataset, causing incorrect
classification of such images as containing an irrigator.
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The relationship between the size of the training set and model performance
(Experiment 4) is presented in Figures 9–11. Figure 9 shows the mean average precision
over all tools on the last ten videos of the Cholec80, EndovisChole, and Gyna08 datasets.
The performance for each surgical tool (grasper, hook, scissors, irrigator, and bag) on the
EndovisChole and Gyna08 datasets is shown in Figures 10 and 11, respectively. Generalis-
ability to the same type of procedure exhibits a clear tendency towards improvement when
increasing the amount of training data.
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Figure 12 shows the generalisation performance using single-site data and multi-
site data (Experiment 5). The generalisation performance is shown as the mean and
standard deviation of average precision over the four CNN architectures (DenseNet-121,
EfficientNet-B0, ResNet-50, and VGG-16).
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4. Discussion

This work evaluated the generalisation capability of CNN models for tool classification
from laparoscopic videos. The study involved two aspects of generalisation: across subjects
in the same dataset, and across datasets from different sources. The cross-dataset evaluation
examined model performance on data from new surgical locations and on laparoscopic data
from different procedure types. Moreover, we explored the influence of size and variability
of training data on the generalisation performance of CNN models. Five experiments
were conducted for surgical tool classification using three sources of data, the Cholec80,
EndovisChole, and Gyna08 datasets (see Table 3).

The results of Experiment 1 imply that the CNN model is generalisable to new subjects.
The CNN-80S and CNN-40S models achieved high classification performance, with an mAP
of 98.5% and 93.8%, respectively (Figure 4). There was a drop of approximately 5% in the
classification performance over all tools when the classification was undertaken in new
subjects from the same procedure and location. However, certain surgical tools had lower
generalisation performance than other tools. Model performance for grasper, scissors,
and irrigator on unseen subjects decreased by 3.76%, 10.65%, and 8.98%, respectively.
A retrospective analysis was conducted to investigate the causes of these reductions in
classification performance. Thus, misclassified images belonging to the testing sets of both
models (CNN-80S and CNN-40S) were examined. In many false classification samples with
the CNN-40S model, the corresponding surgical tool is obscured by image disturbances
such as blood or smoke, or the tool only partially appears in the scene. Nevertheless,
the CNN-80S model yielded correct classifications for most of these challenging samples.
Hence, it can be concluded that using training data with a higher subject variation in
terms of procedure and surgical location improves model robustness. Figure 5a shows
an image with only a small part of a grasper in the frame. The CNN-40S model was not
able to detect the grasper in this image, while the CNN-80S model recognised it with
a prediction probability of 72%. The region of the corresponding tool was solely engaged in
the prediction of the CNN-80S model, as demonstrated by the activation maps in Figure 5b.
On the contrary, the activation maps of CNN-40S involve image regions not related to the
corresponding tool (Figure 5c).

In certain samples, the activation maps of CNN-80S mismatch the tool region even
though the model provides a correct classification. In these samples, the classification
decision was based on tissue regions rather than the region of the corresponding tool.
An example of this is presented in Figure 6. This phenomenon occurs when the training set
includes images preceding or succeeding the examined image in the laparoscopic video that
show a similar scene. Although the laparoscopic camera moves during the intervention,
it becomes relatively static when the surgeon executes a surgical action. Consequently,
neighbouring images in certain parts of the video can have an almost identical scene.

Experiment 2 explored model generalisation to new surgical locations. The CNN-
40-Target model achieved a mAP value of 65% on the EndovisChole dataset (see blue
bars in Figure 7). Compared with its performance on the Cholec80 data, its classification
performance for the target tools dropped by 27% (Figure 7). This model showed a high
generalisation capability for the most consistently observed tools (grasper and hook), with
an AP of 92% and 86%, respectively. There was a greater degradation of performance for
the other tools in the EndovisChole dataset. Nevertheless, the model generally retained
reasonable classification performance, with AP > 60% for the irrigator and bag. However,
scissors had a low classification result in the EndovisChole dataset (22%), showing poor
model generalisation for tools that were under-represented in the training set (Figure 2).
Thus, while acceptable generalisation is possible across surgical locations, this is only the
case for tools that are well-presented in the training data. According to the reported results
for tool presence detection in the Endovis challenge 2019 [32], CNNs were purported to
have high generalisation capability to new surgical sites when procedures of the same type
were performed using identical surgical tools at different sites. The CNN-based methods
submitted to the challenge did not show a drop in performance on data from new surgical



Electronics 2022, 11, 2849 13 of 16

sites (the GRN-hospital Sinsheim), as the surgical tools used in Sinsheim Hospital are
identical to those used in Salem Hospital (represented in the training data).

Experiment 3 indicates a lower classification performance on data across procedure
types. The mAP on the different tools dropped by 38% when the CNN-40-Target model
was tested on the gynaecological images in the Gyna08 dataset as compared with the
mAP on the EndovisChole dataset (cholecystectomy data). The highest drops in model
performance were for the hook and irrigator. In particular, variation in tool incidence
across the datasets makes comparing performance on the tools with disparate incidence
unfair in these sets. For example, the Gyna08 dataset has few samples containing a hook
(146 images). The hook samples were presented only in one procedure, forming about
4% of the Gyna08 dataset. On the contrary, a hook appears in 56% and 44% of the Cholec80
and EndovisChole datasets, respectively. Therefore, the number of hook samples was very
small in the gynaecology surgery data compared to the cholecystectomy data. To investigate
the effect of data incidence on evaluation performance, a small set was generated to achieve
a specific incidence of hooks from the Gyna08 dataset. The incidence rate of hooks was
56% in both the newly generated set and the Cholec80 dataset. The average precision for
the hook class on this small subset was 57%, which was much higher than the performance
on the Gyna08 dataset (1%). Thus, tool incidence in evaluation sets affects performance
criteria. Nevertheless, the model performance on the new set of gynaecological data was
30% lower than the performance on cholecystectomy data. Overall, it can be inferred that
while the implemented CNN model has generalisation capability across procedure types, it
is important to consider tool incidence variation across sets.

