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Abstract:Correct torqueing of bone screws is important for
orthopaedic surgery. Surgeons mainly tighten screws ad
hoc, risking inappropriate torqueing. An adaptive torque-
limiting screwdriver may be able to measure the torque-
rotation response and use parameter identification of
key material properties to recommend optimal torques.
This paper analyses the identifiability and sensitivity of
a model of the bone screwing process. The accuracy with
which values of the Young modulus (E) of the bone were
identified depended on the value of E, with larger values
being less accurately identified. The error in identified σuts
(Tensile strength) values was less than 0.5% over all the
cases tested, with no discernible dependence on the co-
identified values of E. Experimental validation is still re-
quired for the model and identification process, but this
approach is feasible and promising from a theoretical per-
spective.

Keywords: orthopaedic surgery, bone screws, smart screw-
driver, parameter identification

Zusammenfassung: Das korrekte Befestigen von Kno-
chenschrauben ist bedeutend für die orthopädische Chir-
urgie. Chirurgen ziehen Schrauben hauptsächlich ad
hoc an, wodurch ein suboptimaler Anpressdruck riskiert
wird. Ein adaptiver Drehmomentbegrenzer könnte die
Drehmoment-Dreh-Reaktion während des Einschraubvor-
gangs messen, die Daten zur Parameteridentifikation der
wichtigsten Materialeigenschaften verwenden und diese
wiederum, um optimale Drehmomente vorherzusagen. In
diesemArtikel wird die Identifizierbarkeit und Sensitivität
eines Modells des Knochenschraubprozesses untersucht.
Die Identifizierbarkeit von E (Elastizitätsmodul des Kno-
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chens) hing vomWert von E selbst ab, wobei größere Wer-
te schlechter zu identifizieren waren. Die identifizierten
σuts-Werte (Zugfestigkeit) lagen in den getesteten Fällen in-
nerhalb von ungefähr 0,5%des realenWerts, und dies un-
abhängig von den gleichzeitig bestimmten Werten von E.
Eine experimentelle Validierung steht für das Modell und
den Identifizierungsprozess noch aus, aber dieser Ansatz
ist aus theoretischer Sicht machbar und plausibel.

Schlagwörter: Orthopädische Chirurgie, Knochenschrau-
ben, intelligenter Schraubendreher, Parameteridentifika-
tion

1 Introduction
A major part of orthopaedic surgery is the fixation of im-
plants using bone screws. Correct torqueing of the screws
is critical to prevent implant failure due to thread stripping
[1] or screw loosening [2]. Implant failures may require re-
vision surgery, with all associated costs and risks, or may
cause further tissue damage and other complications [3].

Surgeons currently tighten screws ad hoc, without any
specific torque guidelines. The success rate of this varies
between surgeons, and incorrect tightening can easily oc-
cur [4]. It has been proposed that bymonitoring the screw-
ing process, the bone material properties can be identi-
fied using a model, and then used to predict the optimal
tightening torque [5]; as these bone material properties
are also dependent on factors like age and disease, this
method takes these into account. This first requires an
identifiable [6] model of the screwing process in terms of
themost importantmaterial properties, and thenamethod
for predicting optimal torque from these properties. This
method is applicable to procedures where screws are fixed
in bone. Inmany cases, the geometric placement of screws
is more important than the correct torqueing. However,
correct torque is still important to prevent tissue damage
or screw loosening.

Other non-model-based methods have been proposed
to regulate bone screw tightening torque. Reynolds et al.
measures the plateau/steady-state torque while inserting
a lag screw, and stops screwing when the torque reaches
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a multiple of this [7]. However, Reynolds’ method might
not be applicable to non-lag screws. Thomas et al. suggest
monitoring the derivative of torque with respect to time,
and halting the process when a spike is detected, indi-
cating the screw has started binding [8]. This approach
is effective at preventing overtightening but does little to
ensure a minimum torque. Torque-limiting devices exist
for some cases [9], especially in orthodontics, which uses
small screws with low torque values [10], but these still
require the surgeon to know and select the correct torque
or limiter manually, in contrast to the proposed automatic
model-based method.

