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Abstract 
Real-world data on the treatment histories of patients in everyday care contain a large amount of 

latent knowledge which to date is almost only made available via publication with a considerable time 

lag and only in relation to specific issues. AI models can capture the knowledge contained in this kind 

of data and transfer it to new scenarios. We aim to develop an AI-based information tool that enables 

dynamic data exploration and analysis of real-world datasets on medical treatments. The purpose of 

the tool is to support oncologists in their decision-making process through a system that is trained with 

prospectively documented real-world data on historical treatment decisions for a large population of 

patients. It will facilitate research on treatment routines for specific patient populations by providing 

information on likely therapy choices. Leveraging xAI techniques, the reasoning of the analytics system 

is made transparent to the user. In this paper, we describe and test a system that follows this concept. 

Specifically, we address the two use cases (a) “therapy selection” and (b) “identification of similar 

patients”. We test respective AI and xAI mechanisms with real-world data. Our analysis provides 

insights into the potential of the approach of using AI/xAI as supporting analytics system for oncologists 

as well as on the data requirements. 

 

Introduction 
Artificial intelligence (AI) is a branch of computer science which is concerned with the automation of 

intelligent behavior as displayed by humans and animals. Machine Learning (ML) is a subbranch of AI 

which deals with the automatic learning of patterns from data, and the usage of these learned patterns 

for prediction and classification tasks. Explainable AI (xAI) refers to methods that allow humans to 

understand the decision process of AI models. In this paper, we investigate the potential of using these 

technologies to support oncologists with a tool for exploring registry data. That is, we envision an 

analytics system that uses AI for providing oncologists with case-specific information and leverages xAI 

techniques to make its reasoning transparent. The core idea is to learn from historical records of 

applied treatments and transfer the learned patterns into new settings. These historical records 

constitute “real-world data”; that is, patients are drawn from a large sample of individuals who 

received treatment for advanced colorectal cancer during routine clinical care. This stands in contrast 

with randomized clinical trials, where mostly patients meeting specific and often highly restrictive 

criteria can participate. Our aim is to leverage AI to make the latent knowledge that rests within real-

world data accessible to oncologists. Specifically, we address the two use cases of (a) “therapy 

selection” and (b) “identification of similar patients”.  

The use case of “therapy selection” is about informing oncologists of the estimated distribution 

function of therapies conditional on a set of medical covariates. Here the AI estimates, for a given set 

of patient characteristics and each possible therapy choice the probability that an oncologist would 

prescribe this therapy to a patient having these characteristics. Using xAI techniques, the underlying 

reasoning of the algorithm is made transparent. Precisely, the algorithm explains which particular 



   
 

   
 

patient features spoke for or against a given therapy choice in a given case.  In the use case of 

“identification of similar patients”, the AI model is used to define a meaningful similarity metric 

between patients. This metric is based on clinical characteristics available to the treating oncologist.  

Within this paper, we present and evaluate solutions for the implementation of the two described use 

cases. The evaluation includes quantitative tests as well as qualitative analyses by oncology domain 

experts. Our main contributions are: 

 We present a concept for using AI as supporting analytics system for oncologists 

 We analyze the applicability of an AI-based analytics system for estimating probability 

distributions of therapies  

 We analyze the dependence of the analytics system’s performance on the amount of available 

training data 

 We analyze how xAI can render the reasoning of an AI-based data analytics system  transparent 

to the treating physician 

 We present and evaluate an AI-based similarity metric for patient records 

The remainder of the paper is structured as follows. The rationale and motivation from a medical 

perspective is given in Medical Background. We describe details of the application scenarios in 

section Aims and Scope as well as specifics of the analyzed data sets in Patient Sample. In section 

Technical Approach, Concepts we present our AI-based approaches to support decision making for 

oncologists. This is followed by a description of our experiments to test the AI-based solution in 

section Experiments. We review related work in section Related Work and conclude the paper in 

section Summary and Discussion. 

