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Abstract
Bioprocess development and optimization are still cost- and time-intensive due to the enormous number of experiments 
involved. In this study, the recently introduced model-assisted Design of Experiments (mDoE) concept (Möller et al. in 
Bioproc Biosyst Eng 42(5):867, https ://doi.org/10.1007/s0044 9-019-02089 -7, 2019) was extended and implemented into 
a software (“mDoE-toolbox”) to significantly reduce the number of required cultivations. The application of the toolbox is 
exemplary shown in two case studies with Saccharomyces cerevisiae. In the first case study, a fed-batch process was optimized 
with respect to the pH value and linearly rising feeding rates of glucose and nitrogen source. Using the mDoE-toolbox, the 
biomass concentration was increased by 30% compared to previously performed experiments. The second case study was 
the whole-cell biocatalysis of ethyl acetoacetate (EAA) to (S)-ethyl-3-hydroxybutyrate (E3HB), for which the feeding rates 
of glucose, nitrogen source, and EAA were optimized. An increase of 80% compared to a previously performed experiment 
with similar initial conditions was achieved for the E3HB concentration.

Keywords Biocatalysis · Monte Carlo methods · Fed-batch strategy · Model-assisted design of experiments · Quality by 
design

Abbreviations
DCW  Dry cell weight
DO  Dissolved oxygen
DoE  Design of experiments
EAA  Ethyl acetoacetate
EtOH  Ethanol
E3HB  (S)-Ethyl-3-hydroxybutyrate
Glc  Glucose

mDoE  Model-assisted design of 
experiments

Pep  Peptone
RMSD  Weighted mean squared deviation
RS  Response surface
RSM  Response surface method
RQ  Respiratory quotient
YE  Yeast extract

List of symbols
ck  Concentration of component k in the 

bioreactor ( g l−1)
ck,feed  Concentration of component k in the 

feed ( g l−1)
d  Desirability function (–)
Di  Combined desirability function (–)
F  Total feeding rate ( ml min−1)
Fck

  Feeding rate of component k 
( ml min−1)

Fk  Feeding rate of component k 
( ml min−1)

FV, in  Total volumetric feed rate ( g l−1h−1)
i (index)  Recommended factor combination 

(–)
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k (index)  EAA, Glc, N, EtOH, E3HB (–)
kweighting  Weighting factor in RMSD (–)
Ks  Saturation constant ( g l−1)
Ksl  Gradient slope (–)
L  Lowest value/lower limit (–)
MWk  Molecular weight of the state vari-

able k ( g mol−1)
MWS  Molecular weight of the substrate S 

( g mol−1)
n  Number of data points (–)
rck  Total uptake/consumption rate ( h−1)
r̄i  Average value of response i (–)
rS  Substrate uptake rate ( g l−1h−1)
R2  Coefficient of determination (–)
SBC  Biocatalysis educt ( g l−1)
SC  Carbon substrate ( g l−1)
SN  Nitrogen substrate ( g l−1)
t  Time (h)
U  Highest value/upper limit (–)
V  Working volume of the bioreactor 

(l)
w  Weighting factor in Di (–)
Xd  Dead biomass ( g l−1)
Xi  Inactive biomass ( g l−1)
Xp  Product forming biomass ( g l−1)
Xpri  Autocatalytically active biomass 

( g l−1)
Xs  Structurally active biomass ( g l−1)
Xsi  Structurally inactive biomass ( g l−1)
Xv  Viable biomass ( g l−1)
X50,l  Low location parameter of x (–)
X50,h  High location parameter of x (–)
yi  Measured value (–)
ȳi  Mean of measured data (–)
ys  Simulated value (–)
Yh  y at high x (–)
Yi∕S  Yield coefficient (–)
Yl  y at low x (–)
Ymid  y at medium x (–)
�i in model  Stoichiometric coefficient (–)
�i in MC simulation  Predicted variability (–)

Introduction

Biotechnology is expected to make a significant contribu-
tion to the establishment of a bio-based economy, since it 
offers new product manufacturing approaches and resource-
efficient technologies [2, 3]. However, the development of a 
bio-economy requires new sustainable and environmentally 
friendly industrial production processes [4, 5]. Experiments 
for their development and optimization are usually designed 
using one-factor-at-a-time approaches and statistical Design 

of Experiments (DoE) methods. DoE methods inevitably 
require a large number of experiments to be performed and 
analytically evaluated [6, 7]. Although the use of high-
throughput systems is well established, e.g., for the screen-
ing of new enzymes or drugs [8, 9], they can be used with 
simplifications only for the actual process development (e.g., 
dimensioning of bioreactors, design of process control strat-
egies, and scale-up) [10–12]. Although DoE can be used to 
identify correlations between process parameters and their 
influence on the final productivity, the complex bioprocess is 
reduced to a few key numbers (e.g., final product concentra-
tion), and the dynamics of growth and metabolism are not 
sufficiently taken into account [1, 13, 14]. In addition, the 
heuristic conception of a DoE by choosing the limits of the 
parameter space poses a particular challenge [15–17]. Thus, 
there is a high risk that the experiments carried out were 
wrongly chosen and have only insufficient validity, which 
results in further costs and time delays [1, 18].

To overcome the previously mentioned limitations of 
DoE, a new model-assisted Design of Experiments (mDoE) 
concept was recently introduced for knowledge-driven bio-
process development and optimization [1, 14, 19]. In the 
mDoE approach, the recommended experiments in statisti-
cal DoE designs are simulated using mathematical process 
models instead of being performed experimentally. The 
DoE designs (i.e., experimental space) are then evaluated 
based on the simulations, which enables the definition of a 
well-defined experimental space with a significantly reduced 
number of experiments to be performed experimentally. 
Besides the significant reduction of the number of experi-
ments, the use of mathematical process models is nowadays 
seen as a sustainable part of a knowledge-driven bioprocess 
development strategy, because they contribute to the scien-
tific understanding of the process [12, 20–22]. So far, the 
successful application of the mDoE approach in the field of 
medium and feeding strategy optimization for an antibody-
producing Chinese Hamster Ovary cell line was shown [1, 
14, 19]. Among the here presented application in the field of 
bio-economy, mDoE is currently used in optimization stud-
ies with algae, stem cells, and different mammalian producer 
cell lines.