Previously, a very simple model was demonstrated to
be identifiable and robust for an arbitrary set of param-
eters [5]. This model was based on the material failure
energy density of the bone, viscous friction between the
screw and bone, and a threshold torque to advance the
screw; this model was derived using an power balance be-
tween the input torque times speed and the material fail-
ure plus viscous friction. This simple model was signifi-
cantly extended by Wilkie et al. [11], but the application of
parameter identification was not investigated. This paper
computationally analyses themodel fromWilkie et al. [11],
focusing on identifiability, recovery of the input variables
in noisy data sets, and sensitivity to parameter values. The
proposed model has greater physical descriptiveness than
the model in Wilkie et al. [5], as specific material and geo-
metric parameters rather than arbitrary lumped parame-
ters are identified.

2 Methods

2.1 Model summary

The key model equations 1–11 were derived in Wilkie et al.
[11] and have some basis in the model of Seneviratne et al.
[12]. Thismodel assumes that a simple screw design is self-
tapping into a pre-drilled cylindrical hole of greater dia-
meter than the minor diameter of the screw (Dh > Dr in
fig. 2), and is primary intended for trabecular bone. Equa-
tions 1–7 define constants used in the critical torque cal-
culation in terms of the given geometry. rf and rs are the
radii of the mid-point of the screw thread friction forces,
and cutting forces, respectively. Kf0 is a lumped geometric
parameter for friction forces dependant on screw and hole
geometry.Ac is the cross sectional area of the screw thread
that displaces the hole material. θ is the thread helix an-
gle. Equation 8 models how critical torque changes as the
screw advances. Equation 9 models how the effective tor-

sional spring constant (k) for a rigid screw in material
of Young’s modulus E changes with screw depth. Equa-
tions 10 and 11 model how angular velocity and torque are
related to the input effort ϵ over time, using critical torque
(Tz (ϕ)) and k(ϕ) as functions of rotation (ϕ).

rf =
Dh + Ds

4
(1)

rs =
2Dh + 2Ds

6
(2)

Kf0 =
1
2
(Ds − Dh)√(1 + tan2 β)[(

Ds + Dh
4
)
2
− (

p
2π
)
2
] (3)

Ac = tan β(
Ds − Dh

2
)
2

(4)

θ = tan−1 p
πDs

(5)

G1 = rsAc cos θ (6)
G2 = 2rfKf0 cos θ (7)

Tz(ϕ) = σutsG1 + μσuts(ϕ +
α
2
)G2 (8)

k = E
2(1 + ν)

p(Ds + Dh)
4

ϕ (9)

ϕ̇ = {
aϵ − bTz(ϕ), aϵ ≥ bTz(ϕ)

1
bk(ϕ)aϵ̇, aϵ < bTz(ϕ)

(10)

T = {
Tz(ϕ), aϵ ≥ bTz(ϕ)
1
baϵ̇, aϵ < bTz(ϕ)

. (11)

The value of ϵ is an input basis function that varies
from 0–1 and represents the effort that the surgeon is ex-
erting; this controls the torque and speed of the advanc-
ing screw by modulating a linear torque-speed relation-
ship defined by a and b, shown in fig. 1. This was required
to keep angular velocity defined in the absence of a vis-
cous friction assumption [11]. The outputs are ϕ [rad],
and T [Nm]. The model considers a critical torque (Tz)
required to overcome friction/material resistance and ad-
vance the screw. Above Tz, the screw advances according
to the torque-speed relationship; below Tz the screw does
not advance, but canmove with the bone as the bone elas-

Figure 1: Torque-speed model, ϕ̇ = aϵ − bT [11].
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Figure 2: Geometric constants of the screw and hole (not to scale,
only for describing the geometric meanings) [11].

tically deforms. Most geometric constants in eqs. 1–5 and
8–9 are summarized in fig. 2, and α defines the angular
length of the thread cutting section of the screw. μ is the
friction coefficient between the screw and bone, σuts [Pa] is
the tensile strength of the bone, and E [Pa] is the Young’s
modulus of the bone.

