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Abstract:

Electrical Impedance Tomography (EIT) is mainly used to display information about the
respiration of a patient. However, also cardiac-related signals are present, and, although they
have small amplitude, they can be distinguished by their frequencies. In this contribution, we
report a method based on harmonic analysis to separate respiration and perfusion. These are
described by a summation of amplitude-modulated signals at different frequencies. We report the
mathematical background of the method and its application on the global impedance and, finally,
show how it is possible to create frequency-related images highlighting either the respiration or

the perfusion inside an EIT video.

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Electrical impedance tomography; harmonic analysis; respiration and perfusion

separation

1. INTRODUCTION

Electrical impedance tomography (EIT) is a routinely per-
formed medical measurement used to follow the respiration
of a patient. It is performed injecting small alternating
currents around the chest of the patient and recording the
associated voltage variations. Since it does require only
electric measurements with a relatively small equipment,
it is largely employed at the bedside. From the voltage
variations an impedance map of a plane of the patient
chest is recovered. Because of the inspiration of air in the
lungs and their consequent large variation in resistance
during the respiration cycle, the main impedance change
observed by EIT is associated to the respiration.

However, volume changes, deformation in the heart and
shifting of structures within the cardiac cycle are possibly
present. Unfortunately their intensity is much lower than
that of the respiration (Deibele et al., 2008).

Generally, the combined information about respiration
(V) and perfusion (Q) signals will yield an index “V/Q
ratio”. High V/Q ratios indicate close match between
larger volume of inspired air and the perfused blood in
the alveoli (Petersson and Glenny, 2014). The V/Q ratio
is important for patient under artificial ventilation and it
can be used to guide the setting of the ventilator (Putensen
et al., 2019).

* This research was partially funded by BMBF grant number FKZ:
13FH5105IA COHMED-DigiMed-OP and grant AIRLobe funded by
?Innovative Projects” MWK-BW.

Several approaches based on principal component anal-
ysis with a frequency domain filtering (Deibele et al.,
2008) and Gaussian process regression (GraBhoff et al.,
2019; GraBhoff and Rostalski, 2020) were proposed for the
separation of cardiac-related (perfusion) and respiration
components from EIT images. However, because of the
large difference in their relative amplitudes and especially
because of the superposition of their frequency bands, their
separation is not trivial.

Here we propose to take advantage of their difference in
base frequencies, that is, in the period of the respiration
cycle against the cardiac cycle, to separate the perfusion
and respiration. This is undertaken in a post-acquisition
elaboration through harmonic analysis analyzing the trend
of the EIT signals in the frequency domain.

This method is based on several assumptions: (i) respira-
tion and perfusion can be expressed as a sum of amplitude
modulated signals, (ii) the frequencies of respiration and
perfusion are stable in the time window of the analysis,
(iii) the envelopes of the modulation are smooth enough
to be expressed as a low order polynomial, (iv) respira-
tion and perfusion do not share any harmonics, and (v)
perfusion and cardiac changes exhibit the same frequency.
These assumptions were chosen to make the mathematical
problem manageable.

The idea is demonstrated on a series of EIT images taken
on a deeply sedated, intubated, and ventilated patient.
This guarantees a stable respiration cycle. The mathemat-
ical process was first shown on the global impedance and
then pixel-wise on a series of EIT images.
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Fig. 1. First orders for shifted Hermite polynomials (a) and
Hermite functions (b).

