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Abstract: Healthcare and intensive care unit (ICU) medicine in particular, are facing a devastating tsunami of 
rising demand multiplied by increasing chronic disease and aging demographics, which is unmatched by 
society’s ability to pay. Digital technologies and automation have brought significant productivity gains to 
many industries, and manufacturing in particular, but not yet to medicine. In manufacturing, digital twins, 
model-based optimisation of manufacturing systems and equipment, are a rapidly growing means of further 
enhancing productivity and quality. This concept intersects well with the model-based decision support and 
control just beginning to emerge into clinical use, offering the opportunity to personalise care, and improve its 
quality and productivity. This article presents digital twins in a manufacturing concept and translates it into 
clinical practice, and then reviews the state of the art in key areas of ICU medicine. 
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1. INTRODUCTION 

Intensive care unit (ICU) patients are very complex and highly 
variable, making management difficult. Aging demographics, 
chronic disease, and increasing life spans are driving 
increasing cost and reducing equity of access to care (Baumol 
et al., 2012, Dombovy, 2002, Halpern, 2009, Halpern, 2011, 
Orsini et al., 2014, Shorr, 2002, Truog et al., 2006, van Exel et 
al., 2015). There is thus a significant need to improve 
productivity and quality of care. 

Personalised care using patient-specific models identified 
from clinical data offers the means to directly manage intra- 
and inter- patient (Chase et al., 2018b) variability. It adds 
automation to care, using digital technologies to improve 
quality and cost, as in many other sectors, but much less in 
medicine (Baumol et al., 2012, Economist, 2011, 
Micklethwait, 2011). Thus, some level of automation will be 
necessary given society’s increasing inability to meet rising 
costs and provide equal equity of access to care (OECD, 2015). 

Hyper-automation and digital twins (DT) capture the essence 
of this model-based approach and are a major growth area in 
manufacturing (Cimino et al., 2019, Panetta, 2019). Reduced 
cost and optimisation arise from using sensor data to monitor, 
model, and manage real-world systems. In medicine, the 
difference is the humans in the loop, patient and clinicians.  

This review translates digital twin definitions into the medical 
application space. It focuses on the models and methods 
required for hyper-automation, especially the impact of the 

humans in the loop in cyber-physical-human systems who are 
not as integral in the manufacturing case. Finally, this state of 
the art review explores the key technical and innovation uptake 
issues required to successfully bring DTs into medical care. 

2. DIGITAL TWINS AND VIRTUAL PATIENTS 

2.1 Digital Twin Definition 

Digital twins have risen at the intersection of Industry 4.0 and 
the internet of things (IoT) relying on converging technologies 
in big data, sensors, and cloud computing. A DT is “a virtual 
copy of a system able to interact with the physical system in a 
bi-directional way” (Cimino et al., 2019, Kritzinger et al., 
2018). They are cyber-physical-systems. The bi-directional 
exchange of information synchronizes virtual system response 
to match the physical system to “forecast and optimise the 
behavior of the physical system in real time”. 

In manufacturing digital twins sit on top of a “control layer” 
of supporting technologies, under a top layer of “enterprise 
resource planning” which integrates organizational functions 
and goals into the use of the DT. This DT organisation is 
simplified and shown schematically in Fig. 1. In Fig. 1 both 
upper and lower layers inform the DT and its design / use. The 
DT itself is connected through the control layer to its physical 
counterpart in real-time and uses modeling and computation to 
continually update the virtual twin (Negri et al., 2017). 

DTs are defined by their integration (Kritzinger et al., 2018). 
A digital model (DM) has no interaction with the physical 
system. A digital shadow (DS) is updated with data from the 
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physical system, but does not inform its control. A DT arises 
when physical system data is used to update the DM, and the 
resulting simulation is used to control the physical system. To 
date, there are few true DTs in use (Cimino et al., 2019). 

 
Figure 1: DT structure between supporting technologies (IoT, 
sensors, communications) and an enterprise layer integrating 
DT use into meeting organizational goals (overall protocols, 
oversight, and planning), based on (Chen, 2005). 

2.2 Digital Twins in Medicine 

In medicine, the physical system is the patient, or a particular 
organ or physiological system to be managed. A human is also 
in the loop clinically, particularly in the enterprise layer (Fig. 
1) where protocolised use of a DT is designed, integrated, and 
managed in care (Chase et al., 2016, Chase et al., 2018b). 
Within the framework of Fig. 1 a DT in medicine would fit in 
a control loop in Fig. 2, where bi-directional information to 
and from the DT is clear in the loop. The modeling and DT 
update process is illustrated in Fig. 3, where the incoming data 
in Fig. 2 can be used to update the model at any time to provide 
accurate prediction in response to proposed interventions. 

 
Figure 2: DT control loop in medicine with clinical staff in the 
control loop. 

How interventions are optimised in a medical DT is based on 
a protocol to optimise patient care, by clinical staff at the 
“enterprise” level in Fig. 1.  Finally, it is important to note the 
clinician in the loop in Fig. 2 is there for safety, but can be 
fully removed in full automation. 