 
Medical Background 
New treatment options for cancer patients have emerged over the last decades providing oncologists 

and patients with an increased number of treatment options. However, with the growing number of 

options, complexity in treatment decision making grows and increasingly challenges the medical 

expertise (1). What is the best treatment for this patient? Currently, treatment recommendations and 

guidelines are mainly based on evidence from randomized clinical trials (RCTs) comparing new drugs 

to standard treatments or placebo. Although RCTs are the best way to compare drugs or treatment 

strategies, most patients recruited into such RCTs are not representative for most patients who are 

intended to receive these treatments during routine clinical care. This is because current RCTs have 

strict in- and exclusion criteria that typically exclude many elderly patients and those with relevant co-

morbidities. Consequently, such RCTs can have a high degree of internal validity, but only a low level 

of external validity (2). In other words, there can be high uncertainty as to whether tested treatments 

are feasible and whether the observed treatment effect is transferable to patient populations that 

would not have met the inclusion criteria to enter the respective RCT. In addition, to predict a patient’s 

prognosis based on data from RCTs is also questionable, because populations of patients being 

included in RCTs often have a different risk profile (2). To close this evidence gap, insights into data 

collected during routine clinical care (real-world data) are necessary and should also be considered 

when making treatment decisions. However, it is important that such real-world data are of high 

quality to exclude biased inference (e.g., selection or reporting bias). To investigate the potentials of 

machine learning in supporting treatment decision making, we have set up this project using a high-

quality cohort of patients being enrolled in the prospective and multicenter Tumor Registry Colorectal 

Cancer (TKK) registry (3).  

 



   
 

   
 

 
 
Aims and Scope 
Treatment decision making relies on many factors such as patient characteristics (e.g., age, co-

morbidities, and clinical performance status), tumor characteristics, available evidence, patient 

preferences, and the physician’s expertise. In the TKK database, we have information on the first two 

aspects: patient characteristics and tumor characteristics. Both are very important factors when it 

comes to treatment decision making, given that the available evidence is the same and that physician’s 

expertise is usually similar among trained oncologists. Based on this, we have three aims: 

- To investigate whether AI can satisfactorily model the probability distribution of treatments a 

clinician would administer to an individual based on given patient and tumor characteristics 

- To investigate whether xAI methods can render the reasoning of the AI model interpretable 

- To investigate whether AI techniques can be used to define a meaningful similarity metric for 

patients. 

Patient Sample 
For all experiments outlined below, we used a dataset of patients with advanced/metastatic colorectal 

cancer from the TKK. This is a prospective, multicenter, longitudinal, nation-wide cohort study in 

Germany which started in 2006. Since then, 269 medical oncologists have recruited more than 4000 

patients with advanced/metastatic disease. This study was reviewed by an ethics committee and is 

registered at ClinicalTrial.gov (NCT00910819). Eligible patients are 18 or older with histologically 

confirmed colorectal cancer. Patients also received at least one systemic chemo- or targeted therapy 

(e.g., antibodies) for advanced/metastatic disease. Written informed consent was obtained from all 

patients. All patients are treated according to physician’s choice and are followed for a minimum of 3 

years (or until death, loss to follow-up or withdrawal of consent). At the time of enrolment, data on 

patient and tumor characteristics are documented. From 2008 to 2013, the KRAS-mutation status was 

collected without further information on the tested/mutated exon(s). Since 2014, data on the 

extended RAS-testing routine have been documented (KRAS-exons 2, 3 and 4 and NRAS-exons 2, 3 and 

4), further referred to as (K)RAS and (N)RAS mutation testing, respectively. 

For all experiments described herein, we used a sample of 3,563 patients who were prospectively 

enrolled with start of the first systemic treatment for their advanced/metastatic colorectal cancer. 

Further details of the TKK have been previously reported (3). 

Technical Approach, Concepts 
In this section we describe a concept for using ML and xAI to support decision making in therapy 

selection. We describe the basic architecture of a corresponding software system and the concept for 

its application. Figure 1 provides an overview of the key components and the workflow for their use. 

We discuss each component and the specific instantiation of our test implementation blow. 