2. MODEL FOR THE IMPEDANCE VARIATION

Every signal in the impedance tomography, such as the
global impedance or the pixel intensity of the EIT images,
can be expressed as a time series

y = (0) y(1) ... y(N-1)]", (1)
where y(n) is shorthand notation for y(nTs), Ts = 1/fs
is the sampling period, f, is the sampling frequency and
T = NT, is the measurement time. From assumptions (i)-
(ii), this impedance variation can be modelled by

=Y gs(t)cos(2mft) — hy(t)sin(2rft),  (2)

feH

where H is the set of the frequencies consisting of the
respiration f;, the cardiac signal f;, and their harmonics.
Under the term harmonics, we understand integer mul-
tiples of fr, fp and f; — fp. This set of frequencies H
can be estimated from the data using the approach of
Pintelon and Schoukens (1996). The functions gy (¢) and
hy(t) represent, respectively, the in-phase and out-of-phase
modulations of the frequency f. According to assumption
(i), they can be expressed as

NP
= > 07,bs(®) (32)
p=0
and
NP
= 0% ,by(t) (3b)
p=0

with b,(t), p = 0,1,... a complete set of basis functions.
Accordingly, from (2) and (3), one writes as a model

NP
= Z Z (0%, cos(2m ft) — 9?,1, sin(27 1)) by (t),

p=0 feH
(4)

where 6 is the parameter vector containing the coefficients
0fp and 9fp, f € Hand p =0,1,...,N,. The problem
at hand is to estimate the parameters 0 from the data
y (1). Knowing the two base frequencies f, and f,, it
is then possible to relate the different 0;@ and 0?’1) to

the respiration and to the cardiac dynamics,
separating their contributions.

de facto

Note that in this paper a basis function approach is em-
ployed for modelling the smooth functions g;(t) and hs(t).
An alternative would be to assume that these functions
are distributed as a Gaussian process (Rasmussen and
Williams, 2006), having the advantage that no model order
N, need to be chosen. The frequency domain approach
from Hallemans et al. (2020b) can then be followed.

As a complete set of basis functions b,(t) in (3), we use
shifted Hermite polynomials Hy(z),

by(t) = 71202 H, (\/log 4 q(%—l)) te0,7), (5)

where ¢ is the same scaling factor used by Boyd and Alfaro
(2013). The Hermite polynomials H,(z) are recursively
defined by

Ho(.T) =1
Hy(z) =2z (6)
Hpi1(x) =2xHy(z) — 2pH,—1 ().

For the weight function w(z) = e’””2, these possess the
orthogonality property

/ " (@) B (@) H, ()de = VFp,,,  (T)

— 00
where §,, is the Kronecker delta.
In order to reduce spectral leakage, a Gaussian window is
applied to the signal, that is

vo) =w(vViogd o~ ))u.  ®)

One more time employing the same scaling of Boyd and
Alfaro (2013). However, in this formulation, ¢ also works
as an adjustable parameter which determines the stretch of
the weight function. With ¢ = 1 at the sides of the domain
the weight function decays by a factor of two. Increasing
q, the weight function concentrates more and more at the
center of the domain. Accordingly, from (4), it is natural
to write

Y

p=0 feH

, CoS(2m ft) — Gfpsm(27rft)) (1),

) (9)

where the basis functions b,(t) turn out to be shifted
Hermite functions ¥, (z)

by(t) = \I/p( log4 q(% - 1))

These derive from the Hermite polynomials, including the
weight function w(z) in the basis set, and hence, making
the functions orthonormal. They are recursively defined by

(10)

Wo(a ):f%e*%f“
Uy (z) =7 iV2ze 3% (11)
Wy (2 =1/ +137 »( \/

and satisfy the orthonormality cond1t10n

| @

In this way, the parameter ¢ is used to control the tapering
of the window function. This strategy is employed to

U, (z)dz = dp,. (12)
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Fig. 2. Fitting of the global impedance in the frequency
domain. The red diamond represent the harmonics of
the respiration, the violet circle that of the cardiac
signal, and the green squares the intermodulations.

control the spectral width of the polynomial modulation
in the frequency spectrum.