 
Figure 3: DT model creation and updating from clinical data. 

2.3 Virtual Patients (Digital Twin Models and Methods) 

Medicine and physiology offer many DMs, models informed 
by data, but not receiving real-time patient data (Hunter et al., 
2010, Nickerson et al., 2016, Safaei et al., 2016, Viceconti et 
al., 2016). However, most are too complex to be personalized 
in real-time with available data (Chase et al., 2018b). 

DS models are increasingly common, able to be personalised, 
and are differentiated by their identifiability from relatively 
limited clinical data in many cases (Chase et al., 2011b, Chase 
et al., 2019, Desaive et al., 2019, Morton et al., 2019b). They 
have been used to assess new medical technology applications 
(Zhou et al., 2018, Zhou et al., 2019) and protocols (Fisk et al., 
2012, Uyttendaele et al., 2018). However, very few are used in 
regular care, and thus are not DTs, where < 1% of model-based 
decision support systems are implemented beyond testing, let 
alone standard care (Garg et al., 2005, Wears et al., 2005). 

Finally, a virtual patient (VP) is a DS, DM, or DT model able 
to be identified from relevant bedside data, and providing 
accurate prediction validation in response to modeled inputs 
(Fig. 4). A collection of VPs creates a virtual cohort (VC) 
where VPs created from retrospective data can be grouped into 
a VC for developing and optimizing new protocols. A VP 
model suitable for being a digital twin should be validated in 
the ability to accurately predict patient-specific outcomes to 
specific interventions, as well as accurately capturing cohort 
response in simulating a new protocol over a unit, where the 
first enables the DT and the second allows the protocol to be 
optimised for the “enterprise layer” in Fig. 1 and is based on 
clinical goals (Chase et al., 2018a, Chase et al., 2018b). 

2.4 Application of DTs in ICU Medicine 

There are 3-4 core areas of ICU medicine: glycemic control 
(GC); cardiovascular (CVS) care; sedation delivery (SD); and 
mechanical ventilation (MV). They affect 30-80% of all ICU 
patient and suffer variability in care and outcomes due to lack 
of physiological insight from the data available leading to 
difficulty in managing inter- and intra- patient variability. 
Moreover, they have significant negative impact from both 
over or under delivering of care, and are a leading cause of 
ICU admission, length of stay, cost, and/or mortality. Thus, 
each core area could gain significant advantage from a DT 
providing a far clearer physiological picture of patient state 

Enterprise

Digital Twin

Control
Supporting technologies (IoT, sensors, …) 

Models, ID, data, analysis 

Oversight, Planning 



312	 J. Geoffrey Chase  et al. / IFAC PapersOnLine 54-15 (2021) 310–315

from the data available (Chase et al., 2018b). In each area, 
virtual patient models exist at levels ranging from DM to DT 
in their integration with the patient (Figs. 1-2) and into care. 

GC is the most advanced area. There are multiple metabolic 
system models based on decades of research (Chase et al., 
2011a, Chase et al., 2018b). However, relatively few have 
achieved patient level validation (Hovorka et al., 2008, Le 
Compte et al., 2009, Lin et al., 2011, Van Herpe et al., 2006, 
Wilinska et al., 2008). GC protocols have been optimised 
using these models (Blaha et al., 2016, Evans et al., 2012, Fisk 
et al., 2012, Knopp et al., 2019, Le Compte et al., 2011, 
Lonergan et al., 2006, Mesotten et al., 2017, Pielmeier et al., 
2010, Van Herpe et al., 2013, Wilinska et al., 2008). However, 
very few have delivered clinical results very close to those 
simulated before implementation (Chase et al., 2007, Fisk et 
al., 2012, Knopp et al., 2019, Wilinska et al., 2011). Similarly, 
at the cohort level, validation has only been presented for one 
model in multiple ICU capacities, including cross validation 
from randomised trial data (Chase et al., 2007, Chase et al., 
2010, Dickson et al., 2018, Fisk et al., 2012). 

MV virtual patient models are much less advanced, as only two 
models accurately capture predict lung mechanics evolution 
with changing ventilator settings (Morton et al., 2019a, 
Morton et al., 2020, Zhou et al., 2021). In particular, critical 
metrics, such as recruitment volume retained as pressures 
change, peak volume and pressures, lung elastances, and work 
of breathing. These metrics offer more accurate insight not 
previously available to optimise MV, where MV doubles the 
cost per day (Dasta et al., 2005). They are currently entering 
first clinical trials (Kim et al., 2020b), and have been tested in 
neonatal cohorts (Kim et al., 2019, Kim et al., 2020a). 

Finally, for SD only fundamental models have been developed 
with no virtual patient or cohort validation (Rudge et al., 
2006). Similarly, CVS has developed models to estimate key 
parameters for clinically managing circulation and cardiac 
stroke volume (Murphy et al., 2020a, Murphy et al., 2020b, 
Pironet et al., 2015, Smith et al., 2020a, Smith et al., 2020b, 
Smith et al., 2021). Both areas have foundation elements for a 
DM, but have not progressed to DT solutions at this time.  