2.2 Parameter identification overview

The overall parameter identification and sensitivity analy-
sis process is outlined in Figure 3.

2.3 Input variable recovery

As it is not possible to measure the input effort of the sur-
geon directly, the effort must be determined from themea-
sured angular speed and torque. It is not possible to do this
exactly, as the relationship between T, ϕ, and ϵ depends
on the unknown parameters, E and σuts, but a heuristic

method can be used. In this case it is assumed that a and b
are known. The basic heuristic was to calculate the value
of k at each time point using Hooke’s law, k = ΔT/Δϕ. If
the absolute value of the estimated k is relatively low, the
position is changing a lot without much change in torque,
indicating that the screw is advancing into thematerial, so
the standard torque-speed model is used: ϵ = (ϕ̇ + bT)/a
[11]. Otherwise if the k value is higher than a threshold
(3N/rad was arbitrarily defined), that indicates the screw
is onlymoving as torque changes, and therefore elastic be-
haviour is occurring, so the zero-speed assumption was
used with the torque-speed model, giving ϵ = bT/a [11].
Due to high noise in T, it must be filtered before estimating
k values; this was achieved with a 20 sample median fil-
ter, followed by a 20Hz filter using theMATLAB “lowpass”
function with a steepness of 0.8 and a stopband attenua-
tion of 80 dB.

2.4 Time variant objective-function
weighting

Changes in E have a very small effect on the T and ϕ
response [11]. Hence, to ensure that E was not overfit to
random noise, it was desirable to place more weighting
on time periods that specifically exhibit elastic behaviour.
This was done by changing the weight on ϕ̇ for 0.1 s as
the screw is loaded and de-loaded (where the elastic be-
haviour occurs), as per eqn. 12. The angular speed thresh-
old of 0.07 [rad/s] was manually determined. The weights
used were manually adjusted for the given sensor noise
levels to give reasonable identification over a range of pa-
rameters (eqns. 12, 13, and 14). The objective function used
for parameter identification used weighted 2-norms of the

Figure 3: Overview of the process used to analyse the identification of the model. (t) and [n] denote high-resolution non-noisy data, and
down-sampled noisy/approximated data, respectively.
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Table 1: Default parameter values.

Parameter Value Units Notes/Source

E 300 MPa Normal femoral head [14]
ν 0.3 Generic estimate
σuts 3.5 MPa Normal femoral head [14]
μ 0.4 [15]
Dh 3.2 mm [16]
Ds 6.5 mm SYNTHES 216.060 [16]
β 15 ° Estimate from photo [17]
p 2.75 mm SYNTHES 216.060 [16]
α 2 rad Estimate from photo [17]
a 4 Rad.s−1 Expected value
b 4 Rad.s−1 (N.m)−1 Expected value
Standard deviation
of noise in T

0.05 ∗max(T ) N.m 0.5% class with 10× overrating

Standard deviation
of noise in ϕ̇

0.002 Rad.s−1 e. g., MPU-9250 gyro [18]

differences between the simulation (using current param-
eters) and data (original simulation with noise), shown in
eqn. 15.

Wϕ̇ =
1

max(ϕdata)

{{{{{{{{{
{{{{{{{{{
{

1, t : (ϕ̇ = 0.07 ∧ ϕ̈ < 0) . . .
t : (ϕ̇ = 0.07 ∧ ϕ̈ < 0) + 0.1

1, t : (ϕ̇ = 0.07 ∧ ϕ̈ > 0) − 0.1 . . .
t : (ϕ̇ = 0.07 ∧ ϕ̈ > 0)

0, otherwise
(12)

WT =
1

max(Tdata)
(13)

Wϕ =
0.0001

max(ϕdata)
(14)

ψ(σuts,E) =
""""WT (Tsim(σuts,E) − Tdata)

""""2

+ """"Wϕ(ϕsim(σuts,E) − ϕdata)
""""2

+ """"Wϕ̇(ϕ̇sim(σuts,E) − ϕ̇data)
""""2.