The first 3 orders for the Hermite polynomials and func-
tions are displayed in Fig. 1 with a stretching parameter
q = 2, the same which is used in the following analysis.
The polynomials have the typical shape of a power series.
The Hermite functions, instead, decay at the extrema of
the time domain because of the Gaussian weight function.
Also, they are bounded as ¥, (z) < 0.816 for all n and
for all z (Abramowitz and Stegun, 1972) and posses other
important properties for fitting, such as an analytical form
for their normalization (Boyd and Alfaro, 2013). Moreover,
the Hermite functions represent the eigenvector of the
Fourier transform and, therefore, have the same shape in
the time as well as in the frequency domain.

3. A FREQUENCY DOMAIN ESTIMATION
APPROACH

To simplify the estimation of the coeflicients 9% and 6% o
the estimation is performed in the frequency domain. This
allows to restrict the time-series data to the frequency
band of interest [0, fmax)- A similar strategy was already
employed by Hallemans et al. (2020a, 2021) to estimate
the best linear time-varying approximation (BLTVA) of a
certain class of nonlinear time-varying systems.

The time series (1), after windowing (8), is now trans-

formed into the frequency domain using the discrete
Fourier transform (DFT)
N-1

Yo (k) = Z Yo (nTs)eI2mR/N
n=0

(13)
Accordingly, the frequency domain data, in the frequency
band of interest, is denoted as

Yo = [Yu(0), Yo (1), o, Yu(F)] " (14)

where F' = ceil(fimaxT). The frequency domain model is
then obtained by transforming (9) to the frequency domain

ZZ

P 0feH
where B, (k) is the DFT of b,(t). Accordingly, the fre-
quency domain data can be rewritten under matrix form
Y,=K0+V, (16)
where Y, is defined in (14), K is a regression matrix
consisting of the basis functions B’p and V is a noise vector.

In order to impose that the parameters 6 are real, one
rewrites the matrix equality (16) as a real-valued one

By (k — fT),  (15)

Jafp

Youre = Kiel + Vie (17)

with
Yure = [iI:l((YY:Z))] K = [ii((i{())} and Vie = Lﬁ((‘(/))] :
(18)

The optimal parameters 0 can be obtained in least squares
sense

6 = arg min [ Y re - K02 (19a)

= (Krjt;Kre)_lKrj;Yw,re (19b)

From the estimated parameter vector é, one then retains
the coefficients corresponding to the respiration and perfu-
sion frequencies, and their integer multiples. The separated
respiration and perfusion impedances are then, respec-
tively, reconstructed from (4);

Ny Ny
Ue(t) = Z Z (Hgfr’p cos(2mn f;t)
p=0n=1
— 0k, sin(2mnfit))b,() (20a)
and
Ny Ny R
Up(t) = Z Z (Ggfpﬁp cos(2mn fpt)
p=0n=1
—0h, ,sin(2mnfot))by(t),  (20D)

where Nj is the number of harmonics. Note that for
the regressions matrix K, Hermite functions are used,
while for the reconstruction in the time domain Hermite
polynomials are used. In this way, the effect of windowing
the data can be removed.

4. METHOD

In this contribution a 5 min long dataset was used. It was
sampled at 20Hz and for image reconstruction GREIT
(Adler et al., 2009) was used. The EIT was recorded on
deeply sedated, intubated, and ventilated patient before
performing a positive end-expiratory pressure (PEEP)
step maneuver.

For the harmonic analysis a value of 2 was used for the
stretching parameter ¢, 10 harmonics including the zero
frequency were used for the respiration and 2 for the
perfusion. For the intermodulation 2 frequencies were con-
sidered. N, = 15 coeflicients were used for the modulation
of the baseline (zero frequency), of the perfusion, and of
the intermodulations. A value of N, = 2 was used for all
the other components.
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Fig. 3. Global impedance and its reconstruction (a) and
residuals (b) in the time domain for a 30s period.
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Fig. 4. Reconstructed respiration signal ¢.(t) (20a) a)
and perfusion signal g,(t) (20b) b) from the global
impedance.

