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Abstract: Triazolopyridines are a family of compounds that, owing to their biological activity, have
many pharmaceutical applications. In this study, 3-(pyridine-4-yl)-[1,2,4]triazolo[4,3-a]pyridine
and 6-bromo-3-(pyridine-4-yl)-[1,2,4]triazolo[4,3-a]pyridine were synthesized by using the chlori-
nated agent NCS for hydrazones under very mild conditions. The characterization of these com-
pounds was achieved by 1H NMR, 13C NMR, FTIR, MS and X-ray diffraction. The compound
3-(pyridine-4-yl)-[1,2,4]triazolo[4,3-a]pyridine was crystallized in the monoclinic space group P
21/c with a = 15.1413(12), b = 6.9179(4), c = 13.0938(8) Å, β = 105.102(6)◦, V = 1324.16(16)Å3, Z = 4,
and R = 0.0337. Also compound 6-bromo-3-(pyridine-4-yl)-[1,2,4]triazolo[4,3-a]pyridine was crys-
tallized in the monoclinic space group P 21/c with a = 14.3213(11), b = 6.9452(4) (4), c = 12.6860(8)Å,
β = 100.265(6)◦, V = 1241.62(14)Å3, Z = 4, and R = 0.0561.

Keywords: 1,2,4-triazolo[4,3-a]pyridine; NCS; synthesis; crystal structure; H-bonding

1. Introduction

Triazolopyridines represent an important class of heterocycles with broad uses in the
pharmaceutical area as well as medicinal chemistry [1–11]. This family of compounds
comprises biologically active agents including antibacterial [1], antifungal [2] anxiolytic [3],
herbicidal [4] and pesticidal [5], antithrombotic, anti-inflammatories, and antiprolifera-
tive agents [6,7]. Triazolopyridines act as inhibitors of mitogen-activated protein (MAP)
kinases [6] or growth hormone secretagogues and antithrombotic agents [8,9]. Also, tria-
zolopyridine derivatives bearing sulfonamide substituent are found to be a good antimalar-
ial agent [10]. Recently some triazolopyridines have been described as potential anticancer
agents, as well as selective TNKS1 inhibitors [11]. Therefore, versatile and widely applica-
ble methods for their synthesis are of considerable interest. Several methods have been
reported for the synthesis of Triazolopyridines. Most of these methods are furnished by the
oxidative cyclization of heterocyclic substituted hydrazones; however, these have limita-
tions and drawbacks [12–24]. 1,1-carbonyldiimidazole (CDI) is used as a mild and efficient
reagent in the synthesis of triazolopyridines [25]. Recently, electrochemical synthesis of
1,2,4-Triazolepyridines and another fused heterocycle has been described [26]. Most of the
protocols, however, still require expensive TM catalysts and superstoichiometric amounts
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of external oxidants under harsh conditions [27]. Limitations of the existing protocols
include: (1) harsh reaction conditions; (2) the use of expensive catalysts or superstoichio-
metric amounts of oxidizing agents; (3) limited substrate scopes or scalability; (4) low
chemo-selectivity. The harsh conditions utilized in the aforementioned methods can be
problematic with substrates that are sensitive to high temperatures or oxidants.

Therefore, it is desirable to develop complementary approaches for the fast and effi-
cient synthesis of valuable 1,2,4-triazole-fused heterocycles. Using N-Chlorosuccinimide
(NCS) as an oxidative cyclizing agent of 2-pyridylhydrazones opens the door to the devel-
opment of a method to furnish [1,2,4]triazolo[4,3-a]pyrazines and pyrimidines. To the best
of our knowledge, the synthesis of the target compounds is not known in the literature by
using the chlorinated agent NCS for hydrazones under very smooth conditions.