   
 

   
 

Figure 1: Architecture and key components of the system concept 

Component 1: history of treatments 

Treatment data include patient characteristics such as demographics (e.g., age, sex, education), 

medical history, comorbidities and disease characteristics (e.g., timing of tumor onset, metastases, 

mutational status, pattern of disease). In our study this refers to each patient included in the TKK 

registry, alongside with their chosen therapy (see section Patient Sample). The patient and disease 

characteristics are available to a clinician when discussing treatment options with a patient and 

constitute the basis for the supervised learning of therapy decisions (component 2). In our study, 

chosen therapies are specified by the therapy backbone (e.g., FOLFOX/CAP+IRI) and the used 

antibody (e.g., anti-EGFR, anti-VEGF), if applicable. This leads us to n=15 distinct therapy schemes in 

the data. When we discard the information about the exact substances in the backbone and only 

consider its principle (monotherapy, doublet chemotherapy, or triplet chemotherapy), we obtain 

n=12 distinct therapies. When also discarding the substance details of the chosen antibody to only 

consider if an antibody was given or not, we obtain n=8 therapy classes. Our main analysis is carried 

out on the variant with 8 distinct therapies, but we also report the results of the other two variants 

when evaluating the algorithm’s performance.  

Component 2: machine learning mechanism 

The ML mechanism is used to learn a prediction model for therapy selection. That is, it learns to predict 

which therapy is chosen for a patient based on given information about patient and disease 

characteristics at the beginning of treatment. It thereby aims at mimicking the decision made by 

oncologists. In principle, any supervised learning mechanism could be used for this task. In our test 

implementation we used the XGBoost algorithm (4). We chose this algorithm because it generally 

shows good performance on tabular data (5) and is well supported in the ML ecosystem.  

Component 3: patient data 

Patient data in component 3 comprise the available information about a specific patient for whom the 

system should support the therapy selection. This information contains a subset of features that are 

available in the history of treatments (component 1). Ideally this subset has complete data for the 

features that are used by the prediction model (component 4). Depending on the prediction method, 

missing information may need to be replaced by suitable values. In our implementation we use 

XGBoost, which has inbuilt mechanisms for dealing with missing values. 

 

 



   
 

   
 

Component 4: prediction  model for estimating probability distributions of therapies 

The prediction model is the output of the ML mechanism. Trained on historical treatment decisions, it 

aims at modeling the decision making of oncologists. The model is used to make predictions on new 

instances, i.e., to estimate the probability distribution of therapies given a set of patient characteristics.   

Component 5: xAI mechanism for local explanations 

This component provides local explanations for the prediction that the ML model made for a given 

patient. Local explanations offer humans insights into the decision making of an AI-based system. 

Specifically, they provide information on how important a given feature was for the decision for a given 

instance. In our application, that is the impact of different pieces of information about the patient and 

their disease (e.g., a certain mutation or age of the patient) on the therapy prediction for that patient. 

Note that this contrasts with global feature importance that assesses the general importance of a 

feature (e.g., average importance across many cases). With local feature importance, we can assess 

the impact of features on the prediction for a particular case. This may differ greatly from the average 

importance of a feature and give precise insight into the decision for an individual patient. In our 

implementation, we use the SHAP library to compute Shapley values for local explanations (6). These 

values reflect the fair contribution of each feature to the prediction outcome (7). Here we take two 

inputs: (a) the prediction model1 and (b) the patient data for which we explain the prediction. The 

output is the Shapley value of each feature in the analyzed patient. This information can provide 

oncologists with insights into what factors were considered by the model and how they impacted the 

prediction. That is, oncologists get information if a certain feature impacted the model output in favor 

or against a given therapy. The magnitude of the value furthermore shows the strength of that impact. 

Oncologists can use this information to reason about the model’s decision for and against different 

therapies. 

Component 6: AI-based similarity metric 

The proposed system includes a component to identify patients that are similar to a reference patient 

(see aim #2). This enables oncologists to inform themselves about past treatment routines applied to 

similar patients. The key challenge is to find a suitable definition of similarity between patients. Here 

we build upon the idea of “supervised clustering” as presented in (17). The concept is to use local 

feature importance - obtained through supervised prediction models – instead of raw feature values. 

The similarity metric then uses a distance defined via these importance values. Thereby, the metric 

applies a case specific weighting. This weighting stems from what the prediction model has learned 

about case-specific therapy selection. With this concept, the similarity focuses on the features that the 

model finds relevant in the given case. This is in contrast to a similarity metric that factors in the 

features for all patients in the same way, regardless of the specifics of their case. 

