
 

Jack A. Wilkie*, Thomas Stieglitz and Knut Moeller 

Real-Time Multirate Filtering of Digitized 
Torque Signals on Tiva Microcontroller using 
Fixed-Point Design with MATLAB 

Abstract: Correct bone screw torque is critical for positive 
patient outcomes after orthopaedic surgery. Models of the 
screwing process have been developed to allow a smart 
screwdriver to optimise the insertion torque. Experimental 
data is required to test these models, so a test-rig has been 
developed. Accurate torque measurement is a key part of the 
test-rig. An FIR filter was designed for this torque signal, 
implemented on the test-rig, and compared theoretically and 
experimentally to a mean filter and to no filtering. The FIR and 
mean filters both performed well, with the FIR achieving 
better theoretical results, and the mean filter achieving better 
experimental results. Better understanding of the noise 
structure and potential signal distortion would be required to 
improve the FIR filter or to conclusively compare it against the 
mean filter, however both perform sufficiently well for this 
application. 
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1 Introduction 

Bone screws are widely used in orthopaedic surgery to secure 
implants, and to support bones during natural healing. In both 
cases, it is critical that the connections are as resilient as 
possible. The correct torquing of the screws is a major factor 
in the success of the joint, as over-torquing will strip the 
threads and compromise strength [1], and under-torqued 

screws are susceptible to loosening over time [2]. While 
surgeons are highly skilled, it is easy to misjudge the torque, 
or incorrectly torque a screw [3]. 

Wilkie et al. [4] proposed the use of a smart screwdriver 
to automatically identify and enforce the optimal torque. 
Previous work has focused on developing and testing models 
of screw insertion for detecting the bone material properties 
[4]–[6], and for predicting the optimal torque from these 
properties [7]. To test these models, a test rig was developed 
[8]. The test rig had to collect torque and displacement data 
with a high accuracy and sample rate.  

This paper discusses the acquisition and processing of the 
analogue torque signal by the microcontroller in the test rig. 
This will focus on the use of digital filtering to reduce the noise 
on the signal and allow oversampling. The filter design 
process and constraints will be discussed, as well as the 
implementation accounting for real-time processing 
constraints on the relatively low-power Tiva 
TM4C123GH6PM microcontroller. 

2 Methods 

The Tiva TM4C123GH6PM (Texas Instruments Inc.) is an 80 
MHz ARM Cortex-M4F microcontroller. We will specifically 
make use of its 12-bit, 1 Msps ADC and µDMA controller.  

2.1 Filter Design 

The bandwidth of the torque signal is assumed to be 0-100 Hz. 
We use the full speed of the ADC; hence, the input sample rate 
is 1 MHz. We decided that the test rig would output data at 
1000 Hz, hence we want to make sure any noise above this 
frequency is sufficiently filtered to prevent it aliasing during 
the down sampling/decimation. Any noise in the 100-1000 Hz 
range can be filtered offline later using more resource-
intensive methods on a powerful desktop CPU. Choosing 1000 
Hz gave a large transition band for the filter design from 100 
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Hz to 1000 Hz, allowing prioritization of stopband attenuation, 
passband ripple, and computational complexity.  

We had to choose between an FIR or IIR filter. In this 
case, because the output was only 1000Hz, the FIR 
convolution would only need to be calculated for every output 
sample, while an IIR filter would require many computations 
for every input sample. While the FIR convolution is more 
computationally demanding that the IIR iteration, the much 
lower rate made it favourable compared to IIR filtering, 
additionally, it would not require computationally expensive 
floating-point calculations. 

The computational complexity of the FIR filtering is 
determined by the number of filter coefficients. Generally, 
sharper transition bands, higher stopband attenuation, 
narrower passbands (related to down sampling ratio here), and 
lower passband ripple will all increase the number of 
coefficients. To reduce the computational requirements, we 
used the ADC’s built-in hardware averaging. We configured 
this as a 4-sample average, as it provided a good reduction in 
the computational complexity, while introducing minimal 
artefacts in the frequency response. Therefore, the input 
sample rate for the FIR filter was now 250 kHz. 

