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Abstract: Accurate recognition of surgical tools is a crucial 
component in the development of robust, context-aware 
systems. Recently, deep learning methods have been 
increasingly adopted to analyse laparoscopic videos. Existing 
work mainly leverages the ability of convolutional neural 
networks (CNNs) to model visual information of laparoscopic 
images. However, the performance was evaluated only on data 
belonging to the same dataset used for training. A more 
comprehensive evaluation of CNN performance on data from 
other datasets can provide a more rigorous assessment of the 
approaches. In this work, we investigate the generalisation 
capability of different CNN architectures to classify surgical 
tools in laparoscopic images recorded at different institutions. 
This research highlights the need to determine the effect of 
using data from different surgical sites on CNN 
generalisability. Experimental results imply that training a 
CNN model using data from multiple sites improves 
generalisability to new surgical locations.  
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1 Introduction 

In recent decades, artificial intelligence (AI) has been 
progressing to develop more powerful and effective solutions 
in many disciplines. AI, particularly deep learning, has 
achieved impressive success on image and video processing 
applications such as object detection and action recognition 
[1]. Therefore, research has been initiated to develop and 
utilise AI solutions in the medical field to enhance and ease 
medical diagnosis. Moreover, AI in the surgical field has also 
gained interest, due to the promising potential applications that 
might weave the next era of operating rooms (OR) [1, 2]. 

Minimally invasive surgery may profit from developing 
AI systems. This type of surgery is performed using a 
laparoscopic camera that captures the view of the surgical site. 
Thus, the video signal is rich in information. Future OR 
systems could potentially use similar video signals to analyse 
surgical workflow. Such systems have a variety of intra- and 
post-operative applications. They can support the surgeon in 
decision-making, provide relevant information about the 
executed surgical task and notify the surgical team about 
possible complications. This may improve surgical practice 
and surgical outcomes. Additionally, such AI systems can 
enhance training novice surgeons and improve their skills [1, 
3].  

Analysing the surgical workflow involves many aspects. 
An essential aspect is surgical tool classification. Various 
systems and approaches have been investigated for detecting 
surgical tools in laparoscopic interventions. Recently, deep 
learning approaches have been wieldy applied in many 
research works. Various architectures of convolutional neural 
networks (CNNs) have been employed to model spatial 
information of laparoscopic images [4, 5]. Other approaches 
have leveraged temporal information encoded across complete 
laparoscopic videos or short clips containing unlabelled 
frames around a labelled one [6-9]. Long short-term memory 
(LSTM) [7, 8, 10], GRU [11] or Graph Convolutional 
Networks [9] have been used for modelling sequential data. 

CNN-based approaches have demonstrated positive 
performance for identifying surgical tools in laparoscopic 
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images [5, 9]. However, the proposed CNN models were 
trained and evaluated using a single source of data. In other 
words, the data were recorded in one surgical site and for a 
particular type of procedure. Therefore, likely performance of 
CNN models across differing procedures should be evaluated 
on different sources of data. 

Robustness of deep learning-based approaches has been 
addressed in some studies that handled processing 
laparoscopic images. In the Robust Medical Instrument 
Segmentation (ROBUST-MIS) challenge 2019, the results of 
surgical tool segmentation were obtained on images of 
different procedure types [12].  In other works, the robustness 
of CNN models was studied for tool segmentation [13], tool 
detection [14] and surgical phase recognition [15, 16]. 

In this work, the generalisability of four CNN 
architectures of different depths and sizes was studied. The 
architectures were VGG-16, ResNet-50, DenseNet-121 and 
EfficientNet-B0. Two datasets containing data recorded at one 
hospital (single-site dataset) and at multiple hospitals (multi-
site dataset) were used to conduct the study. The CNN models 
were trained on each dataset and their generalisation 
capabilities were evaluated on the other dataset. The effect of 
using multi-site data for training on CNN generalisability was 
investigated.  

2 Methods 

2.1 Datasets 

Two datasets were used to study CNN generalisability. One of 
the datasets is the publicly available Cholec80 [4]. It contains 
laparoscopic videos for 80 procedures performed at 
the University Hospital of Strasbourg. The other dataset 
(Cholec20) was recorded at two different hospitals. It contains 
20 videos. In both datasets, procedures are cholecystectomy. 

Seven surgical tools were used in Cholec80 procedures. 
The labels for surgical tools are provided at 1 Hz. Cholec20 
was labelled for surgical tools at 1 Hz also. Although the same 
type of procedures was executed in both datasets, some of the 
tools are not similar (see Table 1). Hospitals may use tools 
from different manufacturers; therefore, tools of the same 
functionality might have a different visual appearance. Thus, 
only similar tools presented in all videos were considered in 
this study. Those tools are grasper, hook, scissors, irrigator and 
bag. 

2.2 CNN Training 

Four CNN models of different architectures were used. The 
models are VGG-16, ResNet-50, DenseNet-121 and 
EfficientNet-B0. The models differ in depth and number of 
learnable parameters.  

The architectures of the CNN models were modulated for 
the tool classification task. The last layer in each model was 
replaced by a fully-connected layer with five nodes, each for a 
surgical tool. In this layer, the sigmoid activation function was 
used since the task is a binary classification. 