(15)

2.5 Identification methodology

Initially data is generated using the model in eqns. 1–11.
To simulate the effects of sensor noise and sampling, the
model was first forward-simulated with a 20-cycle trape-
zoidal input signal ϵ(t) (ranging from 0 to 0.6, dwell of
0.5 s and rise/fall time of 0.25 s) at 10000Hz, using the
parameters in Tab. 1. Then the data was down sampled
to 100Hz to simulate sampling, and zero-mean Gaussian
noise specified in Tab. 1 was added to simulate sensor
noise. To simulate a gyroscope sensor, which would be a
likely sensor in practice, the forward simulation angular

position was numerically differentiated to get angular ve-
locity, and the noise was added to this angular velocity
signal. The parameter identification used only this noisy,
down-sampled, angular velocity data.

The identification process first takes the measured
variables and performs the input recovery (Section 2.3)
to get the approximated input effort over time. The input
variables were then analysed to determine the time peri-
ods for the time-variant weighting (Section 2.4). Then sim-
ulated annealing [13] parameter identification was used
to identify E and σuts. The simulated annealing ran for
1000 iterations from a constant initial guess of (E, σuts) =
(100[MPa], 1.5[MPa]), and allowed the objective function
to move uphill up to 10 times in a row before being reset
to the previous best parameter guess. Zero-mean Gaussian
samples were used to perturb the parameters at each it-
eration. The standard deviations were a proportion of the
parameters’ current values. This proportion decreased ex-
ponentially over the 1000 iterations. Different rates were
used for these exponential decays as σuts converged much
faster than E. The standard deviation proportion for σuts
went from 0.5 to 0.005, and the proportion for E went from
0.5 to 0.05.

The parameters/constants from Wilkie et al. [11] were
used. The constants a and b were selected based on ex-
pected values. Variations in a and b are very unlikely to
have a significant effect if they are consistent between the
initial forward simulation, input variable recovery, and
forward simulation during the identification; this is be-
cause a is mainly for scaling, and, with rearrangement,
can always be combined with ϵ to write the equations in
terms of aϵ, and b is usually multiplying T except for one
case in eqn. 10.
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Figure 4: Recovered input effort compared with original input effort.

2.6 Identifiability/sensitivity analysis

The effects of varying the two parameters (E and σuts) were
investigated. For each step of each value, the parameter
identification was run 100 times with different sets of sen-
sor noise. The identified values for all runs of each pa-
rameter/noise level step were recorded, and the distribu-
tions of both parameters were plotted in constellations to
show how the distribution of identified values changes as
the parameters change. Principle component analysis [19]
wasused to find theprinciple components of the constella-
tions, to analyse any correlations between E and σuts iden-
tification. To test sensitivity, the two parameters were var-
ied around their nominal values from Tab. 1. To quantify
sensitivity, the 2-normof thedifference indata between the
nominal and varied simulations was used. These methods
allowed the model to be tested for identifiability and sen-
sitivity, but not validity and accuracy, which requires ex-
perimental data.

3 Results

The result of the input effort recovery with default param-
eters is shown in Figure 4.

Figure 5 shows how the distributions of the identi-
fied E and σuts respond to changes in the true E and σuts.
Each distribution was normalised with the known correct
value, and a logarithm was taken before plotting to make
large and small variations legible side-by-side. The princi-
ple component analysis results for the constellations from
Fig. 5 are shown in Tab. 2.

Figure 5:Multiple-constellation plot showing the distribution of
identified E and σuts as the real E and σuts values are varied. Major
grid shows parent values, minor grid shows variation in identified
values. Minor grid is logarithmic with a 10x per division scale.

Table 2: Principle component angles and standard deviations of
distributions of identified E and σuts. 0° corresponds to +E and 90°
corresponds to +σuts.

E
[MPa]

σuts
[MPa]

Comp. 1 S. D.
[log(MPa)]

Comp. 2 S. D.
[log(MPa)]

Comp. 1
Angle [°]

Comp. 2
Angle [°]

3 1 0.279 0.00164 −0.082 89.918
3.2 0.0583 0.00178 −0.157 89.843
10 0.0674 0.00236 −0.195 89.805

30 1 0.855 0.00175 0.020 90.020
3.2 0.502 0.00191 0.002 90.002
10 0.428 0.00202 −0.023 89.977

300 1 1.73 0.00177 0.004 90.004
3.2 1.23 0.00198 −0.002 89.998
10 1.04 0.00204 0.007 90.007

Figures 6 and 7 show the sensitivity of the model out-
put to changes in input parameters, with differences from
the nominal values shown quantitatively in Tab. 3.

