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Abstract: A pulse oximeter model linking arterial (SaO2) and peripheral (SpO2) oxygen saturation
is the terminal part of a mathematical model of neonatal oxygen transport. Previous studies have
confirmed the overestimation of oxygen saturation measured by pulse oximetry in neonates com-
pared to arterial oxygen saturation and the large variability of measured values over time caused by
measurement inaccuracies. This work aimed to determine the SpO2 measurement noise that affects
the biased SpO2 value at each time point and integrate the noise description with the systematic bias
between SaO2 and SpO2. The SaO2–SpO2 bias was based on previously published clinical data from
pathological patients younger than 60 days requiring ventilatory support. The statistical properties
of the random SpO2 measurement noise were estimated from the SpO2 continuous recordings of
21 pathological and 21 physiological neonates. The result of the work is a comprehensive characteri-
zation of the properties of a pulse oximeter model describing the transfer of the input SaO2 value to
the output SpO2 value, including the bias and noise typical for the bedside monitoring of neonates.
These results will help to improve a computer model of neonatal oxygen transport.

Keywords: SaO2–SpO2 bias; SpO2 measurement noise; noise model; neonatal model; oxygenation;
pulse oximetry; oxygen saturation

1. Introduction

The advantages of closed-loop control of oxygenation in neonates compared to man-
ual control have been documented in recently published clinical trials. During automatic
control, arterial blood oxygen saturation remains within the desired safe range for signifi-
cantly longer periods [1–6]. In the last ten years, many articles have introduced closed-loop
control algorithms of oxygenation in neonates, but a complex clinical study to compare the
effectiveness of those various algorithms is still missing [6]. Clinical tests of the new oxy-
genation control algorithms of neonates bring safety and ethical risks, but a mathematical
model of oxygenation in neonates can allow for the in silico simulation of oxygenation and
preliminary comparison of the control algorithms [7–10].

A general scheme of a complex mathematical model of automatic oxygenation of
a neonate is shown in Figure 1. The terminal part of the model is the pulse oximeter
module. In the absence of arterial blood gas measurement, both the automatic and manual
control of oxygenation usually depend on pulse oximetry [1,7,11]. Many studies showed
inaccuracies in the pulse oximetry measurement in children and premature infants. Pe-
ripheral oxygen saturation measured by pulse oximetry (SpO2) typically overestimates
arterial oxygen saturation (SaO2), especially at the lower values of SaO2 that are com-
mon in critically ill premature infants and children. Bohnhorst et al. noted the presence
of the SaO2–SpO2 bias in Reference [12], where the authors determined the sensitivity
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and specificity of different pulse oximeters in the detection of hyperoxemia in 56 infants.
Gerstmann et al. [13] found that SpO2 generally overestimated SaO2 at low levels and
that the spread in the data increased with lower SaO2. The results were confirmed a few
years later by Rosychuk et al. [14] in neonates with an average weight of 1 kg. The authors
used a new generation of pulse oximeters with lower susceptibility to motion artifacts.
Harris et al. [15] evaluated two sensors with improved accuracy in children with SaO2 less
than 85%. This study revealed statistically significant increasing bias and variability of
SpO2 for decreasing levels of SaO2 and the authors concluded that pulse oximetry alone
should not be relied upon for clinical decision-making when saturation is below 85%. In
another study, Harris et al. [16] confirmed their previous findings and set the average bias
at 4.0% and 7.4%, respectively, depending on the type of pulse oximeter. A similar average
bias of 5.4% across all saturation levels was found by Murphy et al. [17] in a study of
89 patients with critical congenital heart disease. Ross et al. [11] described a significant
variation in the SpO2 accuracy. The authors computed the SaO2–SpO2 bias (0.2–6.6%) and
precision (3.4–6.6%), expressed as the standard deviation, for seven intervals in the range of
65–97% SpO2 in 225 mechanically ventilated children with cyanotic congenital heart disease
or acute hypoxemic respiratory failure. Very similar results were provided in the study
of Bachman et al. [18] by evaluating 25 032 SaO2–SpO2 measurements from 1007 critically
ill neonates, or in the study of Griksaitis et al. [19] in 25 children with cyanotic congenital
heart disease.
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center study [11], the variability in the bias could have been caused by institutional vari-
ation, for example, by using pulse oximeters from different manufacturers. A location of 
probe placement can influence measured SpO2 values [11,20,21]; however, Harris et al. 
[15] did not show a significant difference between standard and nonstandard probe loca-
tion. The studies [11,18] involved premature infants who could have had increased levels 
of fetal hemoglobin (HbF) that may alter the SaO2–SpO2 bias [11,14,20,22]. In addition to 
HbF, other hemoglobin derivates, such as carboxyhemoglobin or methemoglobin, may 
also affect the accuracy of the measurement [21,22]. 

