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Abstract: Morphological prior information incorporated with 
the discrete cosine transformation (DCT) based electrical 
impedance tomography (EIT) algorithm can improve the 
interpretability of EIT reconstructions in clinical applications. 
However, an outdated structural prior can yield a misleading 
reconstruction compromising the accuracy of the clinical 
diagnosis and the appropriate treatment decision. In this 
contribution, we propose a redistribution index scaled between 
0 and 1 to quantify the possible error in a DCT-based EIT 
reconstruction influenced by structural prior information. Two 
simulation models of different tissue atelectasis and collapsed 
ratios were investigated. Outdated and updated structural prior 
information were applied to obtain different EIT 
reconstructions using this simulated data, with which the 
redistribution index was calculated and compared. When the 
difference between prior and reality (the redistribution index) 
became larger and exceeded a threshold, this was considered 
as an indicator of an outdated prior information. The 
evaluation result shows the potential of the redistribution 
index to detect outdated prior information in a DCT-based EIT 
algorithm. 
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1 Introduction 

Electrical Impedance Tomography (EIT) is applied to the 
visualization of the regional lung ventilation and aeration 
distribution. EIT uses the current induced voltage changes 

through the electrodes attached on the surface of the chest for 
image reconstruction[1]. This technique has proven useful to 
reduce the risk of ventilator induced lung injury (VILI) on 
mechanically ventilated patients in the intensive care unit 
(ICU)[2]. However, low spatial resolution, blurred anatomical 
alignment, and reconstruction induced artefacts hinder the 
interpretation of the status of patients in clinical settings. 
Introducing structural prior information into EIT images will 
be helpful for clinicians in forming a more direct 
comprehensive insight[3]. 

Prior information can vary but is usually based on tissue 
conductivities or anatomical constraints or both. Assigning 
mentioned properties to a predefined area might be the most 
common approach to embed prior information in the EIT 
reconstruction algorithm. e.g., Glidewell et al. use the shape of 
the lungs to group FEM elements and to assign different 
impedance values[4]. Another principle to include prior 
information is introduced as a subset of constraint basic 
functions. Vauhkonen et al. chose a series of representative 
ensembles of expectable conductivity distributions based on 
physiological information within the body[5]. 

Generally, these former attempts generated a universal 
prior for all patients. To allow a more patient-specific prior, 
Schullcke et al. proposed a novel EIT algorithm with the prior 
as a subset of basic functions using patient related 
morphological images taken, e.g., from CT or MRI images[6]. 
The generation of the constraining subsets are obtained from 
the discrete cosine transformation (DCT) of the related 
morphological images. 

Even though this algorithm has shown attractive results, 
it comes with the same problem as all priors always do: results 
are just as good as the validity of the prior assumptions. The 
DCT-based prior might lose validity during hospitalization 
and treatment since the status of the patient is changing over 
time. The outdated prior information might induce a risk in 
terms of misleading interpretation of the results. 

The objective of this work is to introduce an effective 
approach to detect outdated prior information applied to the 
DCT-based EIT algorithm. A redistribution index is proposed 
to quantify the difference between the constrained and the 
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unconstrained DCT results. Simulations experiments with 
different scales of tissue atelectasis and collapse were 
conducted for evaluation purpose. Redistribution indexes were 
calculated using the constrained and the unconstrained DCT 
results of every simulated scale. At last, a threshold value of 
the redistribution index was determined to identify outdated 
prior information. 

2 Method 

2.1 DCT-based EIT reconstruction 
The reconstruction of conductivity distribution x̂ in difference 
EIT is presented in eq. 1, where vector 𝒙 = 𝛔 − 𝛔𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is 
the change in internal conductivity distribution 𝛔 and 𝒚 = 𝒗 −

𝒗𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  is a vector containing the differences of measured 
voltage 𝑣. 

𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥{∥ 𝑭(𝑥) − 𝒚 ∥2
2+ λ2 ∥ 𝑹𝒙 ∥𝑗

𝑗
} (1) 

if only small conductivity changes are observed, the forward 
model 𝑭(𝑥) can be linearized around a reference conductivity 

𝛔𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  such that 𝑭(𝑥) ≈ 𝑱𝒙, where 𝐽𝑖,𝑗 =
∂𝑦𝑖

∂𝑥𝑗
|
σ𝑟𝑒𝑓

 forms a 

Jacobian matrix 𝑱. An element 𝐽𝑖,𝑗 maps small voltage changes 
at the position 𝑖 of 𝑦 to a conductivity change of the element 𝑗 
within the discretized domain in a FEM model. The 𝑹 is a 
regularization term which can be chosen from several options.  
Equation 1 can be solved in a closed form with linearization: 

𝒙 = (𝑱𝑇𝑱 + λ2𝑹)−1𝑱𝑇𝒚 = 𝑩𝒚 (2) 
where the matrix 𝐵 is the reconstruction matrix which 
calculates the impedance distribution variation from the 
measured boundary voltages. One common method to include 
prior information is to group different tissue properties in the 
setting of 𝛔𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  on which 𝑱 is depending[5]. 