2. Materials and Methods
2.1. Materials and Physical Measurements

All commercially available reagents and solvents were used without further purifi-
cation. Melting points were measured in the open capillary tubes on a Boetius melting
point apparatus. NMR spectra (400/100 MHz) were acquired on a Bruker Avance 600
spectrometer (Bruker, Billerica, MA, USA). The spectra were recorded for 1H and 13C
NMR at room temperature. Chemical shifts were reported in ppm (ν) and J values in Hz.
Multiplicity was designated as the singlet (s), doublet (d), triplet (t), and multiplet (m).
Infrared spectra (IR) were registered using the Bruker Tensor-27 FT-IR Spectrometer. All
spectra were recorded in the range of 400–4000 cm−1 at room temperature. TLC was carried
out on silica gel plates (Merck, Darmstadt, Germany) using a mixture of dichloromethane
and methanol as an eluent; visualization was accomplished with UV light.

2.2. Chemistry
2.2.1. General Procedure for Synthesis of Hydrazones

Compounds were prepared via condensation reaction of 4-pyridinecarboxaldehyde
with corresponding hydrazines in ethanol, following a previously reported procedure for
related systems [28]. Further, 0.05 mol of pyridine-4-aldehyde was added to a solution
of 0.05 mol of the appropriate hydrazine in ethanol (20 mL) at room temperature. The
reaction mixture was stirred until the completion of the reaction (by TLC). A pale yellow
solid precipitated and was collected by filtration and recrystallized from hot ethanol.

2.2.2. General Procedure for Synthesis of [1,2,4]Triazolo[4,3-a]pyridines Derivatives

Synthesis of 3-(pyridin-4-yl)-[1,2,4]triazolo[4,3-a]pyridine 1 and 6-bromo-3-(pyridin-4-
yl)-[1,2,4]triazolo[4,3-a]pyridine 2 was as follows (Scheme 1): 10 mmol of the appropriate
hydrazone was dissolved in a minimum amount of dry DMF (20 mL), the mixture was
cooled in an ice bath, then 11 mmol of N-chlorosuccinimide (NCS) was added portion-wise
to the reaction mixture. It is worth noting that the reaction is highly exothermic and should
be handled with care [29,30]. The reaction mixture was stirred at 0 ◦C for about 1 h, then
the reaction mixture was allowed to warm up to room temperature. After the completion
of the reaction, as indicated by TLC, the yellow solid was collected by filtration and washed
twice with petroleum ether. The resulting solid was dissolved in 50 mL of hot water and
10 mmol of Et3N was added drop-wise while cooling. Pale yellow plates were formed,
filtered, and washed with cooled water to afford more than 90% product.

3-(pyridin-4-yl)-[1,2,4]triazolo[4,3-a]pyridine 1. Off pale yellow solid; Yield 92%; mp
188–189

◦
C; 1H NMR (200 MHz, DMSO) δ 8.63–8.48 (m, 2H), 8.15 (ddt, J = 5.0, 1.7, 0.7 Hz,

1H), 7.98 (s, 1H), 7.69 (ddd, J = 8.6, 7.1, 1.8 Hz, 1H), 7.64–7.59 (m, 2H), 7.32 (dt, J = 8.6, 1.1
Hz, 1H), 6.83 (ddt, J = 6.5, 5.0, 0.8 Hz, 1H); 13C NMR (50 MHz, DMSO) δ 156.96, 151.02,
150.15, 148.19, 143.32, 138.61, 136.25, 122.18, 120.53, 116.36, 107.29; IR(ATR) 1634, 1605, 1493,
1465, 1414, 1376, 1305, 1284, 1212, 1143, 1087, 1005, 992, 841,750, 737, 693 cm−1; EI-MS:
197.2 [M + H] +.
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Scheme 1. Synthesis of 3-(pyridin-4-yl)-[1,2,4]triazolo[4,3-a]pyridine 1 and 6-bromo-3-(pyridin-4-yl)-[1,2,4]triazolo[4,3-
a]pyridine 2.