Besides the interpersonal variability, experimental data also contain intrapersonal 
variability in time. A low pulsatile signal (low perfusion), high noise (bright light, electro-
magnetic interference, or motion), or a combination of these factors can cause a low signal-
to-noise ratio, leading to inaccurate pulse oximeter readings [21,23,24]. Even when SaO2 
remains practically unchanged, the SpO2 values presented by the pulse oximeter change 
in time, and in the case of abrupt motion of a neonate, they may even be falsely interpreted 
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Figure 1. A general concept of the mathematical model of neonatal oxygen transport. The pulse
oximeter module, with arterial oxygen saturation (SaO2) as the input and peripheral oxygen satura-
tion (SpO2) as the output, is the terminal part of the global model.

Several studies [11,13–15,18] pointed out not only the bias between SaO2 and SpO2
(SaO2–SpO2 bias) but also quite a large variability in the bias. This variability can be
caused by many factors that affect the accuracy of the pulse oximeter measurement. In the
multicenter study [11], the variability in the bias could have been caused by institutional
variation, for example, by using pulse oximeters from different manufacturers. A location of
probe placement can influence measured SpO2 values [11,20,21]; however, Harris et al. [15]
did not show a significant difference between standard and nonstandard probe location.
The studies [11,18] involved premature infants who could have had increased levels of
fetal hemoglobin (HbF) that may alter the SaO2–SpO2 bias [11,14,20,22]. In addition to
HbF, other hemoglobin derivates, such as carboxyhemoglobin or methemoglobin, may also
affect the accuracy of the measurement [21,22].

Besides the interpersonal variability, experimental data also contain intrapersonal
variability in time. A low pulsatile signal (low perfusion), high noise (bright light, elec-
tromagnetic interference, or motion), or a combination of these factors can cause a low
signal-to-noise ratio, leading to inaccurate pulse oximeter readings [21,23,24]. Even when
SaO2 remains practically unchanged, the SpO2 values presented by the pulse oximeter
change in time, and in the case of abrupt motion of a neonate, they may even be falsely
interpreted as rapid desaturations [23].

Recent studies dealing with noise and its filtering in relation to pulse oximetry focused
on the photoplethysmography curve used by pulse oximeters. Fine et al. [25] summarized
several ways of detecting noise or motion artifacts, which included using the low-signal-
quality index, filters with cross-correlation, analyzing the morphology of the signal, or
higher-order statistics in both the frequency and time domain. Lee et al. [26] proposed
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a motion artifact reduction algorithm, using independent component analysis. Other
studies [27,28] assessed the quality of SaO2 estimation from photoplethysmography and
detected poor-quality segments by methods of machine learning. However, the considered
global model of neonatal oxygenation [8] does not consider the pulsatility in the cardio-
vascular system and, thus, the photoplethysmography curve. Instead, the pulse oximeter
module is treated as a black box that converts a continuous SaO2 signal to a stream of trend
SpO2 values, reported every 2 s, that is used by automatic closed-loop control algorithms
to adjust the fraction of inspired oxygen in the model input. A pulse oximeter model
transforming SaO2 to the observed SpO2 value was used by Morozoff et al. [29]. The model
adds two types of noise to the SaO2 signal: the sensor noise modeled as the white noise
and motion artifacts produced by a pulse generator. However, this approach is not based
on real data from clinical practice.