4 Discussion

Figure 4 shows that the input variable recovery works as
expected. The recovered results with the given settings
closely match the known data. Figure 5 shows that the
spread of the identified σuts was minimal in all cases.
This is further shown in the principle component analysis,
where the∼90° components relating to σuts spread all have
standard deviations of around 0.002 log(MPa), or about
0.5%. Figure 5 also shows that it is possible to identify E to
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Figure 6: Sensitivity of model output to changes in σuts from nominal
3.5MPa.

Figure 7: Sensitivity of model output to changes in E from nominal
300MPa. (All lines overlap at this scale.)

a reasonable accuracywhen it is a low value (3MPa). How-
ever using themodel in eqns. 1–11,E becomeshard to iden-
tify at higher, more physiological values such as 300MPa
(typical femoral head trabecular bone [14]), as there is
very ambiguous estimation variability over many orders
of magnitude. This identification inaccuracy is due to a
higher Young’s modulus leading to less significant elastic
behaviour in the data, reducing the signal-to-noise ratio
to almost zero. However, the orthogonality of the principle
components in Tab. 2 shows that there was no discernible
correlationbetween the identifiedσuts andE values. There-
fore, the poor identification of E did not affect the good
identification of σuts. Figure 7 and Tab. 3 also show that
large changes in the value of E around an expected value
for bone (300MPa) had almost no effect on the output of

Table 3: Quantitative differences for sensitivity analyses in Fig. 6
and Fig. 7.

Nominal Value Comparison Value ‖Tnom−Tcomp‖2
mean(Tnom) ‖ϕnom−ϕcomp‖2

mean(ϕnom)
σuts = 3.5 [MPa] σuts = 2 [MPa] 279.35 41.94
σuts = 3.5 [MPa] σuts = 5 [MPa] 247.92 37.66
E = 300 [MPa] E = 30 [MPa] 0.0199 0.0173
E = 300 [MPa] E = 3000 [MPa] 0.0221 0.0192

the simulation, suggesting that E is of minor significance.
Whereas Fig. 6 and Tab. 3 show that even small changes in
σuts have significant changes on the output, suggestingσuts
is a much more clinically significant parameter than E. It
should be noted that the default values for σuts and E are
plausible for the application of this method, but there is a
large range of biologically significant values [20].

Themodelwasdemonstrated to be capable of identify-
ingσuts andE fromnoisydata in simulation,withplausible
material properties. The model is especially promising for
identifying σuts, but quite limited for identifying E. Fortu-
nately, the low sensitivity of the model output to changes
in E suggests that accurate identification of E may not be
very important to the bone screw-torqueing application,
and the lack of correlation between E and σuts identifica-
tion shows that thepoor identifiability ofE is not detrimen-
tal to the identifiability of σuts. Furthermore, it may also be
possible to use a relation between σuts and E [21] to infer
E from the accurately identified σuts and a priori informa-
tion such as age, and apparent bonemineral density (e. g.,
from quantitative computed tomography imaging [22]).

