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Abstract 
Oscillating series of scores can be approximated with locally optimized smoothing functions. In this article, we describe how such series 
can be approximated with locally estimated (loess) smoothing, and how Configural Frequency Analysis (CFA) can be used to evaluate and 
interpret results. Loess functions are often hard to describe because they cannot be represented by just one function that has interpretable 
parameters. In this article, we suggest that specification of the CFA base model be based on the width of the window that is used for local 
curve optimization, the weight given to data points in the neighborhood of the approximated one, and by the function that is used to locally 
approximate observed data. CFA types indicate that more cases were found than expected from the local optimization model. CFA antitypes 
indicate that fewer cases were found. In a real-world data example, the development of Covid-19 diagnoses in France is analyzed for the 
beginning period of the pandemic. 
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In many contexts of real-world data analysis, series of ob-
servations do not follow a simple straight-lined or smoothly 
curved progression. Instead, they suggest ups and downs and 
oscillations of various sorts. Examples of such progression 
include brain waves, stock market development, heart beats, 
and traffic load on bridges. Another empirical example 
(which will be analyzed in detail later in this article) can be 
found in the progression of positive Covid-19 diagnoses. 
Figure 1 displays this development over 83 days, beginning 
with the first diagnosis in France on January 24, 2020 (Santé 
Publique, 2020).  

Figure 1 shows that there clearly is a strong, accelerated 
upwards trend for the first 36 days that is followed by a 
downward trend. In addition, this trend is not smooth, in  
particular after the number of positive diagnoses has reached 
its first peak, at day 36. 

In this article, we (1) propose approximating this kind of 
series of observations with loess smoothing. We (2) also pro-
pose using Configural Frequency Analysis (CFA) to evaluate 
the smoothed curve, and to identify segments in which an 
otherwise well-functioning selection of smoothing para-

meters fails to properly describe the series. 
 

Figure 1 
Number of positive Covid-19 diagnoses in France in the 83 
days after the first positive diagnosis 
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This article is structured as follows. First, we provide an 
overview of loess smoothing. Second, we discuss evaluation 
and interpretation of loess-smoothed curves with CFA. Third, 
we analyze in detail the data presented in Figure 1. 

Local Weighted Regression (Loess) 

Originally (Cleveland, 1979; Cleveland, & Devlin, 1988; 
see also Wilkinson, Blank, & Gruber, 1996), the smoother to 
be discussed in this article was called lowess, brief for locally 
weighted scatterplot smoother. The method is also known as 
Savitzky-Golay filter (Savitzky & Golay, 1964). Now, the 
very same method is called locally weighted regression 
smoothing or locally weighted scatterplot smoothing, and is 
abbreviated with loess. To introduce this smoother, we fol-
low Dagum and Luati (2003; see also Dagum & Luati, 2000, 
2001) and first note that a series of scores can have a global 
and a local representation. When the global representation is 
used, one model is used for the entire series of scores. For 
example, one straight regression line or polynomial is used 
to describe the entire series (for the use of polynomials in 
CFA, see, e.g., von Eye & Wiedermann, 2021). When local 
representation is used, the series of scores is subdivided in 
sectors (the windows), and regression lines, polynomials, or 
other functions are used to describe the scores in each sector. 
Typically, the function that is used is the same for all sectors. 

In standard applications of the General Linear Model 
(GLM; e.g., regression or ANOVA applications), weights 
can be used to reduce the error of a model. When ordinary 
least squares is used to estimate GLM parameters, the pa-
rameter vector, β, is 

𝛽𝛽 = (𝑋𝑋′𝑊𝑊𝑋𝑋)−1𝑋𝑋′𝑊𝑊𝑊𝑊, 
where X is the design matrix, Y denotes the observed scores, 
and W is the weight matrix. This equation holds for both 
global and local representations of series of scores. 

The design matrix contains the scores of the predictors 
and/or the coefficients of the polynomials used to model the 
series of scores. For example, a regression in which a square 
curvature is fitted, could be 

𝑦𝑦 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥 + 𝑏𝑏2𝑥𝑥2, 
where the x are the predictor scores, and the b are the regres-
sion parameters. In the context of modeling series of scores, 
the x often are the observation points in time. 