In this study, the mDoE concept is incorporated into a 
software toolbox (“mDoE-toolbox”) for efficient design and 
optimization of biotechnological processes with a reduced 
number of experiments. In general, the toolbox can be used 
for different applications such as cell culture, algae, and 
yeast. Here, the application of the mDoE-toolbox is shown 
in two optimization case studies with Saccharomyces cerevi-
siae. In the first case study (S1), the cultivation conditions of 
a fed-batch process were optimized to increase the biomass 
concentration. The chosen factors were the pH value of the 
medium and the feeding rates of linearly rising feeding rates 
for glucose ( FGlc ) and nitrogen source ( FN ). In the second 
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case study (S2), the concentration of (S)-ethyl-3-hydroxy-
butyrate (E3HB) was maximized in the biocatalytic conver-
sion of ethyl acetoacetate (EAA) to E3HB based on constant 
feeding rates for EAA ( FEAA ), glucose ( FGlc ), and nitrogen 
source ( FN).

mDoE‑toolbox

The mDoE concept (see [1, 14]) was incorporated into a 
software toolbox, implemented in MATLAB (V2018a) and 
R (V3.5.1). The main parts of the mDoE-toolbox are the 
combination of a mathematical process model, including 
model-parametric uncertainties with the computational plan-
ning and evaluation of DoE designs.

In the beginning, the objective of the study (i.e., maxi-
mization of product concentration and minimization of 
inhibitory component) is defined. Then, the biotechnologi-
cal system is modeled first, as can be seen in the structural 
workflow in Fig. 1 box I. Thus, prior knowledge (e.g., pre-
experiments and literature) about the strain is used to define 
mathematical expressions for cell growth, metabolism, and 
productivity [1]. It should be noticed that process modeling 
itself is a rather undefined work, and a variety of models 
and modeling approaches of different considered complex-
ity exist in the literature [24–25]. The mDoE-toolbox is 
designed to be applied in the initial phase of process devel-
opment for which very little data are available. Therefore, 
structurally simple [14, 26] or generalized models [27] are 

applied, for which model parameters can be adapted based 
on few data points typically generated in medium tests or 
first cultivations. After defining a mathematical model, the 
model-parametric uncertainties are derived with Monte 
Carlo sampling based on the experimental uncertainty (i.e., 
measurement error, Fig. 1 box II). Therefore, the expected 
process variability based on the measurement errors is simu-
lated and later used in the DoE evaluation [19, 28]. Next, the 
experimental factors and responses are defined (Fig. 1 box 
III) with individual boundary values, e.g., a tolerated con-
centration of an inhibitory component or a minimal required 
product concentration. A DoE design, such as an optimal 
design [29, 30] or Box–Behnken design [31, 32], is subse-
quently planned. Additionally, mDoE enables the in silico 
comparison of different DoE designs, which is not targeted 
in this study.

For each recommended factor combination i, the time 
courses of the modeled state variables (e.g., cell weight, 
substrate, and product concentration) are simulated multi-
ple times (Monte Carlo simulations, Fig. 1 box IV) taking 
into account the previously determined parameter probabil-
ity functions (box II). From these simulations, the average 
expected response ri (e.g., average maximal cell dry weight) 
and the variability �i are calculated. Due to Monte Carlo 
simulations, �i of the response is expressed as the difference 
between the 10% and 90% quantiles of simulations [19].

In the next step, ri and �i are used for the computational 
evaluation (box V) of the former planned experimental 

Fig. 1  Structural workflow of mDoE-toolbox consisting of the combination of mathematical process models and classical DoE under the consid-
eration of model-parametric uncertainty based on experimental variability [1, 19]
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design (box III). Therefore, both ri and �i are summarized 
into a combined objective/desirability function (desirability 
at experimental factor combinations i-Di ) for each planned 
experiment in the DoE designs [33, 34]. This enables an 
evaluation of each planned experiment with respect to its 
simulated average and its expected variability with the aim 
of simultaneously maximizing ri and reducing �i . The evalu-
ation of DoEs using Di reflects a risk-based approach. An 
experiment with a high Di is favorable and a low Di indicates 
a high variability and/or a low average response, which is 
not desired. After calculating Di for all planned and simu-
lated experiments, the experimental design planned in box 
III is analyzed, and response surface (RS) plots are gener-
ated automatically for visualization. Only a few (e.g., 2–4) 
experiments with the highest Di are recommended to be 
performed, experiments with low Di are neglected, which 
enables a significantly reduced number of experiments com-
pared to the initially planned DoE design (box II).

Using the mDoE-toolbox, the available knowledge can be 
captured in the mathematical model, which can serve as a 
basis for advanced process understanding and digital twins 
[36–37]. In this way, the new data obtained from the rec-
ommended experiments can be used to re-adapt the model 
parameters and their probability distribution or to modify 
the model structure if so far unknown effects were identified 
[19, 24, 28].

Materials and methods

S1: optimization of fed‑batch strategy 
for maximization of dry cell weight

Genetically unmodified Saccharomyces cerevisiae (Agrano, 
Germany, commercial strain used for industrial food pro-
duction) was cultivated using complex media consisting of 
water, glucose (Glc), yeast extract (YE), and soy peptone 
(Pep, all Roth, Germany). No preculture was carried out, 
and dried yeast was directly inoculated. An overview of the 

performed experiments in S1 with the medium and feed 
compositions used is shown in Table 1.

Experiments for modeling

For the parameterization of the pH-related model part (see 
Section “Mathematical process model”), four cultivations with 
different pH were performed in 1 l baffled shake flasks (500 ml 
working volume, Schott, Germany), which were shaken at 
170  rpm (1.9 cm shaking diameter, MaxQ4000, Thermo 
Fisher Scientific, USA) with initial cDCW = 10 g l−1 . The tem-
perature was controlled at 30◦ C . The pH was adjusted initially 
and maintained manually (pH = 3, 4, 5, 6, respectively) to the 
desired value. In all experiments, the pH was adjusted using 
20 wt% potassium hydroxide solution or 20 wt% phosphoric 
acid (both VWR, Germany). One feed pulse (glucose and 
nitrogen source) of 50 ml was added to each flask after 24 h 
(feed concentration in Table 1).

After adjusting the pH part of the model, further model 
parameterization was done based on historical data of three 
bioreactor (2 l working volume, Biostat B, Sartorius, Ger-
many) fed-batch cultivations with different initial concentra-
tions and feed compositions (see Table 1). Gassing was manu-
ally set in relation to the state of the process between 1 and 2 
vvm (max. 2 l min−1 ), and stirring was held between 500 and 
800 rpm to maintain a DO above 10%. The pH was automati-
cally controlled at 5. Temperature was set to 30 ◦C.