The other method to include constraining prior information is 
to introduce basic functions 𝑠1(𝑝, 𝑞), 𝑠2(𝑝, 𝑞), … , 𝑠𝑀(𝑝, 𝑞) to 
modify the Jacobian matrix 𝑱. The reconstructed conductivity 
change 𝒙 in eq. 2 is written: 

𝒙 = (𝑱𝑺𝑇𝑱𝑺 + λ2𝑹)−1𝑱𝑺𝑇𝒚 = 𝑩𝒚 (3) 
where 𝑺 ∈ 𝑅𝑁×𝑀 represents the matrix of constraining basic 
functions, 𝑁 is the number of the elements in the FEM. 

In this contribution, the basic function subset 𝑺 is obtained 
by element-wise mapping of FEM-elements to basis vectors of 
a Discrete Cosine Transform (DCT) of the patient specific 
morphological image 𝐴. 

𝑉𝑝,𝑞 = ∑ ∑𝐴𝑚,𝑛

𝑁−1

𝑛=0

𝑀−1

𝑚=0

⋅ 𝐷(𝑝, 𝑞)𝑚,𝑛 (4) 

where the cosine function combinations implemented in the 
basic function subset are formed as D(p, q)m,n =

αpαq cos
(2𝑚+1)𝑝𝜋

2𝑀
⋅ cos

(2𝑛+1)𝑞𝜋

2𝑁
. 𝑝 and 𝑞 are the frequencies 

of the cosine function at the 𝑥-axis and 𝑦-axis, respectively. In 
this contribution 𝑝 and 𝑞 are chosen as 15 frequencies at either 
axis as 𝑝, 𝑞 ∈ (0,1,… ,14). The different choices of the image 
𝐴 will yield different levels of constraints in the prior, e.g. 
Hounsfield unit in a CT image will constrain the 
reconstruction at different parts within the lung area, resulting 
in a clear anatomical structure; but a binary lung contour does 
not limit the reconstruction within the lung area. 

The multiplication of 𝐷(𝑝, 𝑞)𝑚,𝑛 and an anatomical 
binary lung image 𝑃𝑚,𝑛 yields matrix 𝐶(𝑝, 𝑞)𝑚,𝑛 = 𝑃𝑚,𝑛 ⋅

𝐷(𝑝, 𝑞)𝑚,𝑛. The columns of the basic function subset is 
determined as 𝑠𝑖 = 𝑇(𝐶(𝑝, 𝑞)) , where 𝑇 is a mapping 
function assigning each pixel of 𝐶(𝑝, 𝑞) to the FEM elements 
which covers the corresponding pixel[6],[7]. 

2.2 Simulation 
The simulations were carried out with MATLAB R2019a 
(Mathworks, Natick, MA, USA) and with the EIDORS 
toolbox[8]. In the simulation, initially the FEM-elements 
belonging to lung area were assigned to a conductivity of 
𝛔𝑙𝑢𝑛𝑔
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.5, the remaining elements were set to 𝛔𝑛𝑜𝑛−𝑙𝑢𝑛𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =

1. With this initial configuration, 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙 was generated. 
The first simulation involved different scales of dorsal lung 
area atelectasis from 0% to 50%. Ventilated lung tissue was 
set to a conductivity of  𝛔𝑙𝑢𝑛𝑔𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑒𝑑 = 0.25, while the collapsed 
area remained at 𝛔𝑙𝑢𝑛𝑔𝑎𝑡𝑒𝑙𝑒𝑐𝑡𝑎𝑠𝑖𝑠 = 0.5. This configuration yielded 
the 𝒗𝑎𝑡𝑒𝑙𝑒𝑐𝑡𝑎𝑠𝑖𝑠  for reconstruction. The second simulation used 
the same values for conductivity configuration but involved 
different scales of only left lung collapse from 0% to 100%. 
This simulation yielded the 𝒗𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 . One example of a 
simulation setting is depicted in Fig. 1. 