When a global representation of a series is intended, this 
type of model is applied to the entire series of scores. When 
regression weights are used, these are often the scores of 
third variables, observed at the same points in time. When, 
however, loess smoothing is used, two elements of this ap-
proach differ. First, the regression model is applied only to 
the scores that lie within a predefined window. The size of 
the window is a priori determined and can be measured in 
units of number of observation points. Second, the weights 
are also measured in units of observation points. More spe-
cifically, the observation points close to the data point to be 

approximated receive greater weights than the observation 
points farther away. 

In more technical terms, let the observation point to be 
modeled be tj, where 𝑗𝑗𝑗𝑗𝑗𝑗 numbers the observation points, 
and let tk be the observation points that are time adjacent and 
within the window. Then, one weight wk of tk is, for tj, 

𝑤𝑤𝑘𝑘�𝑡𝑡𝑗𝑗� =
1 − |𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘|

𝛥𝛥�𝑡𝑡𝑗𝑗�
, 

where 𝛥𝛥�𝑡𝑡𝑗𝑗� = 𝑚𝑚𝑚𝑚𝑥𝑥�𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑘𝑘�.  Evidently, the weight de-
pends on the size of the window and, thus, the distance be-
tween observation points within this window. 

Alternatively, and traditionally, the weight function for lo-
ess smoothing is the tri-cube weight function, 

𝑤𝑤𝑘𝑘 = �1− �𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑗𝑗�
3
�
3

. 

In loess smoothing, each window is of equal width. That 
is, each window contains the same number of points. The 
smoothing parameter is the portion of observation points 
within a window. The wider the window, the smoother the 
fitted curve. 

When the absolute value of the distance tk – tj is scaled to 
range from 0 to 1, the tri-cube weight function assumes the 
form depicted in Figure 2. 
 
Figure 2 
Tri-cube weight function for 0 ≤ |d| ≤ 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 indicates that the weight decreases as the distance 

increases. 
Within each window, the same polynomial regression is 

performed. The degree of the polynomial is determined a pri-
ori and is bounded by the width of the window. To prevent 
hitting the points exactly – which would counter the idea of 
smoothing – the polynomial should be of a degree of ‘num-
ber of observation points within the window – 2.’ Dagum and 
Luati (2003) state that low degree polynomials, e.g., linear 
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or quadratic polynomials, are usually the best choice. Higher 
degree polynomials are suitable in particular when the 
smoothing is expected to reflect at least some of the observed 
oscillations, and when the window includes many data 
points. 

The width of the window is also determined a priori. Se-
lecting narrow windows results in a curve that oscillates with 
the observed scores. Selecting a wide window will result in 
a very smooth curve with no oscillations. 

Given the width of the window, the weights, the degree of 
the polynomial, and the magnitude of the smoothing param-
eter, the weighted least squares regression parameter for 
window j is estimated as 

𝛽𝛽�̂�𝚥 = �𝑋𝑋𝑗𝑗′𝑊𝑊𝑗𝑗𝑋𝑋𝑗𝑗�
−1𝑋𝑋𝑗𝑗′𝑊𝑊𝑗𝑗𝑊𝑊𝑗𝑗 . 

That is, one weighted polynomial regression is estimated 
for the series of scores in each window. 

CFA and Loess Smoothing 

Configural frequency analysis (CFA; Lienert, 1968; for 
technical elements and detail on CFA and recent develop-
ments, see von Eye et al., 2010, von Eye & Wiedermann, 
2021, and Wiedermann et al., 2021) allows one to identify 
strong deviations from model-based expected frequencies. 
When, locally, significantly more cases are observed than 
expected based on the model, a CFA type has been identified. 
When fewer cases are observed, a CFA antitype has been 
identified. 