The primary filter design was performed using the 
MATLAB “designfilt” function. We designed a low-pass filter 
for a sampling frequency of 250 kHz (ADC frequency after 
hardware averaging), with a passband frequency of 100 Hz (to 
match the assumed bandwidth of the data), and a stopband 
frequency of 1000 Hz (to match the planned output data rate). 
We selected the equiripple method, and specified the passband 
ripple as 1 dB, and the stopband attenuation as 60 dB. This 
gave us a type I (symmetric, odd-length) linear-phase FIR 
filter with 627 coefficients. All coefficients were positive. 

2.2 Filter Implementation 

The filter was implemented using fixed-point arithmetic to 
maintain accuracy while keeping the same speed as integer 
arithmetic, and to give more predictable accuracy and 
rounding compared to floating point. First, the filter 
coefficients were scaled to use the full dynamic range of a 16-
bit unsigned integer; the highest coefficient was scaled to 
65535 and the others were scaled proportionally. Generally, 
the filter was applied by convolution: for each output sample 
the 627 coefficients were multiplied elementwise by the 
previous 627 ADC samples and the sum of the products was 
accumulated. This used a 64-bit accumulator variable as a 
saturated ADC input would result in a 38-bit value, which 
would overflow a 32-bit integer. This accumulator was then 
scaled to fit within a 32-bit integer.  

The 32-bit filtered value was then calibrated. This was 
done using an external precision power supply. This was also 
required as the torque sensor analogue output voltage ranged 
from 0-10 V, and a voltage divider was used to bring this into 
the microcontrollers 3.3 V range and the resistors were 
uncalibrated; this voltage calibration accounted for the 
combination of the voltage divider and ADC variations and 
corrected the gain from the filter. The external voltage was 
stepped from 1-9 V in 0.5 V steps, and the filtered value was 
recorded at each step. A linear fit was performed to get a 
multiplicative and additive offset for the calibration. 

DMA was used to optimise the transfer of data from the 
ADC to the main memory. The DMA was programmed in a 
ping-pong mode. The ADC was free-running and produced 
new samples at 250 kHz (after 4x hardware averaging), when 
a sample was ready, the DMA module would copy this into a 
buffer in memory without processor intervention. Every 250 
values, the DMA would switch to the next buffer, and trigger 
an interrupt to alert the program that data was ready to filter; 
this happened at 1000 Hz, so every time the interrupt was 
triggered, a value should be calculated from the filter, and 
output from the test rig.  

Because of the 627 coefficients, the filter would need to 
process the last 3 buffers of 250 values, so 4 buffers of 250 
samples were used to allow DMA writing to the last one 
without interfering with the filtering. As the data was only 
being output at 1000 Hz, the filtering and decimation could be 
combined into a single step to greatly reduce the 
computational load, as any filtered 250 kHz data points 
between the 1000 Hz samples would be discarded anyway.  

Some care had to be taken in optimising the code, as there 
were only 80,000 processor cycles to process the convolution 
each time, which required a minimum of 627 multiplications, 
627 additions, and even more control and data-access 
instructions; additionally, the processor must still be able to 
simultaneously perform other time-sensitive tasks, such as 
USB communications and motor control. The microcontroller 
was using a pre-emptive scheduler with FreeRTOS, and the 
long-running filtering task needed a lower priority to avoid 
blocking other fast tasks; hence, care had to be taken with other 
higher-priority tasks not to perform long-running operations 
which would cause the filtering task to fall behind and lose 
data. 

2.3 Testing 

The filter was compared to no filtering/a unit impulse filter 
(substitute coefficients with [1,0,0,…,0]), and a mean filter 
([1,1,1,…,1]). The magnitude frequency responses of the 
filters were plotted, including a detailed plot of the response 
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for the passband and stopband after decimation, accounting for 
aliasing. 

The three filters were then evaluated on the test rig. For 
each filter, 10 seconds of data was collected while the torque 
sensor was unloaded and stationary. An FFT of the data was 
used to evaluate the noise spectrum after each filtering method. 