For our implementation of this general concept we use the vectors of Shapley values for each feature 

and for each class of the therapy prediction (i.e., one vector per therapy class). We then concatenate 

all vectors and use their distance to define their similarity metric. The intuition is that similar cases 

have similar importance for the same features in therapy prediction. Precisely, we represent each 

patient by a vector v= (𝑣1, 𝑣2, … , 𝑣𝑚) with 𝑚 = 𝑛 ⋅ 𝑝 . Here 𝑝  is the number of patient features and 

𝑛  is the number of target classes (therapies). The entry 𝑣(𝑘−1)𝑝+𝑗 is the Shapley value of feature 𝑗  in 

the prediction of therapy class 𝑘 , where 1 ≤ 𝑘 ≤ 𝑛 . Similarity between two patients is then defined 

                                                           
1 Note that the SHAP library typically uses a set of data instances (e.g. training data) as background information 
to compute SHAP values. We do not mention this input in the general concept, because alternative 
implementations without such data are possible. 



   
 

   
 

in terms of the Manhattan distance of their vector representations. In our main analysis, we have 𝑛 =

8 and 𝑝 = 96 . 

Experiments 
Our experiments are designed to test the feasibility of using AI to aid the therapy selection for patients 

with advanced/metastatic colorectal cancer. Specifically, we address four questions: (1) What is the 

quality of AI-based therapy selection, (2) do the local explanations with Shapley values render the AI 

algorithms’ selection interpretable, (3) is the AI-based similarity metric meaningful and (4) how does 

the availability of data impact the performance of the AI-based therapy selection? We describe the 

corresponding experiments below. We use accuracy and the macro-averaged f1-score as metrics for 

the predictive performance of the algorithm.  

Experiment 1: Quality of Predictions 

Assessing the quality of the predictions made by the AI algorithm yields a conceptual challenge since 

in general, the best therapy for a given patient is not known. We therefore here resort to comparing 

the AI’s predictions with the therapy decisions made by humans. However, even human experts may 

disagree regarding the optimal therapy for a specific case. This limits the quality that we can expect to 

observe but provides us with an indication about the quality of AI-based predictions. 

Experimental Setup 

In the experiments we used the records of 3,586 individual cancer patients. After removing implausible 

records, we were left with 3,563 patients. We extracted 71 variables containing information about the 

patient’s health status at the beginning of their first palliative therapy. We used one-hot encoding for 

non-binary categorical variables if they have less than 10 possible values and label encoding otherwise. 

Ordinal variables were encoded numerically. This gave us 𝑝 = 96  features as predictors for our ML 

model. As label for model training, we used the chosen therapies, defined as the combination of the 

principle of the chosen chemotherapy backbone and whether an antibody was given or not. This 

results in 8 different first-line  

therapies within the data set. From this data set we selected a stratified random sample of 60% of the 

records as training set and held out the rest for testing. With this data we trained a classifier using the 

XGBoost library (version 1.5.0) (4) and balanced class weighting. Predictive performance is measured 

in terms of accuracy (the sum of the diagonal entries of the confusion matrix divided by the total sum 

of its entries), and the 𝑓1 score (the harmonic mean of precision and recall), averaged over all target 

classes. We used both macro averaging (the unweighted arithmetic mean over all target classes) and 

weighted averaging with weights proportional to the number of true positives of the given class. 

Evaluation of prediction performance 

Figures 2 and 3 show the confusion matrix and ROC curves for the classifier’s predictive performance 

on the test set, respectively (horizontal: predicted treatments; vertical: actual treatments applied). To 

highlight the algorithm’s ability to distinguish between the therapy classes ‘DOUBLET Anti-VEGR' and 

‘DOUBLET Anti-EGFR', we also show the confusion matrix for n=12 distinct therapy classes (i.e. 

including detailed antibody information). Accuracy, weighted-average and macro-averaged f1-scores 

are reported in Table 1. 

 



   
 

   
 

 

 

 Figure 2: Confusion matrix for 8 distinct therapy classes 

 

 

 

Figure 2: Confusion matrix for 8 (upper panel) and 12 (lower panel) distinct therapy classes. The cell in 

row 𝑗 and column 𝑘 is colored according to the fraction of patients who were predicted to receive 

therapy 𝑘 among those patients who actually received therapy 𝑗 .   



   
 

   
 

 

 

Figure 3: ROC curves for the classifier’s predictive performance in the case of 8 distinct 

therapy classes. 