With only very few exceptions, CFA is applied to the anal-
ysis of cross-classifications of two or more variables. The 
exceptions are all analyses of series of scores. The approach 
proposed in this article belongs to this group. CFA of indi-
vidual series of scores was proposed by von Eye (2002) as 
unidimensional CFA. In this approach, frequencies for a se-
ries of scores are estimated either to be constant, as in zero-
order CFA, or with weights that account for a priori expected 
variations in a series. The difference to the approach pro-
posed here is that, in unidimensional CFA, just as in all other 
models of longitudinal CFA, the expected cell frequencies 
are estimated based on a global representation of series of 
scores. Here, local representation is used. 

Specifically, loess smoothing is used to estimate the ex-
pected frequencies for each observation. As was explained 
in the previous section on loess smoothing, the frequencies 
are estimated based on the same model for each time window. 
This model uses specifications made before analysis, that is, 
width of window, smoothing parameter, and degree of poly-
nomial. However, the model remains the same over all time 
windows. 

This approach is novel in the following two respects. First, 
instead of using the entire pool of data points, the estimation 
of expected frequencies uses only a selection of data points. 
Therefore, CFA types and antitypes indicate not only local 
deviations from expectancy but they are also local in the 
sense that the estimation of expected cell frequencies used 

only local information. The range of information that is used 
depends on the width of the time window that is used for 
loess modeling. Second, types and antitypes do not indicate 
local contradictions to a global model. Instead, they indicate 
that a smoothing model that is a priori specified without us-
ing information from the data to be analyzed fails to describe 
the series within a particular time frame. 

We call the approach proposed here loess CFA. It has the 
following characteristics: 

• it is nonparametric: no assumptions are made concern-
ing the distribution of the data when the loess smoother is 
applied; 

• it is a local regression approach: standard regression 
methods with least squares estimation are used for each time 
window (there exists a number of alternative regression 
models that can be considered as well); 

• it, therefore, shares the characteristics of least squares 
regression such as sensitivity to outliers (note that robust lo-
ess smoothing approaches have been proposed); 

• it is easily implemented, in particular when the obser-
vation points are equidistant (approaches to loess smoothing 
for non-equidistant observation points do exist, but they are 
computationally more intensive); 

• it is more robust than most other time series smoothers; 
• it requires relatively long series of observations (alt-

hough there are no solid recommendations in the literature 
concerning the number of observations needed); 

• the same significance tests for detecting types and an-
titypes can be used as in standard CFA (see von Eye & 
Wiedermann, 2021), and 

• the same methods of α protection can be used as well; 
the number of tests is given by the number of observation 
points. 

Data example. In the following paragraphs, we resume 
the analysis of the series of positive Covid-19 diagnoses that 
had been used for Figure 1. We proceed as follows. First, we 
illustrate that a global representation of these data is not sat-
isfactory. Second, we illustrate the smoothing effects of time 
windows that differ in width. Third, we select a loess 
smoothing approach and subject the resulting expected fre-
quencies to loess CFA. 

To illustrate that global representation can be less than sat-
isfactory, we just use a quadratic function. Figure 3 shows 
the result. 

Figure 3 suggests that the global representation of the se-
ries of score by a quadratic curve describes the data poorly. 
The up and down is represented in part, the oscillations are 
not represented at all. This visual impression is supported by 
the non-significant correlation between observed and ex-
pected frequencies, r = -0.147 (p = 0.184). Adding to this 
model a linear trend increases the correlation to r = 0.777 (p 
< 0.01), but the data are still not well represented in the sense 
that there are large differences between expected and ob-
served frequencies. 
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Figure 3 
Number of positive Covid-19 diagnoses in France in the 83 
days after the first positive diagnosis; global quadratic 
smoother 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We, therefore, move to loess smoothing. Here, we first il-

lustrate that, whereas a wider window frame results in a 
smooth approximation curve, a narrower frame allows one 
to better capture the oscillations, but at the expense of a less 
smooth curve. Figure 4 displays the loess-smoothed curve 
under the following specifications: 
• each time window contains a portion of 0.4 of all data 
points, thus allowing only long waves to be represented 
• data points to the right and to the left are weighted in-
versely proportional to their distance from the target point by 
way of the tri-cube weight function 
• quadratic local regression is used in each window. 
 