3 Results 

The theoretical frequency responses from the 3 tested methods 
are shown in figures 1,2, and 3. Figure 1 shows the entire 
response over the range of input frequencies. Figure 2 shows 
the response in the range of output frequencies, showing the 
directly mapped response from input components under 1000 
Hz, and the aliased components summed from any input 
components over 1000 Hz. Figure 3 shows a detailed view of 
the responses in the passband. 

The experimental data is shown in Figure 4. This shows 
the noise power spectrum using each of the different filtering 
methods while the sensor is unloaded and stationary.  

4 Discussion 

From the theoretical data, both a mean filter and the designed 
FIR filter should significantly reduce noise. Figure 1 shows 
that the attenuation of the designed FIR filter is notably better 
than that of a moving average filter across most of the 
spectrum, and generally has a much steeper transition band, 
however Figure 2 shows that the mean filter has more 
attenuation in the very low frequencies. More attenuation in 
the low frequencies may remove more noise, especially since 
random noise tends to be skewed towards lower frequencies, 
however it may also attenuate some on the desired signal; 
Figure 3 shows that the passband attenuation of the mean filter 
is higher than that of the FIR filter, however whether this small 
difference matters in practice is not clear. Figure 2 also shows 
that the FIR filter should reduce aliased higher-frequency 
noise approximately 15 dB more than the mean filter. 

The experimental data in Figure 4 shows that both the 
mean and FIR filters significantly reduce noise in practice. 
However, the experimental results here contradict the 
theoretical predictions in Figure 2, with the mean filter 
appearing to have notably lower noise. This could be due to 
the extra low-frequency attenuation predicted for the mean 
filter, which would give it an advantage if the noise is 
significantly skewed towards the lower frequencies already. 
However, it should also be noted that this data is only 
considering the noise filtering of the filters and has not 
investigated the distortion of the desired torque signal, which 
may be higher for the mean filter due to the added low-
frequency attenuation.  

Figure 1: Theoretical frequency responses for the 3 different 
filtering methods tested. 

Figure 2: Theoretical frequency responses after decimation to 
1000 Hz. Showing responses from signals <1000 Hz, as well as the 
sum of aliased responses >1000 Hz. 

Figure 3: Theoretical frequency responses of the 3 different 
filtering methods in the passband. 
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It is difficult to say anything certain about the noise 
structure; from the unfiltered plot in Figure 4, the noise power 
distribution is relatively uniform over the 500 Hz bandwidth 
tested. However, the noise here is a combination of noise 
directly present in this low-frequency band, and any higher-
frequency noise that has been aliased down during the 
sampling. It would be possible to develop a special version of 
the test-rig code specifically to analyse the high-sample-rate 
data from the ADC; this would give further insight into the 
structure of the noise present and may allow more optimal 
filters to be designed. 

With more information, the design of the filter could be 
optimised by adjusting the desired attenuations/weightings for 
several different bands. However, the current FIR filtering 
methodology already reduces the noise power significantly 
compared to the unfiltered signal, and due to this, the limiting 
factor is more likely to be the torque sensor itself, rather than 
the analogue signal acquisition in the microcontroller. This 
work also suggests that a simple mean filter may have similar 
or better performance; if this is the case, it could significantly 
reduce the computational requirements of the filtering due to 
the highly optimised implementations possible for mean 
filters. 

5 Conclusion 

We developed an FIR filter using the filter design tools in 
MATLAB. This was then implemented into a real-time system 
on a TIVA TM4C123GH6PM microcontroller. 

We found some differences between the predicted and 
actual performance of the FIR filter compared to a simple 
moving average filter; these were likely due to assumptions 
about the noise structure.  

It may be possible to further optimise the filter after 
careful investigation into the noise structure, or simply 
substitute the complex FIR filter with a faster mean filter, 

however the implementation at present is likely more than 
sufficient for the application. 
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Figure 4: Experimental noise power spectrums from each filtering method. 
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