In both datasets, some surgical tools appear more often 
than others. For instance, grasper is present in most images, 
because it is used alone or with other tools more frequently for 
holding anatomical structures or executing surgical actions. 
Figure 1 shows the distribution of surgical tools in Cholec80 
and Cholec20 datasets. To reduce the biasing effect of the 
imbalanced distribution of training samples, loss-sensitive 
learning was adapted [5]. The loss was computed for every 
tool using the binary cross-entropy function [6]. 

Table 1: Presented surgical tools in Cholec80 and Cholec20 
datasets. (✓) indicates tool presence and (-) indicates that tool is 
not present or has a different visual appearance.   

Surgical Tool Cholec80 Cholec20 

Grasper 
✓ ✓ 

Bipolar 
✓ - 

Hook ✓ ✓ 

Scissors ✓ ✓ 

Clipper ✓ - 

Irrigator ✓ ✓ 

Bag ✓ ✓ 

Two experiments were performed using the modulated 
CNN models. In the first experiment, denoted as single-site 
training, models were trained on data from a single surgical 
location. While in the second experiment, denoted as multi- 

Figure 1: Distribution of surgical tools in Cholec80 and Cholec20. 
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site training, the models were trained on data recorded at 
multiple surgical locations. The trained models, from each 
experiment, were tested on the other dataset, which did not 
contribute to the training. Table 2 presents a description of the 
training and testing data used in each experiment. For a fair 
comparison between single- and multi-site training, roughly 
the same number of training images was used in both 
experiments. 

Models were trained using transfer learning approach. 
Thus, they were initialised with weights learned on 
ImageNet[17]. The initial learning rate was set to 1×10-4 and 
weight decay was set to 9×10-4. Implementation was 
performed using Keras framework on a computer with an 
NVIDIA GeForce RTX 2080Ti GPU. 

3 Results 

The average precision metric was used to evaluate the 
classification performance of CNN models. Figure 2 shows 
results of testing CNN models on unseen data from other 
surgical locations. The abbreviation “-S” and “-M” is added to 
the model’s name and refers to the results of single-site 
training and multi-site training experiments, respectively. 
Additionally, Figure 2 presents mean and standard deviation 
over the different CNN models and over the surgical tools. 

Table 2: Description of training and testing set used in the 
conducted experiments. 

Experiment Training 
source 

Number of 
training images 

Testing set 

Single-site 
Training 

Cholec80 46078 Cholec20 

Multi-site 
Training 

Cholec20 46227 Cholec80 

4 Discussion 

In this study, generalisation of four CNN models to unseen 
data from different surgical sites was evaluated. Moreover, the 
improvement of using data from multiple surgical sites on 
CNN generalisability was assessed. The aim of this work is to 
support the deployment of deep learning solutions in real 
settings across different hospitals.  

The CNN models show high generalisation capability for 
grasper in both experiments. On the contrary, the models were 
poorly generalised to identify scissors in across surgical 
settings. These results are due to characteristics of surgical 
data. They are not representative and not equally distributed 
over the classes. Additionally, capturing and labelling surgical 
data is challenging and therefore, available labelled datasets 
are limited in size. Those characteristics impact the training 
process of deep learning models. In our case, the distribution 
of data (shown in Figure 1) has biasing effect towards the over-

Figure 2: Average precision of surgical tools for VGG-16, ResNet-52, DenseNet-121 and EfficientNet-B0 using single- and multi-site 
training. Solid bars and Dotted bars are the results of CNN model trained on single-site and multi-site data, respectively. The bars 
in black colour are the mean and standard deviation over all models trained on single-site and multi-site data. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Grasper Hook Scissors Irrigator Bag Mean

VGG ResNet DenseNet EfficientNet Single-site Multi-site

478



Assessing Generalisation Capabilities of CNN Models for Surgical Tool Classification 

presented tool and thereby better learning and generalisation 
for grasper and lower performance for under-presented tools 
(scissors). 

Results imply enhancement in classification performance 
of multi-site training over single-site training. Data acquired 
from multiple surgical sites are more diverse and thus 
improves generalisation capabilities of deep learning models. 
The studied models showed better generalisation for most 
tools when the models were trained on multi-site data. VGG-
16 model has the most notable improvement (~23%) for 
detecting irrigator. The mean average precision of hook, 
irrigator and bag over the four CNN models were improved by 
9%, 13% and 13%, respectively.  

This study has two limitations. The first limitation is the 
small size of training data. Cholec20 has about 55.5k labelled 
images. 80% of Cholec20 was used in the multi-site training 
experiment, and the same amount of data was used for single-
site training. Secondly, this study was conducted using one 
type of procedure which is cholecystectomy. Thus, CNN 
generalisation to other procedures is yet to be investigated. 

5 Conclusion 

Experimental results imply that training on data from different 
surgical sites improves generalisability of CNN models. 
Nevertheless, this study shows that acceptable generalisation 
is possible for surgical tools which are well presented in the 
training data. In future work, generalisation of CNN to 
different types of procedures will be studied. 
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