2.5 What is Missing? 

The only bi-directional DTs in clinical ICU use are in GC, and 
they are not fully automated with a human in the loop (Knopp 
et al., 2019, Stewart et al., 2016). Thus, the main element 
missing is technological and not model or control based. 
Specifically, there is a need to create greater interoperability 
and access to data from the range of ventilators and infusion 
pumps in the ICU, which has been a great source of difficulty 
due to proprietary and other reasons.(Hudson et al., 2018, 
Jaleel et al., 2020, Mavrogiorgou et al., 2019). 

3. INNOVATION UPTAKE 

Having all the technologies, models, and protocols to create 
DTs for use as standard of care is not enough. The “enterprise 
layer” of Fig. 1 also includes decision making on adoption of 
new standards of care. Adoption is a decision made at both the 
ICU and clinician level, as well as higher management and/or 
a health system level.  

Alarmingly, patients are reported to benefit from only 30-50% 
of the validated healthcare technologies (Grol, 2001, Schuster 
et al., 2005), indicating at least half of healthcare innovations 
fail to be successfully adopted, even after being clinically 
validated in earlier development stages. 

We consider technology adoption to be the acceptance, 
integration, and use of new technology in an environment. This 
requires consideration of factors at the individual, the 
team/unit, and the organisational system levels. 

3.1 Factors Impacting Technology Adoption 

Majority of research on technology adoption focuses on 
factors relating to individual employees, including employees' 
past experience with technology (Gagnon et al., 2012, 
Koivunen et al., 2018, McGinn et al., 2011, Schreiweis et al., 
2019), perceptions of the new technology's usability, the 
expected benefits of the innovation (system usefulness; Kruse 
et al., 2016), and ease of use (Gagnon et al., 2012). The 
cognitive processes from learning how to use the technology 
(Koivunen et al., 2018), motivation to use the technology 
(McGinn et al., 2011), and trusting the technology (Lluch, 
2011) also drive technology adoption decisions.  

Furthermore, emotion-based factors can similarly hinder the 
adoption process, such as fear of technology (e.g., changes at 
work, Koivunen and Saranto, 2018; Kruse et al., 2016; fear of 
depersonalization of healthcare, Lluch, 2011; fear of being 
replaced by technology, undermined credibility, impact on 
professional identity, Koivunen and Saranto, 2018; fear of 
reduced quality of care, Gagnon et al., 2012; Koivunen and 
Saranto, 2018; McGinn et al., 2011) and disinterest towards 
the technology (Koivunen et al., 2018). Importantly, the 
capacity to provide high-standard quality of care is a core 
value in healthcare professionals (Ko et al., 2018) and thereby 
the introduction of new technology may give rise to fear of 
reduced quality of care.  

While individual factors are crucial to consider in advancing 
adoption, the hierarchical nature of healthcare must also be 
considered. Healthcare delivery teams rely on conformity 
through hierarchical decision-making processes to maintain 
performance and minimise risk (Hughes et al., 2016). The 
power dynamics likely influence the process of technology 
adoption, as hierarchy within teams can hinder communication 
and collaboration (Baker et al., 2011) and reduce opportunities 
for peer support in the adoption process. Furthermore, 
colleagues’ negative attitudes resisting technology is a known 
barrier, particularly so when the resistance comes from an 
influential peer (Gagnon et al., 2012, Greenhalgh et al., 2010, 
Greenhalgh et al., 2017, van Deen et al., 2019).  

3.2 A Way Forward 

Successful technology adoption requires an approach that 
considers the individual, team, and system factors that can 
influence uptake. This includes previous history with 
technology, perceptions and emotions towards technology, 
how technology impacts the delivery of quality of care, and the 
hierarchical structure and power dynamics of the healthcare 
delivery sector. At the organizational system-level, 
communications about and support for technology use from 



	 J. Geoffrey Chase  et al. / IFAC PapersOnLine 54-15 (2021) 310–315	 313

healthcare management is crucial for sustainable uptake 
(Gagnon et al., 2012, Ingebrigtsen et al., 2014, Kruse et al., 
2016, Schreiweis et al., 2019).  

The extensive research greatly contributes to the knowledge 
and understanding of the technology adoption problem, 
although mainly from an individual employee’s perspective. 
Indeed, the problem still exists. There is a further need to 
address the socio-relational aspects of the system, particularly 
those centered on the decision-makers who enable technology 
adoption and uptake.   

5.  CONCLUSION 

ICU medical care needs dramatic productivity improvements 
to ensure better care, meet dramatically growing demand, and 
provide continuing equity of access. This review shows there 
are a few DTs already in use, and the foundation elements for 
significant growth in the nearer future. However, there is a 
strong need to address both the technology of interoperability 
and the social science of innovation uptake to ensure these 
solutions reach their potential impact in transforming care. 
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