Recommended experiments from mDoE‑toolbox

For the experiments recommended from the mDoE-tool-
box, the initial dry cell weight (DCW) was adjusted to 
cDCW = 2 g l−1 and the initial conditions of the complex cul-
ture medium were prepared, as shown in Table 1. The rec-
ommended feeding strategy for the mDoE experiments was 
a linearly rising feeding rate starting at tstart = 1 h . The final 
feed volume flow at tend = 48 h was determined by the mDoE-
toolbox for FGlc and FN separately. The feed rates were deter-
mined using the following function:

Table 1  Initial and feed volume, as well as initial and feed concentration of cDCW , cGlc , cYE and cPep of every experiment in S1

Medium FGlc FN

Volume (l) Biomass ( g l−1) cGlc ( g l
−1) cYE ( g l−1) cPep ( g l

−1) cGlc ( g l
−1) cYE ( g l−1) cPep ( g l−1)

Modeling
 Cultivation I 1.00 3.0 6.0 1.4 2.3 290 50.0 76.0
 Cultivation II 1.00 3.0 6.0 1.4 2.3 290 50.0 76.0
 Cultivation III 0.75 20.0 7.9 1.4 2.3 290 85.0 135
 pH-Exp 0.30 10.0 30.0 2.9 4.5 180 17.0 27.0

mDoE-toolbox
 S1 0.70 2.0 15.0 1.4 2.3 400 130 270
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For t < tstart , Fk(t) equals zero.
Linear feed strategies have been chosen instead of expo-

nential strategies, as these are easier to handle and less 
risky. Slightly too large feed rates resulting from exponen-
tial strategies quickly result in over-feeding. The pH was 
held constant using 20 wt% potassium hydroxide solution 
or 20 wt% phosphoric acid (both VWR). The temperature 
was controlled at 30 ◦C.

S2: optimization of fed‑batch strategy 
for biocatalysis

Genetically unmodified Saccharomyces cerevisiae (Agrano, 
Germany) served as the whole-cell biocatalyst. In the bio-
catalysis (S2), the media consist of Glc, YE, Pep, and EAA 
(all Roth, Germany). The temperature was set at 30◦C and 
pH 5. The pH was controlled with the addition of 20 wt% 
potassium hydroxide solution or 20 wt% phosphoric acid. 
The airflow rate was adjusted at 1–2 vvm and stirring rate 
at 800 rpm to maintain aerobic conditions (DO > 10%). 
Antifoam was fed when required. The experiments for the 
biocatalysis part (S2) are shown in Table 2.

Experiments for modeling

Two experiments for model parameterization were per-
formed in 5 l (Biocatalysis I) (BioFlo, Eppendorf, Germany) 
and 20 l reactor (Biocatalysis II) (BioStat C, Sartorius). 
Initial and feed conditions are shown in Table 2. The first 
experiment was an initial test experiment and the second 
experiment was with a high initial cDCW.

Recommended experiments from mDoE‑toolbox

The recommended biocatalysis experiments were performed 
in 1 l stirred bioreactors (Medorex, Germany). Initial dry 
biomass density (cell dry weight cDCW ) of 40 g l−1 was 

(1)Fk(t) =
Fk, end

tend
× (t − tstart).

chosen. Constant FGlc , FN , and FEAA were defined as fac-
tors. Feeding started immediately after inoculation. Since 
the independently predicted feed flow rates for glucose and 
nitrogen were too low for the available pumps, they were fed 
together. No online off-gas measurement was performed.

Analytics

Concentrations of ethanol ( cEtOH ), cGlc , cEAA , and cE3HB were 
quantified with high pressure liquid chromatography using a 
Rezex ROA column (300 × 7.8 mm, Phenomenex, USA) and 
0.005 N sulfuric acid as the aqueous mobile phase accord-
ing to the manufacturer’s protocol. cDCW was determined by 
filtrating the medium through cellulose acetate filters (0.45 
m, VWR, US) and measuring the weight of the retentate 
after drying in a moisture analyzer (MA45, Sartorius, Ger-
many). The percentages of oxygen and carbon dioxide in the 
off-gas were measured via an extractive gas analyzer (Sick, 
Germany). The respiratory quotient (RQ) is then calculated 
from the quotient of carbon dioxide produced divided by the 
oxygen consumed [38, 39]:

The pH value of the medium was measured in situ with 
an amperometric pH Probe (405-DPAS-SC-K8S, Mettler 
Toledo, US, and EasyFerm Plus PHI S8 225, Hamilton, 
US). The pH values in the shaking flask experiments were 
controlled offline with a benchtop pH meter (FiveEasy F20, 
Mettler Toledo, US). The DO in the biocatalysis experiments 
was measured with an optical dissolved oxygen (DO) probe 
(VisiFerm DO ECS 225 H0, Hamilton, US).

Mathematical process model

A novel structured compartment model, capable of being 
adapted to different biotechnological expression systems 
(e.g., bacteria, yeast, fungi, mammalian cell lines), was 
used to describe yeast growth, metabolism, and biocatalysis 

(2)RQ =
CO2, produced[mol]

O2, consumed[mol]
.

Table 2  Initial and feed volume, as well as initial and feed concentration of cDCW , cGlc , cYE , and cPep of the biocatalysis experiment of reference 
process S2; EAA is fed as a pure component

Medium FGlc FN

Volume (l) Biomass ( g l−1) cGlc ( g l−1) cYE ( g l−1) cPep ( g l
−1) cGlc ( g l

−1) cYE ( g l−1) cPep ( g l−1)

Modeling
 Biocatalysis I 4.0 45.5 0.1 0 0 400 130 270
 Biocatalysis II 10.0 78.2 0.1 0 0 400 130 270

mDoE-toolbox
 S2 0.6 40.0 2.0 1.6 2.4 Adjusted individually
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[27, 40]. The model was previously introduced by Brüning 
et al. [27] and is briefly explained in the following. The 
main part of the model is the segregation of the biomass 
into six distinct compartments, which are linked and indi-
vidually described by mathematical equations representing 
different essential metabolic tasks. The detailed figure of 
the six model compartments can be found in the Electronic 
Supplementary Material (ESM) Fig. S1.

The following compartments are considered: an autocata-
lytically active biomass (Xpri), a product forming (Xp), a 
biocatalytically inactive (Xi), a structurally active (Xs) and 
inactive (Xsi), and a dead biomass (Xd) compartment. Bio-
mass synthesis is based on a carbon (SC) and a nitrogen 
substrate (SN) and biocatalysis is modeled based on an educt 
(SBC). Furthermore, physicochemical state variables, such 
as DO, pH, and temperature, have a direct influence on cell 
metabolism, biomass growth and/or biocatalytic activity 
[27]. The uptake rates (rS) of the substrates (S) are rate-lim-
iting steps, which are modeled by Monod kinetics typically 
used in bioprocess modeling [14, 26, 28, 40]:

Ks is the half-saturation constant. The Monod-like term for 
the uptake rates is multiplied with the product of multiple 
double sigmoidal functions ( fDsig ) of the state variables ( xi ), 
which describe changes of the cell metabolism [27, 41]:

The value of a state variable is described by x. Yl is the value 
of fDsig at low x, and Yh is the value at high x. Ymid is the value 
between X50,l and X50,h , which are location parameters of the 
low/high side of the function. Ksl determines the gradient 
of the slope [27]. The sigmoidal functions are also used to 
describe the influence of operating parameters on the acti-
vation and inactivation rates as well as yield coefficients. 
This structure enables the description of complex changes 
in multiple metabolic pathways and their intensity, e.g., for 
biomass formation, overflow metabolisms, biocatalysis, and 
complete oxidation under aerobic and anaerobic conditions. 
Moreover, the product of fDsig(x) is used to account for com-
bined influences such as substrate/product inhibition and/or 
pH, DO, or temperature on the uptake rates. A parameteriza-
tion strategy for the double sigmoidal functions is described 
in [41]. Each pathway is represented by the same, general-
ized stoichiometric function:

(3)rS = rSmax

(

S

Ks + S

)

×

n
∏

i=1

fDsig(xi).