The aim of this work was to statistically describe the SpO2 measurement noise characteris-
tic of continuous time recording of SpO2 based on the evaluation of available clinical data and
to combine the noise description with the systematic bias between SaO2 and SpO2 into a plau-
sible mathematical model of the pulse oximeter output signal. The results of the work were
intended for integration into an overall computer model of premature infant oxygenation.

2. Materials and Methods

The input of the pulse oximeter module of the overall oxygenation model is the
continuous SaO2 signal. The output signal of the pulse oximeter module consists of
two principal components: the SaO2–SpO2 bias and the SpO2 measurement noise. The
SaO2–SpO2 bias describes a typical deviation of the SpO2 measurement as a function of
SaO2 value. The SpO2 measurement noise is a random process that changes the biased
SpO2 value at each time point. Data for both the components of the pulse oximeter model
were processed in Matlab R2021a (MathWorks, Natick, MA, USA).

2.1. SaO2–SpO2 Bias

The SaO2–SpO2 bias function was determined in our previous study [30] based on
clinical data acquired by Ross et al. [11]. We used the part of the data that included
mechanically ventilated hypoxemic premature and term infants aged between the 37th
week of gestation and the 60th day after delivery. We evaluated 1423 SaO2–SpO2 data pairs.
The SaO2 values were measured by CO-oximetry, and the SpO2 values were measured by
Masimo or Nellcor pulse oximeters at the same time the arterial blood sample was taken.
We calculated the bias in three neighboring intervals. For SaO2 below 70%, the SpO2 bias
was kept constant and equal to the 7.66%, which was the SpO2 bias at SaO2 = 70%. For
SaO2 in the range of 70–96%, the median of measured SpO2 values was calculated for each
unit value of SaO2 and a third-order polynomial was fitted through the medians. For SaO2
above 96%, the bias was set as zero, that is, SpO2 = SaO2. The SaO2–SpO2 bias function is
displayed in Figure 2 and mathematically expressed by the following equations:
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• For the SaO2 range 0–70%:

SpO2(%) = SaO2 + SpO2
(SaO2=70%) = SaO2 + 7.66

• For the SaO2 range 70–96%:

SpO2(%) = −0.001·SaO2
3 + 0.262·SaO2

2 − 20.896·SaO2 + 617.496

• For the SaO2 range 96–100%:
SpO2(%) = SaO2

2.2. SpO2 Measurement Noise

We based the model of SpO2 measurement noise on continuous neonatal SpO2 record-
ings from the General University Hospital in Prague. The data were collected during routine
clinical care, based on a standard informed consent to hospitalization and to collection of
anonymous observational data for research and educational purposes that was signed by a
legal representative of a neonate. Anonymized observational data were provided to the
authors of this study.

In total, we evaluated SpO2 recordings from 42 patients divided into two categories:
physiological neonates and pathological neonates. Twenty-one healthy physiological pa-
tients were term infants without any known pathology who were measured during the
first hours after delivery. The recording time for each physiological patient was 3–21 h.
Twenty-one pathological patients were premature (born before 28th week of gestation),
with various diagnosed pathologies requiring oxygen support, most commonly bronchopul-
monary dysplasia. The recording time for each pathological patient was 10–95 h. SpO2
values were measured by Masimo Rad-97 pulse oximeter (Masimo Corporation, Irvine,
CA, USA), with the sampling time set to 2 s and the averaging time set to 8 s.

2.2.1. Data Processing

The SpO2 measurement noise was considered as a random process that affects the
biased SpO2 values at each time point. A noise-free SpO2 value (SpOclear

2 ) was estimated
for each measured SpO2 value (SpOmeas

2 ), and the difference of these parameters was
considered as the noise component. The procedure of the noise estimation is shown in the
flowchart in Figure 3 and is described in detail below.