We observe that the AI-based prediction has a fair agreement with the actual given treatment and 

thus treatment choice of the treating physician. This is encouraging, given that also human experts 

may disagree on the best therapy and hence, we cannot expect perfect agreement in these 

experiments. However, rare therapies are never predicted and yield poor results in the evaluation. This 

is expected, as the training set includes a low – and insufficient – number of examples for rare 

therapies. One can expect improved results with bigger training sets. We investigate this effect in our 

fourth experiment. 

Number 𝑛 of 

distinct therapies 

Accuracy Weighted average 𝑓1-

score 

Macro-average 𝑓1-score 

8 0.53 0.50 0.21 

12 0.45 0.44 0.18 

15 0.27 0.26 0.16 

Table 1: Accuracy, weighted-average and macro-averaged f1-scores of the prediction for the three 

different levels of aggregation of the therapy classes. 

 



   
 

   
 

Experiment 2: Insights with global and local feature importance measures 

In these experiments we aim at testing the benefits of using local feature importance to support the 

therapy decision of oncologists. This experiment is qualitative by nature and aims at providing insights 

into the use of xAI in the targeted use case.  For the experiment we computed and visualized the 

Shapley values for therapy predictions. This comprises the global Shapley values (i.e. local Shapley 

values averaged over the entire test set) as well as local Shapley values for individual predictions. The 

visualizations are then analyzed by domain experts regarding their validity from a medical perspective. 

We provide a sample result and the corresponding medical analysis below. To protect the privacy of 

patients in the displayed figures, Gaussian noise was added to the features Age at start of 1-line, Date 

of inclusion, Disease free interval and BMI2. 

Qualitative assessment of xAI results 

We can obtain a global measure of feature importance by averaging the magnitude of the Shapley 

value of each feature and therapy over all patients in the test set. The results are then stacked to obtain 

the total feature importance. Figure 4 shows the 30 most important features used for therapy 

prediction. 

                                                           
2 The noise was added to the entire data set after training the model but before the computation of SHAP 
values. 



   
 

   
 

 

Figure 4: The 30 most important features used for therapy prediction. Here the importance of 

a feature is defined as the class specific global Shapley value, summed over all therapy classes. 

The length of the horizontal bars represents the importance of the given feature and the color 

coding shows the contributions of the different therapy classes.  

  



   
 

   
 

In Figure 5 we show the Shapley values for five different patients for which the algorithm correctly 

predicted therapy 5-FU monotherapy (5-FU Mono None, that is, intravenous 5-FU without an antibody) 

out of 8 different possible therapies. As mentioned above, patient data is overlaid with noise for 

privacy protection reasons. We chose these examples because they resemble interesting cases where 

a less common therapy was chosen. Such cases are well suited to check if the special reasons for using 

such a therapy are well reflected in the Shapley values. All five patients in Figure 5 are over 80 years 

when starting therapy (range 81 to 90 years). Age is known to be a very important factor in clinical 

decision-making because it strongly correlates with frailty and increased risk of treatment-related side 

effects. Interestingly, in patient number 3, it is also the additional diagnosis of diabetes without end 

organ damage that contributed to prediction of treatment with 5-FU monotherapy. In almost all 

patients (except patient 3), the body mass index (BMI) was a factor rather speaking against choice of 

5-FU monotherapy, although the effect was not very strong. These four patients had a BMI within the 

range considered to be normal weight. BMI is also a surrogate for morbidity; in the context of 

colorectal cancer, a low BMI can be associated with frailty and being a sign of malnutrition and disease 

activity. Thus the “normal” BMI may have been considered by the model as a factor that would have 

allowed more intense treatment than 5-FU monotherapy. 

  



   
 

   
 



   
 

   
 

 



   
 

   
 

 

Figure 5: Shapley values for five patients for which the algorithm correctly predicted 5-FU 

monotherapy. For privacy protection reasons, patient data displayed in the figures has been overlaid 

with noise. 

In Figure 6 we show the Shapley values for five different patients for which the algorithm predicted 5-

FU monotherapy, but the patient actually received doublet chemotherapy without an antibody (false 

positives). We chose these examples to be transparent about the existing uncertainty when predicting 

less common therapies. Furthermore, such cases provide insights into potential causes for divergence 

between the AI-based prediction and the treatment decision. The figures show the ten most important 

Shapley values for the prediction of this therapy class. Upper panel, reasons for and against treatment 

with 5-FU monotherapy; lower panel, reasons for and against treatment with doublet chemotherapy. 