Figure 1: The FEM models used for simulation: collapse model 
(75% of the left lobe). 
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In the reconstruction part, 25% of Gaussian noise was 
superimposed on to the 𝒗𝑎𝑡𝑒𝑙𝑒𝑐𝑡𝑎𝑠𝑖𝑠 and 𝒗𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒. To prevent 
the 'inverse-crime', different meshes were used for simulating 
the voltage changes and image reconstruction. During 
reconstruction, three different kinds of prior information, 
namely lung contour (non-constrained prior), accurate prior, 
100% left lung collapse prior or 50% dorsal atelectasis prior 
(fixed constrained prior), were adopted into the DCT 
approach. These two simulation experiments were used to 
evaluate a criterion to detect an outdated fixed constrained 
prior. 

2.3 Redistribution index 

A DCT-based basic function subset generated from a 
morphological image can impose more constraints into 
reconstruction in addition to the lung shape. It can be 
determined by from the corresponding Hounsfield scale units 
in the CT image which derives and is coded into the 
𝑇(𝐶𝑐(𝑝, 𝑞)). If only a lung shape without details is specified, 
the 𝑇(𝐶𝑛𝑐(𝑝, 𝑞)) will allow the reconstruction in the whole 
lung area. The redistribution index is proposed to quantify the 
amount of the ‘leaking’ reconstruction from a constrained area 
to a non-constrained area using the same measurement data, or 
more theoretically, the redistribution of the pixel value 
histogram. The redistribution index is defined by eq. 5: 

𝑅𝐼 =
∑ {(𝒙𝑥𝑦

𝑛𝑐 − 𝒙𝑥𝑦
𝑐 })𝑥𝑦∈cons

∑ 𝒙𝑥𝑦
𝑐

𝑥𝑦∈𝒙̂𝑥𝑦
𝑐

(5) 

𝑥𝑦 ∈ cons expresses the constrained area in the morphological 
constrained area, 𝒙𝑐 is the DCT approach result using the 
constrained area prior, and 𝒙𝑛𝑐 is the DCT approach result 
without the constrained area prior. Equation 5 will yield a 
value between 0 and 1. The flowchart to calculate the 
redistribution index is depicted in Fig. 2. 

3 Results 

Simulation reconstruction examples, namely 50% left lung 
collapse and 25% dorsal atelectasis, are shown in Fig. 3a. The 
redistribution index was calculated and depicted in Fig. 3b. 
The DCT approach results, which used the prior of 100% 
collapse or 50% atelectasis, only allowed the reconstruction 
within the pre-defined area. Thus, these results cannot imply 
the real simulation status. From the depicted redistribution 
indexes of either simulation, redistribution index increased as 
the atelectasis scale or collapse scale decreased. In other 
words, when the difference between the real status and the 
fixed constrained prior information became more notable, an 

increase will be expected in the redistribution index. When this 
difference becomes unbearable, the redistribution index will 
reach to a threshold. Currently, for the clinical EIT evaluation 
there exists no consensus on the best criterion to identify an 
EIT result that is misleading. We note that the control of the 
prior-reality difference within 30% will yield a rather tolerate 
result. Thus, at this difference point the redistribution index is 
around 0.4, which was used as a preliminary threshold. While 
for the reconstructions from the accurate prior, the 
redistribution indexes are smaller and remain below the 
threshhold, e.g., for the 31% atelectasis scale simulation, the 
redistribution index for fixed prior exceeds 0.4, but for the 
accurate prior the index is 0.09, which is almost 80% lower. 

4 Discussion 

In this contribution, we proposed the redistribution index with 
the aim to detect an outdated morphological prior information 
used in the novel DCT-based EIT algorithm. A redistribution 
index threshold was based on two simulation experiments in 
terms of collapse and atelectasis scales, respectively. It was 
demonstrated that there is a straightforward way to quantify 
the effect of an outdated constrained prior on the result of the 
DCT approach. In Fig. 3b, an increasing trend of redistribution 
index was obvious when the difference between the fixed 
constrained prior and real status became more notable. When 
the redistribution index reached 0.4, we can assume that the 
pre-defined constrained prior outdated. It is recommended that 
the integrated priors in the DCT-based EIT algorithm should 
be checked and updated at this point, e.g., by available patient 
measurements or by predicting potential changes based on 
pathophysiology or both. 