Step 1: The unstable parts of the measured SpO2 signal (SpOmeas
2 ), which were defined

based on the study by Wellington et al. [31], were excluded from further processing. All
SpO2 values that met at least one of the following two criteria were excluded: (1) The SpO2
value was measured at the time when the low-signal-quality alarm was triggered. The low-
signal-quality alarm is a pulse oximeter indicator of potentially erroneous data; however,
it does not guarantee the perfect quality of all other parts of the SpO2 signal. (2) The
SpO2 value was the middle sample of a 30 s moving window in which SpO2 changed
by more than 10%. An example of the original raw SpOmeas

2 signal with identified stable
and unstable parts is shown in Figure 4. Step 2: All null or unavailable data points in the
SpOmeas

2 signal were replaced by the nearest preceding valid SpO2 value. The replaced
values were not included in calculations of the SpO2 measurement noise. The aim of
replacing the null and unavailable values was to avoid abrupt transitions to zero values in
SpOmeas

2 , while filtering the signal in the next step. Step 3: A median filter was applied to
the preprocessed SpO2 signal. This operation resulted in SpOclear

2 values that reflect SaO2

values without the presence of any measurement noise. Step 4: Each SpOclear
2 datapoint

was converted to an SaO2 value, using an inverse function to the SaO2–SpO2 bias function.
Each calculated SaO2 value was then paired with the respective SpOmeas

2 value of the raw
data waveform. Steps 3 and 4 were repeated in case of the pathological patient data to
find the optimal parameter values of the median filter, as described in the next section.
Step 5: The differences, SpOmeas

2 − SpOclear
2 , of all valid datapoints (i.e., all values that were

not excluded in Step 1 or 2) pooled together from all patients were used for the statistical
model of the SpO2 measurement noise in the form of a cumulative distribution function.
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Outliers larger than ±6% SpO2 were excluded. We determined the SpO2 measurement noise
for two patient categories, physiological neonates and pathological neonates. Cumulative
distribution functions were constructed for all SaO2 values, for SaO2 ≤ 96%, and for
SaO2 ≥ 97%.
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2.2.2. Median Filter Window Size

At Step 3 of the SpO2 measurement noise data processing, we applied the median filter
to the SpO2 signal to obtain noise-free SpOclear

2 values. The optimal median filter window
size was determined from the comparison of the distribution of the SpO2 recordings (for
each SaO2 unit) from 21 pathological patients and the distribution of the data acquired by
Ross et al. [11]. An assumption for comparing the two datasets was the similarity of their
noise characteristics, where both datasets were of pathological patients requiring ventilatory
support who were less than 60 days old. Figure 5 compares the resulting SaO2–SpO2 data
(generated based on the outcome of Step 4) with the data of Ross et al. [11]. For each SaO2
unit, a histogram of the SpO2 distribution of the calculated data was compared with the
respective histogram of the data of Ross et al. [11]. The filter parameters that resulted in
the best overlaps of these histograms were used to construct the cumulative distribution
functions in Step 5.
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The optimal median filter window size was selected from the range 1–1000, as illus-
trated in Figure 6, so that it minimizes the cost function:

J =
1
m

100

∑
SaO2=70

1 − ∑
(i)

min
[

hi(SpOmeas
2 (SaO2)), hi

(
SpORoss

2 (SaO2)
)]

where hi is the value of an i-th bin of a normalized histogram of the SpO2 distribution,
SpORoss

2 refers to the data of Ross et al. [11], and m is the number of SaO2 units for which
both the SpOmeas

2 data and SpORoss
2 data are available for a particular filter window size. The

J function evaluates the extent to which normalized histograms of the SpO2 distributions
overlap at each SaO2 unit and was based on the histogram intersection measure [32]. If
two histograms overlap perfectly, the value of the histogram intersection measure at the
particular SaO2 unit is 0. On the other hand, if the histograms do not overlap at all, the
value is 1. An example of partially overlapping histograms for a single window size of the
median filter is presented in Figure 7. The optimal median filter window size (WDW) was
set to 227 samples, which corresponds to approximately 7.5 min of pulse oximeter output
samples with the sampling time of 2 s.
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acquired by Ross et al. [11]. The magenta color represents the histogram intersection.