In patient 1, similar to the true positives in Figure 5, increased age (79 years) was the factor speaking 

for 5-FU monotherapy and also the presence of anemia (patient 1, upper panel). We can see in the 

lower panel, that these factors are inversed, speaking against the treatment with doublet 

chemotherapy, whereas missing grading status and disease-free interval were factors favoring doublet 

chemotherapy. As outlined above, age is an important factor for treatment-decision making, but there 

are situations in which the perceived chronological age does not necessarily mirror the frailty status of 

the patient (fit elderly patients). Although we have information on the clinical performance status for 

most patients in our dataset, many important factors also driving treatment-decision making are not 

captured (e.g. the actual patient preference). For instance, some patients may opt for a more intense 

treatment, although risk for side effects is higher. Such factors outside our database might have driven 

the treatment decision. Interestingly, one would have assumed that co-morbidities and clinical 

performance status would have more weight in the recommended treatment, but the effect of these 

are rather modest in either direction. A similar pattern as for patient 1 can be seen in patients 2, 3, 4 

and 5. 

 

  



   
 

   
 

 

 

 

 

  



   
 

   
 

 

 

  



   
 

   
 

 

 

 

 

  



   
 

   
 

 

 

 

  



   
 

   
 

 

 

 

 

 

Figure 6: Shapley values for five different patients for which the algorithm predicted 5-FU 

monotherapy when actually doublet chemotherapy was applied, i.e., false positive prediction. Shapley 

values for and against 5-FU monotherapy (upper panel) and for and against doublet chemotherapy 

(lower panel) are depicted. For privacy protection reasons, patient data displayed in the figure has 

been overlaid with noise. 

 



   
 

   
 

Experiment 3: Benefits of AI-based similarity metric 

In this experiment we analyze the benefits of using the proposed AI-based similarity metric. The goal 

is to show that the metric improves the identification of patients that are similar in a meaningful way. 

A direct way to evaluate this aspect would be to enquire domain experts about their assessment of 

the results. For our experiments we take an indirect approach. That is, we use our similarity metric as 

input for a K-Nearest-Neighbor (KNN) classifier for therapy prediction and compare the classification 

results against a baseline metric. We argue that the KNN-classifier yields better prediction results if the 

underlying metric is more meaningful from a medical perspective.  

Experimental Setup 

For the distance between two patients, we use the metric based on Shapley values as described above. 

We use the same partitioning of the data into training and test set as in experiment 1 and fit a KNN-

classifier with number of neighbors 𝑘 = 30 and inverse distance weighting to the training data. The 

implementation is done with the KNeighborsClassifier of the scikit-learn library (version 1.0.2). For our 

baseline metric, we represent each patient by the vector w= (𝑤1, 𝑤2, … , 𝑤𝑝) of their features, where 

each feature is centered and normalized by its empirical standard deviation. Mean imputation is used 

for missing values3. As for the Shapley value-based metric, similarity of two patients is then defined in 

terms of the Manhattan distance of their vector representations and a KNN-classifier with the same 

parameters is fitted to the training data. We compare the performance of the two classifiers using the 

same metrics as in experiment 1. 

Evaluation 

The experiments show improvements of the prediction quality when using KNN with the Shapley value-

based distance metric, compared to a naïve baseline-distance metric (Table 2). Although the 

improvements are small, the results indicate that the Shapley-based distance metric may provide a 

meaningful similarity measure. Note that this experiment evaluates the desired effect only indirectly 

and classification is not the aim of the addressed use case. For many instances, a less elaborate metric 

may find less similar patients but lead to the same therapy prediction. In such cases we would observe 

no benefits. However, our approach aims at identifying patients that are similar in a meaningful way, 

so that they can serve as reference cases. Here, a better similarity is beneficial even if the recorded 

therapies are the same. Since the tests with a KNN classifier can only reveal benefits for certain cases, 

we find the observed improvement encouraging. An analysis with human experts who directly assess 

the usefulness of the similarity metric may further clarify the benefits of the approach. 