The harmonic analysis was performed on the global
impedance, calculated from the sum of all the pixels of
the EIT frames, on the time trend of two distinct pixels,
and on all the EIT frames through the use of Principal
Components Analysis (PCA). For the PCA, the harmonic
analysis was performed on the first 9 principal components
which covered more than 99% of the total variance. Af-
ter the harmonic analysis, respiration and perfusion were
separately reconstructed using (20a) and (20b).

5. RESULTS AND DISCUSSION

Fig. 2 shows the results of the fitting on the global
impedance in the frequency band of interest [0, 2] Hz. The
respiration had a frequency f; = 0.20 Hz and the heartbeat
of f, = 1.09 Hz. The periodic components appear as peaks,
the harmonics of the respiration are highlighted by a red
diamond while those of the heartbeat by a violet circle
(only the first harmonic is visible). The intensity of the first
harmonic of the cardiac signal is two orders of magnitude
lower than that of the respiration. Also the harmonics of
the respiration are very intense even at frequencies higher

6]

10 20 30
Pixel

Fig. 5. EIT image at 144.7s with two pixels highlighted.
Pizel 1 (15,18) is at a position in the lung area. Pizel
2 (18,7) is at the expected position of the heart.

than that of the heartbeat. These two facts explain why
it is difficult to effectively separate the perfusion from the
respiration in EIT signals.

Interestingly, two additional peaks appeared at ca. 0.9 Hz
and 1.3Hz (green squares in Fig. 2), these are the inter-
modulation of the cardiac signal with the respiration of the
patient and represent the modulation of the amplitude of
the perfusion given by the respiration or vice versa.

The peaks corresponding to the respiration appear very
sharp and well fitted. The peaks of the intermodulation
and of the perfusion, instead, are broad and the fitting
function could not properly match their shape, as also
highlighted by the spectrum of the residuals. This spec-
trum can be used to estimate the uncertainty on the co-
efficients é? » and éil , recovered by the fitting (Hallemans

et al., 2020a, 2021).

Clearly, because of the spectral width of the perfusion sig-
nal, which also overlaps with some respiration harmonics,
it is not possible to use filtering to decouple respiration
and perfusion in EIT.

The difficulty in fitting the perfusion signal was given by
the order of the polynomial expansion used to describe the
modulation of the periodic signals. However, an arbitrary
increase of the order for the perfusion components showed
a distortion of the residuals spectrum, indicating a possible
overfitting. Note that increasing the order of the modula-
tion polynomial results in a broadening of the peak skirt.
Also, even a high order polynomial for the modulation
of the perfusion decreased only marginally the sum of
squares. This is on one hand in agreement with the low
total weight of the cardiac signals in the global impedance.
On the other hand, instead, it could be connected with the
fact that the perfusion cannot be fully represented by an
amplitude modulated signal, as it contains a frequency or
phase modulation too.

In Fig. 3 a) the global impedance is compared with its
reconstructed function in the time domain, which was
reconstructed by using the Hermite polynomials. The
two signals show good agreement as also proved by the
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Fig. 6. Reconstructed respiration signals for Pizel 1 (a) and for Pizel 2 (b) of Fig. 5. Reconstructed respiration signal

for Pizel 1 (c) and for Pizel 2 (d).

magnitude of the residuals in Fig. 3 b) which are more
than two orders of magnitude smaller than the global
impedance itself.

However, a small quasi-periodic modulation appears in the
residuals. This is in agreement with the unfitted width
of the cardiac signal in the frequency domain as it is
transformed in a spurious quasi-periodic component in
time.

The fully separated and reconstructed respiration and
perfusion signals are displayed in Fig. 4 a) and b). Note
that also the baseline was removed and both signals are
plotted around zero.

The respiration had a peak-to-peak intensity of ca. 35
while the perfusion of ca. 0.65, once more showing the large
difference in intensity of the two signals. Also the perfusion
has a spiky appearance as that of an electrocardiogram,
while the respiration resembles a triangular saw-tooth
function.