2.2.3. Integration of SaO2–SpO2 Bias with SpO2 Measurement Noise

The pulse oximeter model, the terminal part of a complex mathematical model of
neonatal oxygenation, integrates the SaO2–SpO2 bias with the SpO2 measurement noise.
The input of the pulse oximeter model is the SaO2 value. The input, sampled every 2 s, is
converted to a noise-free SpO2 value, using the SaO2–SpO2 bias function. The output of the
pulse oximeter model is then obtained by adding the SpO2 measurement noise generated
randomly, following the probabilities specified by the cumulative distribution function to
the noise-free SpO2 value.

3. Results

The model of the output of the pulse oximeter consists of two parts: the SaO2–SpO2
bias and the SpO2 measurement noise. The SaO2–SpO2 bias function was determined in
our previous study [30]. The SpO2 measurement noise was estimated for two different
groups of patients, physiological neonates and pathological neonates. Figure 8 depicts the
resulting normalized histograms of the SpO2 measurement noise for both the categories for
all SaO2 values and also separately for SaO2 ≤ 96% and for SaO2 ≥ 97%. The statistical
properties of the SpO2 measurement noise are expressed by the cumulative distribution
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function presented in Figure 9. The exact numerical values of the cumulative distribution
function are provided in Appendix A in Table A1.
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In the pulse oximeter module, the random noise generated according to the char-
acteristics presented in Figures 8 and 9 is added to the SpO2 value calculated by using
the SaO2–SpO2 bias function. Figure 10 shows the resulting SaO2–SpO2 scatterplot of
the output of the pulse oximeter module. The figure displays the distribution of SpO2
values generated for each SaO2 value, including the frequency of occurrence of each
SaO2–SpO2 pair.
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ment noise for (a) physiological and (b) pathological patients. Each SaO2 value is converted to an
SpO2 value to which noise is added according to the properties shown in Figures 8 and 9. The size of
the symbol of each SaO2–SpO2 pair is proportional to the frequency of its occurrence.

4. Discussion

In this work, we quantified the measurement noise that is characteristic for continuous
SpO2 time recording and completed the model of the output of the pulse oximeter typical
for premature infants.

The model of the output of the pulse oximeter consists of two parts: the SaO2–SpO2
bias and the SpO2 measurement noise. The SaO2–SpO2 bias was determined from the
Ross’ clinical data [11] in the SaO2 range of 70–100% in our previous study [30]. The
bias values slightly differ between previously published clinical studies [11,14,18]. This
may be due to different methods of measuring SaO2 (co-oximetry vs. blood gas analysis),
measuring SpO2, or monitoring of the patients with different age and diagnoses. However,
the published differences are too small to affect the credibility of the simulated output of
the pulse oximeter model and its applicability to the neonatal oxygen transport model. For
SaO2 values less than 70%, the bias was held constant, equal to the value of the bias for
70% SaO2 (7.66%), due to the lack of clinical data. The constant bias for SaO2 of less than
70% would be a sufficient approximation for the model of a neonate on oxygen support,
because these values are associated with severe hypoxemia and are beyond the target
range in which the saturation of ventilated premature infants should be maintained. In
addition, pulse oximeter manufacturers do not guarantee the accuracy of pulse oximeter
measurements of such low saturation values [33].