Score type Macro-averaged score Weighted average 

score 

Accuracy 

Number 𝑛 of distinct 

therapies 

KNN 

(Shapley) 

KNN 

(Baseline) 

KNN 

(Shapley) 

KNN 

(Baseline) 

KNN 

(Shapley) 

KNN 

(Baseline) 

8 0.17 0.13 0.49 0.48 0.58 0.58 

12 

 

0.15 0.13 0.44 0.42 0.50 0.48 

15 0.14 0.11 0.26 0.24 0.30 0.28 

Table 2: Prediction quality improvement using KNN. 

 

                                                           
3 Note that 12 out of 96 features were encoded with the LabelEncoder from the scikit-learn package 
(www.scikit-learn.org), which impacts the distance measure to some extent. 

http://www.scikit-learn.org/


   
 

   
 

Experiment 4: Impact of data availability 

The available amount of training data impacts the performance of machine learning models. However, 

the strength of this impact varies from case to case. In this experiment we analyze this effect for the 

case of colorectal cancer therapy predictions. 

Experimental Setup 

For our experiments we have in total 3,563 patient records available (see section Experiment 1 –

Experimental setup). To investigate the effect of the training size, we trained multiple models on 

differently sized subsets of the data. Specifically, we set aside a 40% stratified sample for testing and 

used the rest as source for training data. From the training data, we iteratively took 90% stratified 

subsets to train models (thereby iteratively reducing the training set size). We then computed 

performance measures (f1-socre for one-versus-all) on the initially held out test sets for each model. 

The process was repeated 10 times with different random seeds. 

Evaluation 

Figure 7 shows the results of the experiment about the impact of the training data size. From visual 

inspection of these plots, it appears that the learning curves for the prediction of two therapies reach 

a saturation point at about 500 training instances. For all other therapies we have less than 500 

instances in the training set and do not observe a point of saturation. Note that for several therapies 

the number of training examples is rather small. This results in a poor prediction performance of the 

model for those therapies. However, the shape of the curve suggests that improvements with larger 

training sets are possible. 

We draw two main conclusions from this analysis. One is that the performance results for therapy 

prediction (observed in section Experiment 1) would likely improve with additional training data. The 

other conclusion is that about 600 training instances per therapy may be sufficient for the chosen 

machine learning setup. 



   
 

   
 

 

Figure 7: Impact of the number of training samples of a given therapy class on the 

model’s performance in correctly labeling these samples, measured in terms of 𝑓1 

score. Dark blue is the mean value and light blue the standard deviation. 



   
 

   
 

 

Related Work  
Clinical decision support systems (CDSS) constitute an active area of research with applications 
including diagnostics, prediction of adverse events and drug control (8,9). Existing approaches are 
often categorized as either knowledge-based or non-knowledge-based. Knowledge-based CDSS build 
on expert knowledge fed into the system in the form of if-then rules. For example, such systems have 
been shown to successfully decrease the risk of medication errors in a hospital setting (10). Non-
knowledge-based (or data-driven) approaches on the other hand leverage real-world data by 
techniques from statistics and machine learning. The ideas of existing works on the topic are often 
borrowed from eCommerce, where data-based recommender systems are already being applied on a 
large scale. For example, in (11) a system based on collaborative filtering for treatment 
recommendations to psoriasis patients was presented. However, the application of non-knowledge-
based CDSS remains relatively scarce until today (12). Challenges faced include lack of available data 
or low data quality and the black-box behavior of many ML algorithms, limiting the trust placed into 
them by humans. In the field of cancer therapy, the CDSS Watson for Oncology (WFO) aims at providing 
treatment recommendations to oncologists regarding surgical procedures, radiotherapy and 
medication. For a given cancer patient, the system outputs a list of potential therapies for that patient 
based on characteristics such as comorbidities, tumor characteristics and laboratory findings. Those 
therapies are categorized as either recommended, for consideration or not recommended. A 
description of the underlying technology is given in the supplement of (13). Briefly, the system uses 
natural language processing to retrieve knowledge from a large corpus of medical journal articles 
relevant to the treatment decision for a particular case. Moreover, an ML algorithm is trained with 
data from manually selected cases thought to be representative of the full population of patients with 
a particular tumor entity. WFO can therefore be seen as a hybrid CDSS consisting of both a knowledge-
based and a non-knowledge-based component. While a meta-analysis found an overall solid 
agreement of WFO’s recommendations with those by human experts (14), this concordance has been 
shown to vary by country and tumor entity (15). For the field of hematology, the KAIT system is 
currently under development. Like WFO, it will aim at providing medical doctors with therapy 
recommendations and case-specific insights and features both data-driven and knowledge-based 
components (16). While we understand our tool as an analytics tool rather than a recommender 
system, the underlying methodology could also be employed in the framework of a CDSS. Therefore, 
our work adds to the body of knowledge about data driven decision support by providing tests on real 
world data about colorectal cancer treatments and analyzing a specific xAI approach. 
 