At the time t = 144.7s both the global impedance and
the respiration signal show a maximum which corresponds
to the end of the inspiration. An EIT frame for this time
instant is reported in Fig. 5. The dorsal area shows an
impedance larger than the ventral one. In this frame, two
pixels were selected. One corresponding to a position in
the lung area (Pizel 1) and a second one (Pizel 2) at the
expected position of the heart.

The harmonic analysis was performed on the time varia-
tion of both pixels and the results are reported in Fig. 6.
Figure a) and c) show the respiration and perfusion signals
for Pizel 1, while Figure b) and d) those for Pizel 2.
Comparing the respiration signals, it is clear that the
variation at Pizel 1 is larger than that at Pizel 2. This is
expected since Pizel 1 is located in the lung area. However,
there is also a difference in the phase of the two signals.
In fact, the maximum of the respiration is at two different
times: at 144.7s for Pizel 1 and at 145s for Pizel 2.

Similar observations can be made regarding Fig. 6 c)
and d). Contrary than for the respiration case, here the
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Fig. 7. Respiration (a) and perfusion (b) related EIT
images.

perfusion signal is smaller at Pizel 1 than at Pizel 2.
This is in agreement with the assumption that Pizel 2 is
located in the heart area. Also, the two signals are in phase
opposition as at every maximum in Fig. 6 ¢) corresponds
a minimum in Fig. 6 d).
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Since for both the respiration and the perfusion signals
their amplitude and their phase change at every pixel, it
is possible to employ these information to create functional
images as in Fig. 7. Fig. 7 a) shows the amplitude of
the respiration modulation during the 5 min duration and
Fig. 7 b) that of the perfusion. This can be done, for
example, extending the same procedure performed on
Pizel 1 and 2 of Fig. 5 to make the calculate of Fig. 6 to all
the other pixels. However, to speed up the computation,
the harmonic analysis was applied through the principal
components analysis (PCA), in which case a part of the
total variance of the signal was lost. This lost was less than
1% in our case.

Fig. 7 a) shows that the respiration was concentrated on
the ventral and dorsal part, but was weak in the middle.
Also Fig. 7 a) is substantially different from Fig. 5 where
most of the variation in impedance was concentrated at the
dorsal area. In Fig. 7 a) instead the regions around pixel
(12, 8) and pixel (24,8) were also active with an intensity
comparable with the regions of the dorsal part. The rest
of the image shows a close-to-zero intensity meaning that
the magnitude of the respiration was negligible there.

To derive the same information encoded by Fig. 7 a) one
should observe the time variation of the pixel intensity of
the EIT map for several minutes.

From Fig. 5 it was not possible to have any information
related with the perfusion. This is instead the primary
signal in Fig. 7 b), which shows a well defined high
intensity region with dark contour at the center of the
ventral area. This region can be used to estimate the
position of the heart.

This demonstrates how selecting only the frequencies be-
longing to the respiration or to the perfusion can highlight
different aspects of an EIT image.

Finally, amplitudes are positive defined values, which
simplifies the scaling of the EIT color bars and chromatics.

Similar as for the amplitude images of Fig. 7 other images
can be constructed for the phase of the respiration and of
the perfusion signal. These phase related maps have strong
contouring capabilities (not shown).

6. CONCLUSIONS

In this contribution we introduced a novel method for
the separation of perfusion and respiration signals based
on harmonic analysis in EIT images. This approach was
based on the assumption that EIT can be decomposed
into a combination of amplitude modulated signals. The
harmonic analysis was first performed on the global
impedance and then pixel-wise on a 5 min long time series.
In this way it was possible to construct a respiration-only
and a perfusion-only related image. These images highlight
the area of maximal amplitude variation of the respiration
and of the perfusion and can help to individuate which
areas are for example well ventilated or the expected
position of the heart.

We foresee that this kind of analysis can simplify the
reading of EIT images and support the physician in the
judgment of the conditions of the patient. Also since the
images are decomposed into amplitude-varying signals it is

possible to create fully automatic analysis of the response
of the patient to the ventilation.
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