In addition to the interpersonal variability of SaO2–SpO2 bias occurring in the stud-
ies [11,13–15,18] mentioned above, intrapersonal variability due to low perfusion, motion
artifacts, or another noise, such as bright light or electromagnetic interference [21,23,24],
also appears in the SpO2 time recordings of each patient during the bed-side monitoring. In
our work, we characterized the intrapersonal variability of SpO2 time recording as the SpO2
measurement noise. The noise was determined for two groups, physiological neonates
and pathological neonates, based on the clinical data of 21 patients in each group as the
difference between the measured SpO2 values and the estimated SpO2 values without noise.
The noise model was estimated by using a numerical procedure in which the window size
of the median filter was varied. The median filter was chosen over the moving average filter
because of the frequent sudden but short drops in the SpO2 signal (perhaps due to moving
artifacts) that we wished to remove. The advantage of the median filter is its simplicity
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and ease of implementation. However, other, more sophisticated denoising methods are
available, based, for example, on wavelets [34] or compressed sensing [35]. The specific
filter setting determined what would be considered a noise-free SpO2 signal, thus indirectly
generating variations of the noise model. We considered as the most plausible the variant
of the noise model that produced our SpO2 data distribution the most similar to that
published by Ross in his study (as expressed by the minimum of the J function). The SpO2
measurement noise was described by histograms and cumulative distribution functions not
only for two categories of neonates but also for two different SaO2 intervals, SaO2 ≤ 96%
and SaO2 ≥ 97%. The boundary between the intervals was chosen to be identical to the
intervals of the SaO2–SpO2 bias.

At the beginning of noise-signal processing, we excluded the unstable parts of the
measured SpO2 signal. The exclusion of all SpO2 values measured during the episodes
of triggered low-signal-quality alarm corresponds to automatic oxygenation control al-
gorithms that do not consider such SpO2 values reliable for automatic adjustment of the
fraction of inspired oxygen [36]. In addition, all SpO2 values that were the middle sample
of a 30 s moving window in which SpO2 changed by more than 10% were excluded. This
second criterion was introduced because the distinct drops in the SpO2 signal can be caused
not only by artifacts but also by real desaturation, which cannot be distinguished without
having the simultaneous data of the patient’s movement available. Previous studies have
considered motion artifacts as a major factor in inaccurate pulse oximeter readings [21,23],
and this is even more influential in the group of preterm and term infants [37,38]. In com-
parison with adults, more motion, longer periods of motion, and more intensive motion
were observed in infants [37]. Fletcher et al. [38] concluded that motion artifact can affect,
overall, up to 50% of SpO2 recorded time, and actually the motion artifact was present
91% of the monitored time during infant wakefulness. During the apnea, preterm infants
can desaturate with a rate of 3–8% per second [39], and the study published by Poets
and Southall [40] even reported the rate of up to 12.6% per second. Therefore, motion
artifact and desaturation may have a similar SpO2 recording, and motion artifact could
be interpreted as the true desaturation and vice versa, or motion artifact can obscure the
true desaturation with noise [23]. Abrupt changes in the SpO2 signal due to desaturations
are reflected in the pulse oximeter module, as they are generated by the overall model of
neonatal oxygenation [8]. However, motion artifacts leading to significant drops in the
SpO2 signal (drops greater than 10% within 30 s) are not included in our model and should
be modeled separately in a future study with simultaneous recording of SpO2 signal and
motion capture.

Our approach to the design of the pulse oximeter model can be compared with the
model used by Morozoff et al. [29] in their physiological models. The main novelty of
our model is that it is based on real clinical data measured on patients who are the target
group for automatic control of oxygenation. The model incorporates the bias between SaO2
and SpO2, the presence of which is documented by many studies [11–19]. Furthermore, it
proposes different noise levels according to the stability of the patients (physiological or
pathological) and according to the input SaO2 value, since, as the histograms in Figure 8
show, the noise distribution for low and high SaO2 values is different.