6-bromo-3-(pyridin-4-yl)-[1,2,4]triazolo[4,3-a]pyridine 2. Off pale green crystals; Yield:
93%; mp 203–205 ◦C; 1H NMR (200 MHz, DMSO) δ 8.92 (dd, J = 1.7, 0.9 Hz, 1H), 8.88–8.72
(m, 2H), 8.03–7.94 (m, 2H), 7.91 (dd, J = 9.7, 1.0 Hz, 1H), 7.61 (dd, J = 9.7, 1.6 Hz, 1H); 13C
NMR (50 MHz, DMSO) δ 150.50, 149.27, 144.15, 133.49, 131.64, 124.32, 121.92, 116.70, 109.24,
38.93; IR(ATR) 1600, 1523, 1417, 1336, 1296, 1209, 1091, 992, 825, 789, 727 cm−1; EI-MS:
275.2/277.2 [M + H]+.

2.3. Crystal Structural Determination

Crystals of compounds 1 and 2 were obtained via recrystallization from a hot aqueous
solution. The diffraction data were collected using MoKα radiation (λ = 0.71073 Å) at
193.00(10) K using a STOE IPDS2T-diffractometer. The structure was solved using the
SHELXT crystallographic software package and refined through full-matrix, least-squares
techniques on F2 by the SHELXL-2018 crystallographic software package [31]. Selected
crystallographic data of compounds 1 and 2 are listed in Table 1. The supplementary
crystallographic data for 1 and 2 were deposited at the Cambridge Crystallographic Data
Center (CCDC) as 2049251 and 2049252, respectively.

Table 1. Crystal parameters, data collection, and structure refinement details for compounds 1 and 2.

Parameter 1 2

Chemical formula C11H8N4 + 3H2O C11H7N4Br + 3H2O
Mr 250.26 329.16

Crystal system, space group Monoclinic, P 21/c Monoclinic, P 21/c
Temperature (K) 193 193

a, b, c (Å) 14.3213(11), 6.9452(4), 12.6860(8) 15.1413(12), 6.9179(4), 13.0938(8)
β (◦) 100.265(6)◦ 105.102(6)

V (Å3) 1241.62(14) 1324.16(16)
Z 4 4

Radiation type Mo-Kα Graphite monochromator Mo-Kα Graphite monochromator
µ (mm−1) 0.1 3.115

Crystal size (mm) 0.06 × 0.1 × 0.45 0.1 × 0.32 × 0.34
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Table 1. Cont.

Parameter 1 2

Dc (g/cm3) 1.339 1.651
Diffractometer STOE IPDS 2T STOE IPDS 2T

F(000) 528 664
Index ranges −19 ≤ h ≤ 19 −9 ≤ k ≤ 8 −16 ≤ l ≤ 16 −20 ≤ h ≤ 16 −9 ≤ k ≤ 9 −17 ≤ l ≤ 17

6903,
3058,
1545

7323,
3252,
2727

Rint 0.0451 0.0167
GOF 0.953 1.126

H-atom treatment H-atoms localized and refined with
isotropic displacement parameters

H-atoms localized and refined with
isotropic displacement parameters

(∆)max, (∆)min (e Å−3) 0.24, −0.22 0.41, −0.47

3. Results and Discussion
3.1. Chemistry

Herein we describe the use of N-chlorosuccinimid (NCS) as an efficient reagent for
the synthesis of [1,2,4] triazolo[4,3-a]pyridine derivatives. While NCS is well known as
a chlorinating agent of hydrazones and this is the first time we have explored its new
function as a cyclizing agent for 2-pyridylhydrazones to achieve the target depicted in
Scheme 1. It is worth mentioning that we use NCS as a chlorinating agent for hydrazones
to furnish the corresponding hydrazonoyl chlorides, which usually react with arylacetoni-
triles to afford aminopyrazoles. However, in this case, the use of 2-hydrazinopyridin for
preparing hydrazones and their treatment with NCS as a chlorinating agent did not yield
the corresponding hydrazonoyl chloride. In fact, the compound isolated was 3-(pyridine-4-
yl)[1,2,4]triazolo[4,3-a]pyridines obtained via oxidative cyclization. This can be explained
by the initial formation of the chlorohydrazone and by the subsequent loss of HCl and ni-
trilimine generation. Due to the presence of the nitrogen of the pyridine moiety in a suitable
position, the intermediate cyclizes to give the unprecedented [1,2,4]triazolo[4,3-a]pyridine.