Figure 4 
Number of positive Covid-19 diagnoses in France in the 83 
days after the first positive diagnosis; loess smoother 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 4 shows that the approximation of the observed fre-

quencies with the loess smoother is clearly better than the 
approximation that is based on the global regression function. 

The correlation between the observed and the expected fre-
quencies now is r = 0.92, that is, close to perfect. Neverthe-
less, this result is not acceptable either, for two reasons. First, 
it estimates negative frequencies for the first five days. In the 
analysis of frequency data, negative estimates must be 
avoided. Second, it smooths over the oscillations. It was one 
of the goals of the present analyses to capture at least some 
of the variability in the oscillations. 

For these two reasons, we now select a narrower time win-
dow. Specifically, we reduce the portion of data points in the 
window to 0.05, thus allowing short-length waves of 2 Hz to 
be represented. All other model specifications are the same. 
Figure 5 displays the smoothed curve. 
 
Figure 5 
Number of positive Covid-19 diagnoses in France in the 83 
days after the first positive diagnosis; loess smoother with 
fine-grained resolution 
 
 
 
 
 
 
 
 
 
 
 
 
 

Evidently, the loess-smoothed estimates now are much 
closer to the observed frequencies than in Figure 4. The cor-
relation between the estimated and the observed frequencies 
now is r = 0.983, very close to perfect. Still, just 12 observed 
scores are exactly reproduced. This is desired because the 
smoothed curved is not more parsimonious than the ob-
served curve when it reproduces all data points exactly. 

Now, in spite of the extremely large correlation, Figure 5 
shows that there are differences between the observed and 
the estimated progression of positive diagnoses. This is 
where CFA comes into play. CFA allows one to answer the 
questions of where in the series deviations are significant and 
how to interpret them. We take the four steps of CFA (von 
Eye & Wiedermann, 2021). 

Step 1: Specification of base model. The key element of 
the interpretation of CFA types and antitypes is the CFA base 
model. In all applications of CFA thus far, the base model 
was defined as a probability model that specifies variable re-
lations (cf. von Eye, 2004; von Eye & Gutiérrez Peña, 2004). 
In the present article, a new approach is proposed. Specifi-
cally, the base model is no longer expressed in terms of var-
iable relations. Instead, the model is defined by the charac-
teristics of the data generation process that is hypothesized 
to smooth the series. This process has, in the present case, 
three main characteristics. 
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First, it is unchanged over the entire time series. Second, 
simple quadratic polynomials are sufficient to describe the 
local shape of progression. Third, the time window used for 
the present analysis is relatively narrow. This last character-
istic was specified so the oscillating characteristics of the se-
ries could be captured. This was deemed necessary because 
there are systematic changes over the days of the week. 
These changes reflect characteristics of data collection, that 
is, on Sundays, fewer tests and diagnoses are performed than 
on other days of the week. This results in day of the week-
related oscillations. Figure 4 suggests that the selected model 
is capable of approximating these oscillations, up to a point. 

Unchanged from standard CFA, the interpretation of CFA 
types and antitypes is conducted with reference to the CFA 
base model. Here, types and antitypes do not suggest that 
variable relations exist that were not included in the base 
model. Instead, types and antitypes suggest that the model 
that was used to represent the local progression is, for a par-
ticular target point and its neighborhood, insufficient. In 
most cases, one can assume that the model is not complex 
enough. Here, higher order polynomials can be considered. 
Substantively, one can ask what events caused the locally 

increased complexity of the progression. 
Step 2: Significance testing. The numbers of positive 

Covid-19 diagnoses are large. Therefore, we can use the z-
test and protect α with the Bonferroni procedure . The pro-
tected significance threshold becomes α* = 0.05/83 = 0.0006. 
This value corresponds to an absolute z-score of 3.238. Ob-
served z-scores more extreme than this value point at target 
points that constitute types or antitypes. 