(4)
fDsig(x) =

(

Yl +
Ymid − Yl

1 + e−Ksl(x−X50,l)

)

×

(

1 +
(Yh∕Ymid − 1)

1 + e−Ksl(x−X50,h)

)

.

(5)
CxHyOz + �1O2 + �2HgOhNi → �3CaHbOcNd + �4CO2 + �5H2Ot.

The stoichiometric coefficients �i were determined previ-
ously [42] and used according to:

where MWi is the molecular weight for the state variable 
(e.g., biomass, O2 , by-product) and MWS for the substrate 
[27, 43]. The yield coefficients, describing the formation of 
a substance i based on the substrate S ( Yi∕S ) are used in the 
calculation of production and uptake rates, whereas rates of 
each pathway are summed up to total rates. The total rates rci 
are then used in general mass balances for each component 
with the concentrations of components in the feed ci,feed and 
their concentration in the bioreactor ci:

Monte Carlo‑based uncertainty quantification

To quantify the variability of the model simulations in the 
mDoE-toolbox, the model-parametric uncertainties are 
determined using Monte Carlo sampling with repeated 
parameter adaptations [19]. In brief, the determined stand-
ard deviation of each experimental data point was consid-
ered to be independent and normally distributed. For the 
initial values, the standard deviation was assumed to be 5%. 
The individual biomass compartments considered in the 
Six-compartment model (Section “Mathematical process 
model”) could not be experimentally determined and were 
presumed with a standard deviation of 10%. The standard 
deviations of the set pH value, temperature, DO, and feed-
ing rates, as well as their concentrations, were defined to be 
5% based on the typical standard deviations in bioprocesses 
(i.e., expert knowledge) [19, 44, 45]. The model-paramet-
ric uncertainty was determined based on the experimental 
uncertainty using multiple parameterization runs (Monte 
Carlo samples). Due to limited computational power, 116 
adaptations were performed in case study S1 and 240 adap-
tations in case study S2. Model parameters were adapted by 
minimizing the weighted root-mean-square deviation RMSD 
[14, 19, 27, 46]. The RMSD is calculated from the squared 
difference between the measured value ym and the simulated 
value ys , multiplied by a factor for weighting individual data 
points kweighting , and divided by the number of data points n 
in the data set:

(6)Yi/S = �i

(

MWi

MWS

)

,

(7)
dci

dt
= rc+

i
× Xv

⏟⏞⏟⏞⏟
production

− rc−
i
× Xv

⏟⏞⏟⏞⏟
uptake

+ ci,feed ×
Fci

V
⏟⏞⏞⏞⏟⏞⏞⏞⏟

input

− ci ×
FV ,in

V
⏟⏞⏞⏟⏞⏞⏟

dilution

.

(8)RMSD =

√

√

√

√

n
∑

i=1

(ys,i − ym,i)
2

n
⋅ kweighting.
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Only high cDCW > 100 g l−1 were weighted by 0.5 and no 
weighting was used for other state variables. The individu-
ally adapted model parameters, their medians, 10% and 90% 
quantiles (ESM: Tables S1 and S2), as well as their distribu-
tions are shown in the ESM.

The simulations using the determined parameters were 
additionally evaluated using the coefficient of determination 
( R2 ), which includes the differences between simulated ys,i 
and experimental data yi as well as the differences between 
experimental data and their mean y [1, 19, 47]:

R2 lies between minus infinity and one. If R2 is one, the data 
points correspond precisely to the solution of the model. If 
R2 is less than zero, the mean of the measured data points is 
closer to the mean result than the solution of the model [19].

Planning of experimental design

The factor settings of the DoE designs were determined as 
described in the following: First, a large number of points 
( > 106 ) were randomly distributed in the three-dimensional 
design space (i.e., three investigated factors). Then, clusters 
in these points were determined using the k-means algorithm 
[48, 49]. These clusters are partitioned into the k sets cor-
responding to the number of experiments in the DoE design. 
The resulting k cluster centers are the factor combinations 
(i.e., planned experiments) of the DoE design. Based on this 
algorithm and previous studies, a total of 29 experiments 
were planned, which were later individually simulated and 
evaluated using the mDoE-toolbox. The main advantage of 
this method, among other approaches, is the universal appli-
cation to any number of investigated factors and experimen-
tal spaces of any shape [50].

Monte Carlo‑based simulation of planned 
experiments

Instead of performing each planned cultivation from the 
DoE design, they were first simulated (see Fig. 1) with the 
developed process model. Due to computational power, 
30 Monte Carlo simulations (Section “Monte Carlo-based 
uncertainty quantification”) (C-eStlM, Germany) were per-
formed for each planned experiment, so that the propagated 
uncertainty of the simulations was quantified. The model 
parameter values were drawn using Latin Hypercube Sam-
pling using the R-Package “lhs” (V1.0.2) [51, 52]. The inter-
val boundaries are determined by calculating the 10% and 
90% quantiles using the Type R-7 method provided in R.

(9)R2 = 1 −

∑n

i=1
(yi − ys,i)

2

∑n

i=1
(yi − y)2

.

Computational evaluation of experimental design

First, for each planned factor combination i, the average 
expected response ( ri ) is calculated based on the Monte 
Carlo simulations. Furthermore, �i is calculated as the dif-
ference of the 10% and the 90% quantile, and is used as a 
measure of the expected process variability. In the mDoE-
toolbox, the maximization of ri is targeted with a simulta-
neously minimization of �i . Therefore, for both ri and �i , 
individual desirability functions d(ri or �i ) are calculated by 
rescaling between 0 and 1. d(ri or �i) are based on the mini-
mal response L(r or �) and the maximal response U(r or �) 
of all ri and �i (vector including all i experiments donated 
as r or �) . Therefore, the desirability function d(ri) is in the 
optimization range ( U(r) – L(r) ). For the maximization of ri , 
d(ri ) is calculated as follows:

 For the minimization of �i , d(�i ) is inversely calculated, i.e., 
a high �i has a low d(�i ) and vice versa:

 In the mDoE-toolbox, d(ri) and d(�i) are combined into one 
numerical value Di to quantify the average value and its vari-
ability of each planned experiment (see Section 1.1) into Di 
including weighting factors w:

for which

By this approach, a risk-based evaluation of the planned 
designs is enabled and w(�i) reflects the percentage at which 
�i is considered. In this study, w1 = 0.8 and w2 = 0.2 . Con-
tour and 3D plots were generated with Gnuplot 5.2.8.