3.2. Crystal Structure and Formation of Hydrogen Bond

The 3-(pyridin-4-yl)-[1,2,4]triazolo[4,3-a]pyridine 1 and 6-bromo-3-(pyridin-4-yl)-[1,2,
4]triazolo[4,3-a]pyridine 2 crystallized in monoclinic space group P21/c. Figure 1 shows
molecular structures and atom numbers of the compounds 1 and 2.
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The selected values of bond distances and angles are presented in Table 2. The analo-
gous bond lengths and angles are almost equal in both compounds. In general, the average
bond lengths and bond angles of these rings are within the normal ranges [22,24–28,30–37].

Table 2. Selected bond lengths [Å], angles [◦] for compounds 1 and 2.

3-(pyridin-4-yl)-[1,2,4]triazolo[4,3-a]pyridine 1

C(1)-N(2) 1.318(3) C(8)-N(9) 1.385(3)
N(2)-N(3) 1.360(3) C(12)-N(13) 1.336(3)
N(3)-C(4) 1.324(3) N(13)-C(14) 1.346(3)
C(1)-N(9) 1.383(3) C(10)-C(11) 1.398(3)
C(4)-N(9) 1.391(3) C(11)-C(12) 1.385(3)

N(2)-C(1)-N(9) 108.95(18) N(9)-C(1)-C(10) 128.43(17)
N(2)-C(1)-C(10) 122.61(19) C(4)-N(3)-N(2) 107.48(17)
C(1)-N(2)-N(3) 109.36(19) N(3)-C(4)-C(5) 130.7(2)
N(3)-C(4)-N(9) 109.6(2) C(6)-C(5)-C(4) 118.6(3)
N(9)-C(4)-C(5) 119.7(2) C(4)-C(5)-H(5) 119.2(15)
C(6)-C(5)-H(5) 122.1(15) C(5)-C(6)-H(6) 118.3(17)
C(5)-C(6)-C(7) 120.2(3) C(8)-C(7)-C(6) 121.8(3)
C(7)-C(6)-H(6) 121.5(17) C(6)-C(7)-H(7) 119.3(17)

6-bromo-3-(pyridin-4-yl)-[1,2,4]triazolo-[4,3-a]pyridine 2

Br(1)-C(7) 1.886(2) C(1)-N(2) 1.321(3)
C(1)-N(9) 1.377(3) C(1)-C(10) 1.461(3)
N(2)-N(3) 1.370(3) N(3)-C(4) 1.328(3)
C(4)-N(9) 1.386(3) C(4)-C(5) 1.408(4)
C(8)-N(9) 1.384(3) C(12)-N(13) 1.341(3)

N(13)-C(14) 1.347(3) C(11)-C(12) 1.386(3)
N(2)-C(1)-N(9) 109.3(2) C(8)-C(7)-Br(1) 118.63(18)
N(2)-C(1)-C(10) 122.3(2) N(9)-C(1)-C(10) 128.30(19)
C(1)-N(2)-N(3) 108.95(19) C(4)-N(3)-N(2) 107.04(18)
N(3)-C(4)-N(9) 109.9(2) N(3)-C(4)-C(5) 130.6(2)
N(9)-C(4)-C(5) 119.5(2) C(6)-C(5)-C(4) 119.4(2)
C(6)-C(5)-H(5) 123.5(19) C(4)-C(5)-H(5) 116.9(19)