Step 3: Performing CFA. Table 1 displays the results of 
CFA. The first column in the table contains the days of ob-
servations, beginning with the first day of a positive diagno-
sis. The second column contains the observed counts. The 
third column contains the frequencies that were estimated 
under the wide window (Figure 4; Loess04). The fourth col-
umn contains the frequencies that were estimated under the 
narrower window (Figure 5; Loess005). 

The values in these two columns correlate to r = 0.929. 
Again, this is an extremely high correlation. Still, the nar-
rower window results in a much better approximation. In 
particular, Table 1 shows that all estimates under the nar-
rower window (Loess005) are positive - a must for frequency 
data. 

 
Table 1 
Loess-CFA of the series of Covid-19 diagnoses in the first 83 days of the pandemic in France, 2020 
 

Date Weekday Infected Loess04 Loess005 z-value 
Type/ 

Antitype? 
1 Friday 1 -393.46 1.12 0.11 - 
2 Saturday 1 -313.09 0.71 0.34 - 
3 Sunday 0 -231.16 5.73 2.39 - 
4 Monday 19 -147.6 17 0.49 - 
5 Tuesday 31 -62.41 29.28 0.32 - 
6 Wednesday 37 24.39 35.86 0.19 - 
7 Thursday 39 112.77 59.09 2.61 - 
8 Friday 111 202.65 101.85 0.91 - 
9 Saturday 151 293.97 166.48 1.2 - 

10 Sunday 245 386.64 238.14 0.44 - 
11 Monday 315 480.59 302.69 0.71 - 
12 Tuesday 342 575.71 327.67 0.79 - 
13 Wednesday 319 671.89 318.72 0.02 - 
14 Thursday 295 769.03 366.95 3.76 A 
15 Friday 516 867.2 468.91 2.17 - 
16 Saturday 571 967.48 617.69 1.88 - 
17 Sunday 788 1073.89 787.72 0.01 - 
18 Monday 1004 1209.12 1010.68 0.21 - 
19 Tuesday 1244 1352.32 1152.34 2.7 - 
20 Wednesday 1176 1504.35 1238.98 1.79 - 
21 Thursday 1341 1666.09 1466.73 3.28 A 
22 Friday 1947 1837.83 1776.53 4.04 T 
23 Saturday 2016 2018.5 2087.31 1.56 - 
24 Sunday 2359 2202.78 2267.06 1.93 - 
25 Monday 2370 2381.22 2496.21 2.53 - 
26 Tuesday 2885 2544.28 2625.3 5.07 T 
27 Wednesday 2699 2686.19 2762.35 1.21 - 
28 Thursday 2819 2808.17 2819 0 - 
29 Friday 4532 2913.4 3624.5 15.07 T 
30 Saturday 4430 3003.02 4430 0 - 
31 Sunday 4472 3078.38 4507.94 0.54 - 
32 Monday 4639 3141.84 4639 0 - 
33 Tuesday 5851 3196.68 4913.5 13.37 T 
34 Wednesday 5188 3245.91 5188 0 - 
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35 Thursday 4181 3292.63 5188 13.98 A 
36 Friday 5542 3339.9 4585 14.13 T 
37 Saturday 4585 3391.34 4585 0 - 
38 Sunday 4079 3448.52 4289.32 3.21 - 
39 Monday 4168 3504.9 4168 0 - 
40 Tuesday 4180 3539.75 3580.5 10.02 T 
41 Wednesday 2993 3525.2 2993 0 - 
42 Thursday 2646 3451.39 2646 0 - 
43 Friday 3800 3335.8 2936.5 15.93 T 
44 Saturday 3227 3205.26 3227 0 - 
45 Sunday 3089 3075.59 3063.67 0.46 - 
46 Monday 2860 2950.04 2905.61 0.85 - 
47 Tuesday 3008 2829.08 2619.52 7.59 T 
48 Wednesday 2305 2712.27 2334.02 0.6 - 
49 Thursday 1865 2598.61 2010 3.23 - 
50 Friday 1916 2487.98 1916 0 - 
51 Saturday 2615 2381.28 2086 11.58 T 
52 Sunday 2256 2279.94 2256 0 - 
53 Monday 2114 2185.09 2165.35 1.1 - 
54 Tuesday 2197 2096.6 1947.55 5.65 T 
55 Wednesday 1616 2013.41 1616 0 - 
56 Thursday 1287 1934.13 1616 8.18 A 
57 Friday 2230 1858.59 1796 10.24 T 
58 Saturday 1796 1788.07 1796 0 - 
59 Sunday 1622 1723.5 1715.87 2.27 - 
60 Monday 1765 1664.43 1690.56 1.81 - 
61 Tuesday 1637 1609.65 1511.59 3.23 - 
62 Wednesday 1100 1557.72 1105.4 0.16 - 
63 Thursday 789 1507.13 1248.95 13.01 A 
64 Friday 1412 1457.17 1400.21 0.32 - 
65 Saturday 1603 1408.42 1574.53 0.72 - 
66 Sunday 1690 1361.99 1635.8 1.34 - 
67 Monday 1572 1318.4 1464.13 2.82 - 
68 Tuesday 888 1279.71 1239.05 9.97 A 
69 Wednesday 1032 1240.64 990.26 1.33 - 
70 Thursday 795 1201.09 1143.1 10.3 A 
71 Friday 1383 1161.32 1273.16 3.08 - 
72 Saturday 1403 1121.53 1336.85 1.81 - 
73 Sunday 1173 1081.79 1235.82 1.79 - 
74 Monday 1169 1042.13 1063.13 3.25 T 
75 Tuesday 782 1002.52 951.79 5.5 A 
76 Wednesday 935 962.95 829.42 3.67 T 
77 Thursday 659 923.42 867.4 7.08 A 
78 Friday 999 883.92 905.55 3.11 - 
79 Saturday 980 844.49 965.07 0.48 - 
80 Sunday 907 805.13 923.42 0.54 - 
81 Monday 892 765.82 830.59 2.13 - 
82 Tuesday 667 726.55 690.49 0.89 - 
83 Wednesday 525 687.27 555.62 1.3 - 