Results and discussion

The mDoE-toolbox software was tested on two optimization 
studies with Saccharomyces cerevisiae (S1 and S2, respec-
tively). First, the aim was to maximize cDCW after 48 h (S1) 
based on the experimental factors pH, as well as FGlc and FN . 
Second, the biocatalytic conversion from EAA to E3HB was 
optimized (S2). E3HB should be maximized based on FEAA , 
FGlc and FN . EAA shows inhibitory effects above a concen-
tration of cEAA = 0.5 g l−1 [53, 54]. In both processes, etha-
nol formation is crucial due to its inhibitory effect on cell 
growth and biocatalysis [55, 56]. In addition, Saccharomyces 

(10)d(ri) =

(

ri − L(r)

U(r) − L(r)

)

.

(11)d(�i) =

(

�i − U(�)

L(�) − U(�)

)

.

(12)Di = w1 × d(ri) + w2 × d(�i)

(13)w1 + w2 = 1.
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cerevisiae produces ethanol even under aerobic conditions if 
glucose concentration is above a certain limit. This phenom-
enon is known as the Crabtree effect and should be mini-
mized to optimize growth and biocatalysis [57, 58].

Monte Carlo‑based uncertainty quantification

Model parameters and their distributions were determined 
using Monte Carlo sampling (see Fig. 1 box II), as explained 
in Section “Monte Carlo-based uncertainty quantification”. 
Therefore, three sets of experiments (see Table 1 and 2) were 
used. The first set consists of shaking flask experiments to 
adapt the parameters for the pH model. The second set con-
sists of three historical fed-batch cultivations to model the 

growth of yeast, uptake rates, and production rates in rela-
tion to critical process parameters, e.g., glucose and ethanol 
concentration (both in Table 1). The last set was designed 
based on literature and was used to identify the parameters 
for the biocatalysis (Table 2).

Growth and metabolic model parameters (S1)

The growth and metabolic model parameters targeted in 
case study S1 were adjusted using data of three fed-batch 
cultivations (see Table 1). These model parameters describe 
the uptake of glucose, ethanol, and nitrogen, the activation, 
inactivation, and mortality rates, as well as the general 
yield coefficients for glucose and ethanol. Furthermore, the 

Fig. 2  Comparison of experimental data to adapted model of three 
initial cultivations (see Table  1), a–f solid lines represent the mean 
of 116 Monte Carlo simulations (Section “Monte Carlo-based simu-
lation of planned experiments”); dashed lines represent the 10% and 

90% quantiles of the simulations; g–i online data of the off-gas meas-
urement as well as the calculated respiratory quotient. j–l Calculated 
V and feeding rates (F). Experimental settings and the used reactor 
are shown in Section “Experiments for modeling”



691Bioprocess and Biosystems Engineering (2021) 44:683–700 

1 3

parameters of the sigmoidal functions for the influence of 
glucose limitation and ethanol inhibition on the glucose and 
ethanol uptake as well as the biomass inactivation rate were 
identified (see ESM Section 3.1). The comparison of the 
experimental data with the Monte Carlo-based simulations 
including 10% and 90% quantiles are shown in Fig. 2a–f. 
Furthermore, gassing rates and experimental online data 
(Fig. 2g, h), and calculated total volume V and total feeding 
F (Fig. 2j–l) are shown.

Cultivations I and II were initial test cultivations aiming 
to achieve a high biomass density. For this purpose, different 
initial biomass concentrations were chosen. Cultivation III 
was performed with a feeding strategy which should lead to 
ethanol inhibition (Table 1).

Cultivation I In cultivation I, the biomass (Fig.  2a) 
increases from initially cDCW = 18 g l−1 to ≈ 100 g l−1 
( t = 42 h ). An initial cDCW that high would not be used in 
“real” bioprocesses and was just utilized for the purpose of 
model parameter adaptation. The ethanol concentration was 
relatively low below cEtOH = 10 g l−1 throughout the experi-
ment and glucose concentration was not measurable after 
t = 2 h . These results are reflected in the course of the res-
piratory quotient (Fig. 2b, RQ), which was constantly around 

one, indicating a low ethanol formation. Feeding rate was 
increased stepwise to F = 0.35 ml min−1 (Fig. 2j).

Cultivation II In cultivation II, a biomass density of 
cDCW = 64 g l−1 was achieved at the end of the process 
and an ethanol concentration of cEtOH = 28 g l−1 was 
determined (Fig. 2d), leading to low growth inhibition. 
Glucose was directly consumed when fed, and therefore, 
the measured glucose concentrations were about 0 g l−1 
after t = 10 h . The rather strong ethanol production after 
t = 30 h is reflected in the RQ (Fig. 2e). Feeding (Fig. 2h) 
was higher than in cultivation I despite a lower initial bio-
mass density.

Cultivation III As can be seen in Fig.  2c, only 
cDCW = 24 g l−1 was formed at t = 44 h .  but over 
cEtOH = 40 g l−1 was produced during the same time period. 
This trend was also confirmed by the RQ (Fig. 2f), which 
was clearly above one from t = 20 h onwards, indicating 
an increased CO2 formation during ethanol production. 
Feeding (Fig. 2i) was designed to induce ethanol inhibi-
tion (i.e., over-feeding) and was increased stepwise up to 
F = 0.7 ml min−1 [59].

Overall, the model parameters could be adapted well to 
the process data with an R2 above 0.85 (total for cDCW , cGlc , 
cEtOH ) comparing the experimental data to the mean of the 
simulations for every experiment (Table 3).

In addition, the modeling of high biomass densities and 
ethanol inhibition was adapted sufficiently. The width of 
the uncertainty band (10% and 90% quantiles) of the simu-
lations (Fig. 2a–f) was narrow, indicating a reliable estima-
tion of model parameters. All model parameters and their 
individual distribution are shown in ESM Figs. S3–S5.