The unit cells of both 1 and 2 contain four molecules (Z = 4), and the 1,2,4-triazolo[4,3-
a]pyridine ring system in both structures accomplish a planar structure in accordance
with similar systems previously reported. [22,25] An angle between the plane of 1,2,4-
triazolo[4,3-a]pyridine ring system (C4, C5, C6, C7, C8, N9, C1, N2, N3) and the plane of
pyridine ring (C10, C15, C14, N13, C12, C11) is equal to 26.79o and 30.41o in 1 and 2, re-
spectively. However, it is observed that in the 1,2,4-triazolo[4,3-a]pyridine ring system, the
C8–N9, C4–N9, and C1–N2 bonds are significantly longer than the C=N bond (1.28 Å) [38],
which indicates a significant conjugation effect in the fused ring system.

The title compounds 1 and 2 have an extensive network of hydrogen bonds. The
parameters of H-bonds are given in Table 3.

There are three water molecules per unit cell with an extensive network of hydro-
gen bonds between water molecules, and also the molecule linked to water by O1W—
H2W···N13 and O1W—H1W···N13 hydrogen bonds in 1 and 2, respectively, as shown in
Figure 2.
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Table 3. Hydrogen-bond parameters (Å) for compounds 1 and 2.

D−H...A d(D−H) d(H...A) d(D...A) <(DHA)

3-(pyridin-4-yl)-[1,2,4]triazolo[4,3-a]pyridine 1

O1W—H1W···O3W 0.862(17) 1.954(18) 2.810(3) 172.(3)
O1W—H2W···N13 0.906(17) 1.857(18) 2.759(3) 174.(3)
O2W—H3W···O3W#1 0.856(18) 1.98(2) 2.810(3) 164.(3)
O2W—H4W···O1W 0.880(18) 1.906(18) 2.786(3) 179.(3)
O3W—H5W···O2W#2 0.812(18) 1.991(19) 2.791(3) 169.(3)
O3W—H6W···O1W#3 0.866(17) 1.942(18) 2.797(3) 169.(3)

6-bromo-3-(pyridin-4-yl)-[1,2,4]triazolo-[4,3-a]pyridine 2

O1W—H1W···N13 0.826(19) 1.96(2) 2.783(3) 173.(3)
O1W—H2W···O2W 0.814(19) 1.96(2) 2.771(3) 174.(4)
O2W—H3W···O3W#1 0.82(2) 2.06(2) 2.873(3) 175.(4)
O2W—H4W···O3W#2 0.81(2) 2.07(2) 2.873(3) 171.(4)
O3W—H5W···O1W 0.817(19) 2.00(2) 2.804(3) 170.(4)
O3W—H6W···O1W#3 0.825(19) 2.00(2) 2.805(3) 167.(4)
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Figure 2. Crystal structure and hydrogen bonds for (a) 3-(pyridin-4-yl)-[1,2,4]triazolo[4,3-a]pyridine 1; (b) 6-bromo-3-
(pyridin-4-yl)-[1,2,4]triazolo-[4,3-a]pyridine 2.

4. Conclusions

In summary, we have developed an efficient procedure for the oxidative cyclization of
2-pyridylhydrazones to achieve triazolopyridines. Synthesis of the desired products pro-
ceeds under very mild conditions and includes dehydrative cyclization upon treating with
NCS in DMF at 0 ◦C. Access to the unprecedented cyclized product under the conditions
applied makes this reaction an operationally very convenient and high yielding step for
the synthesis of [1,2,4]triazolo[4,3-a] pyridines. To the best of our knowledge, usage of NCS
as a cyclizing agent was not mentioned before in this context, the reaction is robust and the
products can be isolated in excellent yields.
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and isotropic displacement parameters (Å2) for 1, Table S5: Bond lengths [Å] and angles [◦] for 1,
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takes the form: -2π2[ h2 a*2U11 + . . . + 2 h k a* b* U12 ], Table S11: Hydrogen coordinates and
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