Summary and Discussion  
In this paper we analyzed the potential of using AI to build an information tool that enables dynamic 

data exploration and analysis of real-world datasets. Specifically, we analyzed the two use cases 

“therapy selection” and “identification of similar patients”. Both objectives aim to provide a second 

view built on the large amount of real-world data and thus make this broad knowledge accessible to 

individual oncologists. For these use cases we proposed a system setup that uses supervised learning 

and xAI techniques.  

We have shown the applicability of the concept and obtained insights on the required amount of 

training data, but additional work is required to further assess the viability of our approach. While we 

have demonstrated superiority of the AI-based approach against simple baseline methods, our 

experiments show a certain degree of disagreement between the predicted and the chosen therapy. 

However, disagreement is certainly also expected if different human experts are asked to give a second 

opinion. Quantifying the level of human disagreement and comparing this to the AI-based results is 

subject to future work.  



   
 

   
 

Our approach has limitations. One fundamental problem consists in the fact that our current AI 

algorithm learns therapy selection from prospectively recorded past records. However, the therapy 

landscape in oncology develops quickly causing concept drift; that is, historic decisions learned by the 

algorithm may have better alternatives by now. Also, the best practice about therapy decision may 

change over time and change the probability of selecting a therapy for a given patient. The discussed 

concept drift makes the algorithm prone to the cold-start problem of AI-based recommender systems: 

New, effective therapies will not be considered by the system if they have not been administered to 

enough patients yet. One possible solution to this problem could be to weight samples in such a way 

that the algorithm gives higher attention to more recent records. This may be combined with concept 

drift-detection techniques to adjust the training set accordingly. Another solution could comprise 

human expert knowledge. This could be realized e.g., through implementing a hybrid system where 

the AI-based recommender is complemented by a rule-based component. Furthermore, human 

knowledge may be applied to relabel older data records with the current knowledge about state-of-

the-art therapies. Note that the experiments in this paper do not account for the concept drift 

problem. That is, the algorithm is trained and tested on random subsets of the data, not considering 

temporal order. Also, the algorithm is provided with the starting date of the treatment. This allows the 

mechanism to learn about treatment regimens that were present in certain time frames and use that 

knowledge in the prediction. Testing the impact of concept drift on the prediction performance 

therefore remains an open issue. 

It is important to stress that therapy outcomes of patients such as overall survival, progression-free 

survival, and quality of life, which are also documented in the TKK database, were not considered. This 

means that the information tool may reproduce and even reinforce suboptimal, yet common practice 

in treatment routine. Future work should address this issue by including available outcome data when 

selecting therapies for patients. 

Furthermore, feature selection and hyperparameter tuning remains subject to future work. Due to the 

high number of features and therapy classes, the Shapley value-based similarity measure may be 

subject to the curse of dimensionality, which means that in high dimensions, the distribution of 

pairwise distances between points tends to concentrate. Feature reduction techniques applied 

upstream may therefore lead to better results. Hyperparameter tuning may yield further 

improvements, as the reported results were obtained using fixed and mainly default parameters of the 

XGBoost classifier. In future work, a systematic optimization of hyperparameters such as maximum 

tree depth and learning rate should be performed. Together with optimized feature selection this may 

lead to improvements of the model performance. 

We believe that the investigated concepts have great potential to support information processes in 

cancer care using dynamic data exploration and analysis of real-world datasets. Our findings show 

promising results that call for further analysis and development of the outlined ideas. Beyond 

expanding on these ideas and addressing the discussed limitations, we plan to address further use 

cases in future work.  
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