Table 3  Total R2 for average 
model parameters in Monte 
Carlo-based uncertainty 
quantification (S1—cultivation 
and S2—biocatalysis)

Experiment R
2

S1 Cultivation I 0.97
Cultivation II 0.98
Cultivation III 0.85

S2 Biocatalysis I 0.92
Biocatalysis II 0.96

Fig. 3  Comparison of experimental (Exp) data and simulated (Sim) 
data for the adaption of pH-related model parameters (see Sec-
tion “Experiments for modeling”). Error bars show standard deviation 
of two parallel shaking flask experiments for each investigated pH 

(4, 5, 6, and 7, respectively). The quality of fit is represented by R2 
(optimal simulation x = y). For each pH, the individual growth curves 
are shown in the ESM Fig. S2. Experimental settings are specified in 
Section “Experiments for modeling”
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pH‑dependent model parameters (S1)

As can be seen in Fig. 3, the influence of a wide pH range 
(4–7) on the growth and metabolism of Saccharomyces 
cerevisiae can be sufficiently reflected by the model with 
the adapted model parameters in case study S1. The con-
centrations of biomass and glucose can be well reflected 
with an R2 above 0.92. The simulation of the ethanol con-
centration is sufficient ( R2 = 0.74).

For all cultivations (see ESM Fig. S2 for individual plots), 
cells grew up to approx. cDCW = 20 − 25 g l−1 in the first 
hours including strong ethanol production. After glucose 
depletion, cell growth stagnated, and ethanol was taken 
up until the feed pulse at t = 24 h was fed. After the feed 
pulse, the biomass density increased again, while glucose 
was consumed and ethanol produced. No strong growth 
inhibitions were seen for the different pH values investi-
gated. The biomass densities at the end of the process were 
found to be slightly higher at pH 5 (compared to pH 4 and 
6, respectively), and 10% higher than at pH 3. Furthermore, 
the glucose and ethanol consumption rates increased with 
increasing pH. The growth rates at pH 4 and pH 5 were 
equally the highest with 0.105 ± 0.005 h−1.

Using the experimental data, the model parameters 
related to the pH-dependent glucose metabolism and uptake, 
and the segregation of glucose into biomass and ethanol pro-
duction were determined. These parameters were not used 
in the Monte Carlo parameter adaptation (Section “Monte 
Carlo-based uncertainty quantification”) to speed up the cal-
culations of the parameterization algorithm and were kept 
constant thereafter.

Biocatalytic model part (S2)

The biocatalysis model used in S2 was adapted on data of 
two experiments, based on the literature [53, 54]. The focus 
was on those model parameters, characterizing the biocataly-
sis, and therefore partly differs from the previously chosen 
parameters in case study S1. The new parameters are listed 
in ESM Section 3.2 and describe the uptake of EAA, glu-
cose, ethanol and nitrogen, the activation, inactivation, and 
mortality rate, as well as the general yield coefficients for 
EAA, glucose, and ethanol. Furthermore, the parameters of 
the sigmoidal functions quantifying the influence of ethanol 
inhibition, glucose limitation on glucose uptake, and EAA 
inhibition on the biomass inactivation rate were adapted to 
the experimental data. In Fig. 4, the comparison between 
experimental and simulation data of the biocatalysis param-
eterization experiments is shown.

Biocatalysis I The first experiment aimed at the produc-
tion of E3HB with cDCW = 45 g l−1 . The feed and initial 
concentrations of the parameterization experiments are 
listed in Table 2. In the first experiment, biomass (Fig. 4a) 

decreased to cDCW = 25 g l−1 ( t = 26 h ), first due to dilution 
by feeding and towards the end due to a higher mortality rate 
induced by toxically high concentrations of EAA. Ethanol 
concentration (Fig. 4c) rose from 30 g l−1 to over 40 g l−1 at 
t = 26 h . Feeding was designed to increase cEAA (Fig. 4e). 
Therefore, a constant FGlc = 0.65 ml min−1 and a constant 
FEAA = 0.067 ml min−1 were set during the first 28 h. Then, 
FGlc was reduced and FEAA was increased to identify poten-
tial EAA inhibition. Thus, cEAA rose to over 4 g l−1 , and 
the resulting inhibition is reflected in rising cGlc , despite 
the reduced glucose feed. E3HB constantly increased up to 
cE3HB = 24 g l−1 ( t = 32 h ) and then stopped increasing due 
to the EAA and potential ethanol inhibition.

Biocatalysis II In the second experiment, a higher ini-
tial biomass concentration of cDCW = 80 g l−1 was used, and 
ethanol and glucose concentrations were kept below 0.1 g l−1 
during the whole experiment (Fig. 4b, d). As in Cultivation I 
(S1), this high cDCW was used for model parameter adapta-
tion. After 48 h, cE3HB = 44 g l−1 was reached, whereas cEAA 
was constantly low and the biomass density decreased due 
to dilution. Constant glucose ( FGlc = 3 ml min−1 ) and EAA 
feeding rates ( FEAA = 0.05 ml min−1 ) were set. FEAA was 
increased to 0.085 ml min−1 in two steps.

Overall, the parameterized model parameters reflect the 
kinetics of biocatalysis satisfactorily. The calculated R2 are 
shown Table 3 and are higher than 0.92 for both simulations 
for the experimental data compared to the mean simulation 
(summarized for cE3HB , cEAA , cDCW , cEtOH).

The biocatalytic metabolite concentrations are well repro-
duced by the model for both experiments. The 10% and 90% 
quantiles of the simulations (Fig. 4a–d) are small. The model 
parameters and their individual distributions are shown in 
ESM Figs. S6–S9.

Optimization of fed‑batch process 
with mDoE‑toolbox (S1)

The factors (pH, FGlc , FN , respectively) have been selected 
based on literature and experience in the cultivation of Sac-
charomyces cerevisiae. pH is described to have a strong 
influence on viability and growth rate [60]. Glucose is essen-
tial for cell growth, but high glucose feeding rates lead to 
ethanol formation due to the Crabtree effect and possibly 
ethanol inhibition [58–59]. A nitrogen source is essential 
for cell growth, but feeding needs a tight control to avoid 
dilution and to enable steady growth [61].

mDoE‑toolbox (S1)

Planning of experimental design and Monte Carlo 
simulations Using the mDoE-toolbox explained in 
Sect.  1.1, rather widely distributed initial boundary 
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values are defined first for the planning of the experimen-
tal design (Fig. 1, box III) [1]. Therefore, start of feed-
ing was at t = 1 h . The initial boundaries for FGlc were 
set between 0.1 ≤ FGlc ≤ 1 ml min−1 , and FN between 

0.05 ≤ FN ≤ 0.6 ml min−1 . pH was varied between 3 
and 7. Using the mDoE-toolbox, a total of 29 design 
points (i.e., planned experiments) were distributed in the 

Fig. 4  Model parameter adaptation for biocatalysis (see Table  2). 
a–d solid line represents the mean of 116 Monte Carlo simulations 
(Section  “Monte Carlo-based simulation of planned experiments”), 
dashed lines represent the 10% and 90% quantiles of the simulations; 

e, f calculated V and F. Experimental settings and used reactors are 
specified in Section  “S2: optimization of fed-batch strategy for bio-
catalysis”
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three-dimensional design space, determined by the previ-
ously defined boundaries (see Section “Planning of exper-
imental design”). For each of the planned experiments, 
Monte Carlo simulations (Fig. 1, box IV) were performed, 
as explained in Section “Monte Carlo-based simulation of 
planned experiments”.