Step 4: Interpretation of types and antitypes. Table 1 
shows that nine antitypes and 13 types emerged. Of these, 
we first interpret the most extreme ones. The most extreme 
type is constituted by Day 43. 3800 positive diagnoses were 
counted, but the loess smoother made one expect only 
2936.5 cases. The hypothesized data generation mechanism 
was clearly unable to capture this strong upswing. The most 
extreme antitype is constituted by Day 35. 4181 positive di-
agnoses were counted for this day, but 5188 had been ex-
pected. Here, the hypothesized data generating mechanism 
was unable to capture the downswing in the progression. 
This applies accordingly to the other types and antitypes. 

Second, we interpret the resulting pattern of types and an-
titypes. Interestingly, seven of the nine antitypes are 

constituted by days that are multiples of seven. In addition, 
these seven antitypes all occur on Thursdays. This is signif-
icantly more than expected under the assumption of a uni-
form distribution of antitypes over the days of a week (p = 
0.017). Considering that Santé Publique did not publish any 
discussion of diagnose patterns or trends, we are in search of 
an explanation of this result. Among the possible interpreta-
tions is the following one. At the beginning of the pandemic, 
it took about four days before the results of the Covid-19 
tests were available. The Thursday antitypes may, therefore, 
reflect the fact that, on the Sundays before, fewer tests were 
administered than on other days. The CFA base model of lo-
ess smoothing seems to be sensitive to these drops. 

Types tend to occur more often than average on Fridays. 
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Five of the 13 types occurred on a Friday. This, however, is 
a non-significant deviation from expectancy. Longer series 
of data may be needed to determine whether there is a con-
nection of these increases with the drops on Thursdays. 