The low classification performance on the irrigator in the Gyna08 dataset was due to
the presence of a trocar. In particular, the trocar had a shape that was quite similar to the
irrigator in certain procedures. Hence, the model classified trocar images as containing
an irrigator, and therefore the false positive rate of the irrigator class increased. Figure 8
shows two images form the Gyna08 dataset. Figure 8a,b shows images with an irrigator
and a trocar, respectively. The activation map of Figure 8b for the irrigator class is shown
along with the yielded prediction probability (82.9%) in Figure 8c.

These results imply that the type of procedure affects the generalisability of CNN
models. Data from a new procedure type can contain different surgical tools and/or
a different surgical region with distinct anatomical structures. Additionally, the surgical
actions or order of their execution can differ. All such factors limit model generalisation
across procedure types.

The results of Experiment 4 imply that training the CNN model on increasing quanti-
ties of data enhances generalisability to data from other sources (Figure 9). The classification
performance was improved by about 27% on the EndovisChole dataset after expanding
the Cholec80 training set from a single video to 70 videos (Figure 9). However, lesser
improvement was reported on the Gyna08 dataset, about 16% (Figure 9). Nonetheless, it
can be concluded that increasing the amount of training data can enhance generalisability,
especially to the same type of procedure. However, performance was affected inconsistently
by the various surgical tools analysed. For instance, performance for the grasper and hook
was only marginally affected by increasing data size. On the other hand, the AP for the bag
and scissors in the EndovisChole dataset increased by 27%. Moreover, the irrigator in the
EndovisChole dataset was classified with an increase in AP from 20% to 75% (Figure 10).
This trend was not observed in classification results of the irrigator in the Gyna08 dataset
(Figure 11) due to the high false positive rate caused by the presence of a trocar, which
appears similar to irrigator (Figure 8). The best improvement in classification results on
Gyna08 dataset was reported for the bag, with an improvement in AP of 45% (Figure 11).

Because certain surgical tools are used more frequently than others (Figure 2), it re-
quires much more surgical data to enable CNN models to accumulate a broad range of
knowledge regarding their geometry in an image. In particular, the accumulation rate of
images with scissors is less than for other tools. Hence, the AP when classifying scissors
showed a continuous improvement with the use of more videos for training (Figure 10).
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However, the AP for scissors was less than 30% in both testing sets (EndovisChole and
Gyna08 datasets, Figures 10 and 11). Thus, it can be expected that more data enables better
identification of the tool type. On the other hand, the bag and irrigator had a higher occur-
rence rate than the scissors (Table 1). Both tools had similar sample incidences (Figure 2),
and therefore, both tools had a roughly similar improvement trend in classification per-
formance on the EndovisChole dataset when the training set was expanded. Figure 10
implies that thirty training videos (containing ~4 k images of positive instances for the
bag and the irrigator) are required to achieve a generalisation performance greater than
60% to data of the same procedure type. The grasper and hook images in the first six
videos of the Cholec80 dataset (~9 k tool images) were sufficient to achieve AP of 89% and
81%, respectively, on the EndovisChole dataset, and training with more videos showed
diminishing returns in model performance (~5%). These results imply that CNN model tool
classification performance is improved when the quantity of training samples containing
that tool increases. However, this improvement becomes saturated at a certain quantity.

The impact of training a CNN model on data from multiple surgical sites on gen-
eralisation performance was investigated in Experiment 5. To produce a broad analysis,
Experiment 5 was conducted on various CNN models with different depths and numbers
of parameters. Figure 12 shows that the multi-site training achieved higher mean AP on
all tools compared to single-site training. Training with data from different surgical sites
enhances data representativeness, and therefore improves model generalisability. The
improvement in generalisation performance was reported for the hook, irrigator, and bag,
with 8.93%, 12.56%, and 12.56% improvements, respectively. However, multiple-site train-
ing did not improve the performance for the scissors. Both training strategies (single- and
multi-site training) failed to train the models for detecting scissors due to the very small
number of samples belonging to this tool in the training sets.

Within the surgical domain, many factors can cause differences between training and
testing data that CNN-based models find difficult to parse. In this study, variations in
data arose due to differences in anatomy between subjects, different types of procedures,
varied subtypes of surgical tools, variations in the instrumentation used in different clinics
(and to an extent even within a single clinic, as in the Gyna08 procedures), and diverse
surgical manoeuvres executed by different surgeons. The experimental results demonstrate
the sensitivity of model generalisability to such variations. However, the results show
that increasing diversity within training data generally provides more representative
and discriminative information, thereby strengthening model learning and improving
generalisability and applicability to new clinical data. The quantity of representative data is
vital for deep learning. Nevertheless, the quality and reliability of data labelling is critical to
enable correct learning as well. To date, labelling laparoscopic videos has been performed
manually, and is therefore is quite time-consuming and prone to errors. The datasets used
in this work were labelled by different annotators. This factor adds an additional source of
variation between the datasets. This variation was an inevitable limitation in this study.

5. Conclusions

This study emphasises the need for robust evaluation of the capabilities of deep
learning models before deploying them as assistive systems in the surgical environment.
While the CNN models analysed in this research yielded reasonably robust performance
on data from new subjects, they showed a moderate reduction in performance for different
surgical settings. This reduction in performance was exacerbated across procedure types.
In addition, this research elucidates improvements in generalisation performance with
increasing quantities of training data.
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