Computational evaluation of experimental design 
From the Monte Carlo simulations, ri and �i were calcu-
lated for the maximum cDCW for each experimental setting i, 
which were further used to derive the desirability Di (Fig. 1, 
box V). In Fig. 5, the desirability functions are plotted for 
pH = 5.0, FN = 0.20 ml min−1 , and FGlc = 0.42 ml min−1 , 
for which the highest Di was calculated. Figure 5 shows the 
contour and 3D plots at these process conditions.

Di is high for flow rates of FGlc < 0.5 ml min−1 and 
FN < 0.3 ml min−1 at pH = 5.0 (Fig. 5a). The influence 
of the pH value (Fig. 5b) on the desirability function is low, 
and a pH between 4 and 6 provides the best results. These 
results were additionally confirmed with the RSM in Fig. 5c 
and were low FN < 0.3 ml min−1 , and a pH between 4 and 
6 shows again the best results. Using the mDoE-toolbox, 

the experimental space was computationally simulated and 
evaluated. For the factors investigated, the resulting RS plots 
could hardly be predicted on experience solely. The in silico 
calculation and computational evaluation of the planned 
experimental design offer a knowledge-driven approach, 
which is the major advantage of the mDoE-toolbox.

mDoE-suggested experimental settings Based on the 
evaluation of the experimental space, further experiments 

Fig. 5  Contour and 3D plot for the response surfaces based on D
i
 

for the optimization of pH, FGlc , and FN in S1. The responses were 
calculated with Monte Carlo simulations in the mDoE-toolbox, 
as explained in Section  1.1. a–c Graphs are adjusted to pH = 5 , 

FN = 0.20mlmin−1 and FGlc = 0.42mlmin−1 , respectively, lines 
show differences of 0.05; d–f 3D representation of RS curves. The 
individual quadratic RS equations are shown in ESM Table S1

Table 4  Factor combination of the four yeast cultivation experiments 
determined with the usage of the mDoE-toolbox. FGlc and FN are the 
final maximum feed rates of the linearly rising feed at the end of the 
experiments

Exp. FGlc FN pH
(ml min−1) (ml min−1) (–)

#1 0.28 0.12 4
#2 0.28 0.12 6
#3 0.41 0.18 5
#4 0.54 0.25 5
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were recommended (see Sect. 2.8) from the toolbox. To 
statistically validate the recommended factor settings, four 
experiments located in the high Di region were chosen, 
which are listed in Table 4.

Performed experiments

The four recommended experiments were performed (see 
Section “Recommended experiments from mDoE-toolbox”). 
The comparison of the experimental data to the model simu-
lations, including the parametric 10% and 90% uncertainty-
based prediction bands, is depicted in Figure 6.

Biomass In all four cultivations, cells grew until maxi-
mum biomass densities between cDCW = 45 g l−1 (Fig. 6d) 
and cDCW = 80 g l−1 (Fig. 6a). Growth was predicted suf-
ficiently for all cultivations and only partly underestimated 
between t = 18 and 24 h in cultivation #4 (Fig. 6c). The 
width of the uncertainty band (10% and 90% quantiles) was 
relatively narrow for cultivation #1–#3 (Fig. 6a–c), which 
reflects that the variability of these experimental settings 
are predicted to be low. Broad uncertainty bands indicating 
a high variability of the experimental settings were predicted 
for cultivation #4 (Fig. 6d), due to high cEtOH near inhibitory 
conditions.

Glucose and ethanol Glucose was consumed during 
the cultivations and was constantly very low (i.e., fully 
consumed) after t ≈ 20 h . In cultivations #1 and #2, cEtOH 

increased only at the end of the cultivation in relatively low 
amounts below cEtOH = 12 g l−1 , for which no growth inhibi-
tion was seen. In cultures #3 and #4 (Fig. 6g, h), ethanol was 
not consumed and produced up to a maximum inhibitory 
concentration of cEtOH = 45.5 ± 1.8 g l−1 in cultivation #4 
(Fig. 6h) [59, 61].

Overall, cDCW = 80 g l−1 was achieved (cultivation #1) 
after the application of the mDoE-toolbox in a study with 
three influencing factors ( FGlc , FN , pH). This reflects an 
improvement of ≈ 30% in relation to the cultivation II (Fig. 2 
b) with similar initial conditions. Simultaneously, cEtOH at 
t = 48 h could be reduced by 50% compared to cultivation 
II (Fig. 2 e), resulting in higher substrate usage and a safer 
process operation point due to less possibility of inhibition.

The investigated factors are difficult to asses in traditional 
DoE studies due to their dynamic nature, i.e., the feed-
ing rate itself changes during the process. A model-based 
approach strongly supports the evaluation of such dynami-
cally changing factors.

Optimization of biocatalytic conversion of EAA 
to E3HB (S2)

In case study S2, the feeding rates FEAA , FGlc , and FN were 
manipulated to optimize the biocatalytic conversion of 
EAA to E3HB. The optimization objective is defined as 

Fig. 6  Experimental data of the four performed cultivations com-
pared to the simulated data from the mDoE-toolbox for cDCW , 
cGlc , and cEtOH . The solid line is the mean of 30 simulations (Sec-
tion  “Monte Carlo-based simulation of planned experiments”); 

dashed line represents the 10% and 90% quantiles of the simulations, 
and online off-gas data and individual feeding profiles can be found in 
ESM Fig. S10. Experimental settings and the used reactor are speci-
fied in Section “Recommended experiments from mDoE-toolbox”
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the maximization of the biocatalytic product concentra-
tion ( cE3HB ). Among the other factors, FEAA is very critical, 
because cEAA has to be kept below 0.5 g l−1 to avoid inhibi-
tion [53].

mDoE‑toolbox (S2)

Planning of experimental design and Monte 
Carlo simulations The boundaries for FEAA were 
0 ≤ FEAA ≤ 0.04 ml min−1 , based on literature to avoid 
inhibition through high EAA concentrations [53, 54]. FGlc 
and FN were defined to meet the demands the maintenance 
metabolism and the amount required for biocatalysis to be 
0 ≤ FGlc ≤ 0.2 ml min−1 and 0 ≤ FN ≤ 0.03 ml min−1 . The 
constitution of the feeds can be found in Table 2. For each 
simulated and performed biocatalysis, cDCW = 30 g l−1 was 
directly inoculated with no prior cultivation. The same 
design of the experiments as in S1 was applied (see Fig. 1 
box III) and 29 experiments were planned initially using 
the mDoE-toolbox. For each planned experiment, Monte 
Carlo simulations were performed (see Fig. 1, box IV).