In all, we conclude that the rhythm that was hypothesized 
for the days of the week was much better captured under the 
narrower than under the wider window, but still not well 
enough to prevent these seven antitypes and 12 types from 
emerging. There seems to be a significant pattern only for 
the antitypes. It this respect, the downswings resulted in a 
pattern that is harder to capture by the hypothesized data 
generation mechanism than the pattern of the upswings. 
Overall, however, more upswings than downswings were 
missed. It needs to be determined whether this reflects the 
progression of the pandemic, day of the week-related char-
acteristics of testing, or both. 

Discussion 

In this article, we propose a new approach to CFA. The 
new approach differs from existing approaches to CFA in 
two major aspects. First, thus far in CFA, the logic of search-
ing for types and antitypes consisted of specifying a base 
model that included all effects, e.g., variable relations, that 
are not of interest to the researchers. Types and antitypes 
then suggest where in the data space the effects exist that are 
of interest to the researchers. The new approach follows this 
logic. However, instead of specifying a base model of varia-
ble relations, it specifies a base model in terms of a data gen-
erating process. Types and antitypes then suggest the sector 
in the data space in which a different or more complex data 
generation process must be at work. 

The second major difference between CFA as it was 
known so far and the new approach is that the new approach 
is tailored to be applied to series of individual observations, 
e.g., time series (standard CFA approaches for longitudinal 
data rely on aggregated counts). To approximate a series, a 
data generating process is hypothesized that explains the 
progression locally, that is, within the intervals of an a priori 
specified width. 

Just as in earlier approaches to CFA, the number of op-
tions to explain the emergence of types and antitypes is lim-
ited. In CFA as it was known so far, these options consist of 
variable relations. For example, in first order CFA, these op-
tions include all possible variable interactions. In Prediction 
CFA (P-CFA), these options include all possible predictor-
criterion relations. Here, the options concern the three main 
elements of loess smoothing, the width of the window, the 
function used to locally approximate progression, and the 
weights used for the neighbors of the target point. In the ex-
ample in the last section, we moved from Figure 4 to Figure 
5 by leaving the function and the weights untouched. How-
ever, we narrowed the time window. This way, we opened 
the door to a finer-grained resolution of the smoothing pro-
cess, and we know that the differences between Figures 4 
and 5 are solely due to the narrowed window. 

In the analysis of time series, a large number of methods 

has been proposed. A thorough comparison of these methods 
is beyond the scope of this article. However, it can be said 
that, some of these, e.g., spline smoothing, can result in very 
similar results as loess smoothing. In addition, spline 
smoothing requires less calculation effort than loess smooth-
ing. For the current purposes, loess smoothing seems more 
useful nevertheless, for two reasons. First, loess smoothing 
can be tailored so that both the fast and the slow changes are 
modeled separately. Second, it is more local in the sense that 
changes within individual and narrow windows can be re-
flected. This characteristic is of particular importance for 
CFA. Still, the configural analysis of time series that is based 
on curves that describe the data generation process in just 
one function can be an interesting option, one that will be 
explicated in future work. 

Generalizations of the proposed new CFA approach are 
straightforward. The most important could be the generali-
zation to loess-smoothing of more than one variable. This 
way, in time series, progression hyperplanes would be 
smoothed instead of progression lines. This is promising but 
it is material for future work. 

Other generalizations concern the observation points. In 
the description of the method and in the example given in 
this article, the observation points were equidistant. In many 
empirical studies, equidistant observations are hard to realize. 
For example, in school settings, series of observations are 
interrupted because children are on vacation. In psychother-
apy, time intervals between therapy sessions can vary de-
pending on the needs of patients, or WiFi reception varies 
because of interferences. Methods for loess-smoothing for 
non-equidistant observation points exist and can be incorpo-
rated in the loess CFA framework. 

A third way of generalization of the method proposed here 
consists of incorporating the new method in the context of 
existing CFA methods. It is, for example, conceivable, to in-
corporate loess CFA in the context of moderator CFA. Mod-
erator variables would then be used to explain variations of 
type/antitype patterns across individuals or groups of indi-
viduals. In a similar way, smoothed curves could be gener-
ated and subjected to CFA for periods before and after cer-
tain interventions. This, again, is material for future work. 
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