The main limitations of the pulse oximeter model are the datasets used to determine the
SaO2–SpO2 bias and SpO2 measurement noise. One general SaO2–SpO2 bias function was
based on the multicenter study on a relatively large number of patients from different PICUs,
but the biases among children may systematically vary depending on its diagnosis [11,20],
amount of fetal hemoglobin [11,14,20,22], or skin pigmentation [21,23]. The bias may
also vary between different SpO2 monitors or sensors [24], or between different sensor
placements [15,20,21]. The noise model was determined based on comprehensive data from
both physiological and pathological neonates; moreover, the amount of measured data
allowed for the determination of noise characteristics for different SaO2 intervals. The noise
was estimated from the data measured at one setting of the pulse oximeter averaging time.
The averaging time is usually adjustable in a range between 2 and 16 s and can significantly
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affect the stability of pulse oximeter readings [33] and resulting noise characteristics. We
determined the noise characteristic only for 8 s averaging (with an output update every 2 s),
but it might be interesting to compare the noise characteristic of different averaging time
settings. Moreover, the median filter we used for the noise estimation, as discussed above,
may be disputed. Finally, due to the exclusion of the unstable parts of SpO2 signal, our
model of the SaO2–SpO2 relationship does not describe the effect of some motion artifacts
that trigger the low-signal-quality alarm, as discussed in the previous paragraph.

The results of the work will improve the pulse oximeter model, which is the terminal
part of the neonatal oxygen transport model, so that the simulated output of the model,
the peripheral oxygen saturation, will more realistically represent the real SpO2 signals
observed in the clinical environment. This work and further improvements of the complex
mathematical model will enhance the in silico testing and comparison of existing and future
control algorithms under real clinical conditions. There is a need for improved modeling
that reflects the dynamics of the neonatal oxygen transport system to achieve optimal
control across the full spectrum of oxygenation disturbances, including the possibility of
individualization of algorithm performance [10].

5. Conclusions

This work proposed methods for determining the measurement noise characteristics in
peripheral oxygen saturation signal in combination with the bias between SaO2 and SpO2.
The terminal part of the neonatal oxygen transport model, the pulse oximeter module, was
improved in two ways: we determined the characteristics of the noise presented in SpO2
time-recordings during the premature infant bedside monitoring, and we combined the
SpO2 measurement noise with SaO2–SpO2 bias. These results will improve the output of
the neonatal oxygenation model and make simulations provided by the computer model of
oxygenation of a neonate closer to the real situations observed in the clinical practice.
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Appendix A

Table A1. Cumulative distribution function of the SpO2 measurement noise.

SpO2 Noise Level (%)
CDF for Physiological Patients (–) CDF for Pathological Patients (–)

All SaO2 Values SaO2 ≤ 96% SaO2 ≥ 97% All SaO2 Values SaO2 ≤ 96% SaO2 ≥ 97%

−6 0.0007 0.0009 0.0006 0.0085 0.0112 0.0060
−5 0.0020 0.0025 0.0015 0.0217 0.0284 0.0157
−4 0.0056 0.0076 0.0039 0.0418 0.0544 0.0305
−3 0.0138 0.0186 0.0095 0.0738 0.0947 0.0551
−2 0.0461 0.0589 0.0346 0.1316 0.1642 0.1025
−1 0.2295 0.2436 0.2167 0.2830 0.3171 0.2524
0 0.7786 0.7333 0.8198 0.7052 0.6247 0.7773
1 0.9683 0.9457 0.9889 0.9132 0.8512 0.9688
2 0.9932 0.9863 0.9995 0.9711 0.9429 0.9964
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Table A1. Cont.

SpO2 Noise Level (%)
CDF for Physiological Patients (–) CDF for Pathological Patients (–)

All SaO2 Values SaO2 ≤ 96% SaO2 ≥ 97% All SaO2 Values SaO2 ≤ 96% SaO2 ≥ 97%

3 0.9980 0.9957 1.0000 0.9893 0.9774 1.0000
4 0.9992 0.9984 – 0.9962 0.9920 –
5 0.9998 0.9997 – 0.9989 0.9977 –
6 1.0000 1.0000 – 1.0000 1.0000 –
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