Figure 2: The redistribution index calculation flowchart. The 
examples were derived from a simulation of 25% atelectasis. The 
example constrained prior is set as 50% atelectasis. 
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It is worth noting that the accurate prior employed results 
are expected to be accurate in the simulation, but a 
redistribution was still observed. This can be explained by the 
construction of the constraint DCT reconstruction. The non-
constrained prior DCT approach allows the reconstruction in 
the entire lung area, and the spatial resolution of EIT is low, 
i.e., shows a smoothing effect. Even though, the redistribution 
indexes for the accurate prior results remained much lower 
than the threshold. 

One of the limitations of this research is that the threshold 
is derived from just two simulation experiments. It should be 
evaluated by further research. In simulations, the conductivity 
distributions were based only on a simple physiological 
assumption. While in clinical settings, the patients are 
expected to suffer from several symptoms. It should be more 
accurate to yield a threshold from clinical data. 

Nevertheless, the redistribution index can suggest the 
potential changing of the patient status. Thus, it could be used 
as an indicator for an outdated prior in the DCT-based EIT 
approach. Updating the prior information in the DCT approach 
can facilitate the accurate interpretation of EIT results. 

5 Conclusion 

The redistribution index was proposed, and a preliminary 
evaluation was done with the help of simulations. The 
evaluation result reveals the potential of the redistribution 
index to detect an outdated prior in the DCT-based EIT 
algorithm. Considering the calculation method of the 
redistribution index, it should be possible to extend this 
definition to other EIT algorithms using prior information. 

 
Author Statement 
Research funding: This research was partially supported by the 
German Federal Ministry of Education and Research (MOVE, 
Grant 13FH628IX6) and H2020 MCSA Rise (#872488 
DCPM). Conflict of interest: Authors state no conflict of 
interest. Informed consent: Informed consent has been 
obtained from all individuals included in this study. Ethical 
approval: The research related to human use complies with all 
the relevant national regulations, institutional policies and was 
performed in accordance with the tenets of the Helsinki 
Declaration, and has been approved by the authors’ 
institutional review board or equivalent committee. 

References 
[1] I. Frerichs, P. A. Dargaville, T. Dudykevych, and P. C. 

Rimensberger, “Electrical impedance tomography: A method 
for monitoring regional lung aeration and tidal volume 
distribution?” Intensive Care Medicine, vol. 29, no. 12, pp. 
2312–2316, 2003-12-01, 2003-12-1. 

[2] Z. Zhao, D. Steinmann, I. Frerichs, J. Guttmann, and K. 
Moller, “PEEP titration guided by ventilation homogeneity: A 
feasibility study using electrical impedance tomography,” 
Critical Care, vol. 14, no. 1, p. R8, 2010. 

[3] S. Milne and G. G. King, “Advanced imaging in COPD: 
Insights into pulmonary pathophysiology,” Journal of thoracic 
disease, vol. 6, no. 11, p. 1570, 2014. 

[4] M. Glidewell and K. T. Ng, “Anatomically constrained 
electrical impedance tomography for anisotropic bodies via a 
two-step approach,” IEEE Transactions on Medical Imaging, 
vol. 14, no. 3, pp. 498–503, 1995-09, 1995-9. 

[5] M. Vauhkonen, J. Kaipio, E. Somersalo, and P. Karjalainen, 
“Electrical impedance tomography with basis constraints,” 
Inverse problems, vol. 13, no. 2, p. 523, 1997. 

[6] B. Schullcke, B. Gong, S. Krueger-Ziolek, M. Soleimani, U. 
Mueller-Lisse, and K. Moeller, “Structural-functional lung 
imaging using a combined CT-EIT and a discrete cosine 
transformation reconstruction method,” Scientific reports, vol. 
6, p. 25951, 2016. 

[7] R. Chen and K. Möller, “Global Inhomogeneity Index 
Evaluation of a DCT-based EIT Lung Imaging,” Curr. Dir. 
Biomed. Eng., vol. 6, no. 3, pp. 36–39, Sep. 2020, doi: 
10.1515/cdbme-2020-3010. 

[8] A. Adler and W. R. B. Lionheart, “Uses and abuses of 
EIDORS: An extensible software base for EIT,” Physiological 
Measurement, vol. 27, no. 5, pp. S25–S42, 2006-04, 2006. 

Figure 3: Exemplary DCT approach results and corresponding 
redistribution index from the two simulation experiments. (a) DCT 
results with different priors employed. Upper: Examples from the 
simulation of 25% of atelectasis; Lower: Examples from 25% of 
the left lung collapse. (b) Redistribution indexes calculated from 
the two-scope simulations. 

679