Computational evaluation of experimental design 
Di was calculated and the response surface was predicted 
(Fig. 1 box V). As can be seen in Fig. 7, a maximum was 
determined at FEAA = 0.02 ml min−1 , FGlc = 0.11 ml min−1 , 
and FN = 0.01 ml min−1.

Excessive EAA feeding is predicted to inhibit and 
deactivate biocatalysis. A high Di is achieved only with a 
low FEAA , as can be seen from the shape of the 3D plots 
(Fig. 7d–f). Too small values of FGlc lead to low cGlc limiting 
the biocatalysis in the simulations. Too high FGlc resulting 
in an increased cGlc , which leads to ethanol formation due to 
the Crabtree effect. In addition, high feeding rates ( FGlc and 
FN ) always result in dilution. The impact of FN on achieving 
high cE3HB is rather low. Therefore, a small FN is desirable.

mDoE-suggested experimental settings Based on the 
Monte Carlo simulations and the computational evaluation 
of the experimental space, experiments located in the high 
Di regions were identified and four of them were chosen. The 
experimental settings are listed in Table 5.

Fig. 7  Contour and 3D plot for the response surfaces based on D
i
 for 

FEAA , FGlc , and FN in case study S2. The responses were calculated 
with Monte Carlo simulations in the mDoE-toolbox, as explained 
in Section  1.1. a–c Graphs are adjusted to FEAA = 0.02mlmin−1 , 

FGlc = 0.11mlmin−1 and FN = 0.01mlmin−1 respectively, lines show 
differences of 0.05; d–f 3D representation of RS curves. The individ-
ual quadratic RS equations are shown in ESM Table S1
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Performed experiments

As can be seen in Fig. 8, final E3HB concentrations between 
cE3HB = 10 − 50 g l−1 were reached in the four recommended 
experiments.

EAA and E3HB  Even if  the var iat ion in 
FEAA in the four experiments was relatively low 
( 0.10 ≤ FEAA ≤ 0.24 ml min−1 ) ,  the maximum cE3HB 
decreased strongly with decreasing FEAA from cultiva-
tions #1-#4. EAA was constantly consumed during the 
bioprocesses and reached a maximum of cEAA = 2 g l−1 in 
experiment #1 (Fig. 8a). The width of the 10% and 90% 
quantiles of the cEAA simulations increases for higher FEAA , 
due to an increasing probability of EAA inhibition.

In cultivations #3 and #4 (Fig. 8c, d), cE3HB is lower than 
the prediction. Since no EAA was detectable, a higher by-
product formation rate might have occurred in the experi-
ments with lower product concentrations (Fig. 8c, d).

Biomass, glucose, and ethanol Despite a low FN , bio-
mass density increased by at least 15 g l−1 in every experi-
ment (Fig. 8e–h). This was consistent with cGlc and cEtOH , 
which were below 5 g l−1 for cultivations #2-#4. In culti-
vation #1, increasing cEAA leads to inhibition and reduc-
tion of the metabolic activity, resulting in a lower glucose 
consumption and an increasing glucose concentration up 
to cGlc = 1 g l−1 . This induces ethanol formation reaching 
cEtOH = 10 g l−1 ( t = 48 h , Fig. 8e).

It could be shown that even the feeding strategy for a 
biocatalytic process with complex reaction mechanisms 
could be designed and optimized with the application of 
the mDoE-toolbox. By calculating an optimal feeding pro-
file for EAA, glucose, and nitrogen source, cE3HB = 44 g l−1 
(Exp. #1) was achieved. This is an improvement of 80% 
in comparison to the experiment Biocatalysis I (Fig. 4a), 
with similar initial conditions. The same E3HB concen-
tration was reached with a 60% lower initial cDCW , when 
compared to the high cell density experiment (Biocataly-
sis II, Fig. 4b) and 10% compared to the literature [53, 
54]. Furthermore, the application of the mDoE-toolbox 
reduced the initial experimental space by over 90% (com-
pare Table 4 with Fig. 5). Only four recommended exper-
iments had to be performed to find improved operating 
conditions, resulting in 80% higher product concentra-
tions. The reactor volume was 80% smaller compared to 
Biocatalysis I, which may have had an additional influ-
ence on the improved product concentration. However, the 
transferability of process understanding obtained using 

Table 5  Factor combination of the four recommended biocatalytic 
experiments determined with the mDoE-toolbox

 Exp. FEAA FGlc FN

(ml min−1) (ml min−1) (ml min−1)

#1 0.024 0.09 0.010
#2 0.018 0.12 0.010
#3 0.014 0.06 0.020
#4 0.010 0.09 0.002

Fig. 8  Experimental data of the four performed cultivations com-
pared to the simulated data from the mDoE-toolbox for cEAA , 
cE3HB , and cGlc . The solid line is the mean of 30 simulations (Sec-
tion  “Monte Carlo-based simulation of planned experiments”); 

dashed line represents the 10% and 90% quantiles of the simulations. 
Experimental settings and the used reactor are specified in Sec-
tion “Recommended experiments from mDoE-toolbox”
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mathematical process models was recently shown to be 
transferable between different scales [19, 37].

Conclusion

In this study, the mDoE-toolbox was introduced to enable 
a more knowledge-driven experimental design, and to 
strongly reduce the number of experiments during bio-
process development and optimization. The application 
of the toolbox was shown for two different case studies 
with Saccharomyces cerevisiae. In case study S1, a fed-
batch process was optimized to maximize the final biomass 
density depending on the factors pH, and linearly rising 
substrate feeding rates. Just four experiments were needed 
to achieve a 30% increase of the final biomass density 
compared to Cultivation II, instead of 29 initially planned 
experiments, which would have been performed in the 
fully experimental evaluation of the DoE. In case study S2, 
the biocatalytic production of E3HB was optimized based 
on constant substrate feeding rates. Just four experiments 
were needed instead of 29 initially planned experiments. 
An improvement of 80% in the final E3HB concentration 
was experimentally achieved compared to the experiment 
Biocatalysis I with similar initial conditions. Although this 
reaction is well known, an improvement of about 10% of 
cE3HB was achieved compared to the literature [53, 54]. 
In addition, this result was obtained in less than half the 
cultivation time [54]. In both processes, the optimization 
of rather difficult to assess factors, such as timely chang-
ing feeding rates (S1) or feeding of inhibitory components 
(S2), was possible through modeling.

In summary, the usage of the mDoE-toolbox enables 
optimization studies with dynamic factors in statistics-
based biotechnology research employing a reduced num-
ber of experiments. Further research will focus on online 
model parameter adaptation and the consequent online 
re-design of experiments to increase the obtained process 
understanding further.
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