As the model was derived from physical principles,
one may expect it to be a reasonable mathematical de-
scription of the physical phenomena. However, as men-
tioned in Wilkie et al. [11], there are a few assumptions
used to simplify themodel. Bone is a complex anisotropic,
non-homogeneous, and discontinuous material, and this
analysis modelled bone as an isotropic, homogeneous,
and continuous material. This will result in some error in
the identified parameter values. However even imperfect
values may be useful if experimental testing shows that
the error is sufficiently small. A noteworthy discrepancy is
in the non-homogeneous structure of bone, often there is
a harder outer layer and softer inner layer. This paper fo-
cused on the simple case of homogeneous bone, but the
model, and specifically eqn. 8, could be modified to ac-
count for a varying σuts with depth; as it is important to
minimise variables for identification, this could be done
by modelling σuts in several discrete steps as a function of
screw depth, or as two values (i. e., surface and bulk σuts),
and a transition depth.
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Due to noisy torque signals, filtering was required to
remove noise before input variable recovery, however it
also removed some desired higher frequency components
of the signal. This canpotentially introduce artefacts in the
processed signal precisely in the regions governed by elas-
ticity, and the parameter identification may over fit these
artefacts. There are some notable fluctuations in the recov-
ered data, some of this will be random, and due to noise,
but there will be some systematic overshoots in the trape-
zoidal transitions due to the bandwidth limiting nature of
the filtering approach. This was mitigated using median
filtering, which can smooth out noise without smoothing
out sharp transitions in the signal. However, the effective-
ness will be dependent on the shape of the underlying sig-
nal. A possible solutionmight be an adaptive filtering span
that reduces when sensor noise is low (by increasing cut-
off frequency). Additionally, the threshold of k used for de-
tecting elastic and non-elastic sections during input vari-
able recovery was a constant in this paper, but there may
be better heuristics for this. If the threshold is too high, it
will treat non-elastic sections assuming elasticity, and if
too low it will treat elastic sections with the non-elastic as-
sumption.

The sampling rate andnoise levels usedwere based on
relatively low-cost general-purpose sensors (0.5% of full-
range torque sensor such as NCTE-2300 Series [23], and
0.002 rads−1 noise at 92Hz (∼100Hz) fromanMPU-9250gy-
roscope [18]), using more accurate sensors with less noise
and/or higher sampling ratesmaymake it possible to iden-
tify higher Young’smoduli with reasonable accuracy. Con-
versely, this paper only looks at simulated results, and ex-
perimental noise may be non-Gaussian, and may contain
other corruption, such as gyroscope drift, torque hystere-
sis, sensor non-linearities, and temporal shifts across sen-
sors.

The weights used for the different variables in the ob-
jective function were determined subjectively. More work
is required to determine what the optimal weights are,
and it may be possible to heuristically choose better val-
ues by analysing the measured data, and the tendencies
of clinicians during the screwing process. These optimal
values will also depend on the levels of sensor noise, as
toomuchweight on a noisy sensormay result in overfitting
to that sensors’ noise and overwhelming the small weight
of the other data. The threshold used for identifying time-
periods for time-variant weighting was chosen for simplic-
ity in this analysis, and may not work well when the input
is not a perfect repeating trapezoidal signal; however this
is simply a formof edgedetection, and there arepotentially
many other algorithms that could be used tomake the pro-
cess more robust.

Experimental verification is required to determine
whether the modelling assumptions lead to unacceptable
variation in the identified values; some variation is ex-
pected, but further work will determine how much vari-
ation there is, and how much is acceptable. Experimental
verification is also important for the rest of the identifica-
tion process, as themodels of sensor noisemay differ from
reality, and other real-world limitations will apply, for ex-
ample, measuring rotation at the handle end of a screw-
driver will also measure any elastic behaviour due to tor-
sion in the screwdriver shaft. If a significant relationship
can be found between screwing speed and torque, all of
the complexity introducedwith the torque-speedmodel of
the operator, and input variable recovery could potentially
be eliminated. Chumakov [24] suggests that there is no sig-
nificant relationship between screw speed and torque, al-
though they used aluminium, which is not very strain rate
dependant [25], while bone is [26], so more research is re-
quired.

5 Conclusion

This paper analysed the use of a bone screwing model for
identifying material properties in simulation. Input vari-
able recoverywas successfully demonstrated, aswas time-
variant objective-function weighting. It was demonstrated
that σuts and E could be identified. σuts was identified with
great accuracy and consistency.E could be identified effec-
tively at low values such as 3MPa, however at more realis-
tic values such as 300MPa, the identified parameters had
a prohibitively large variance; this may improve if more
accurate sensors are assumed, or if other aspects of the
modelling approach are improved/tuned, particularly in
the heuristic sections of input recovery and time-variant
weighting. Further study may also reveal E to be less sig-
nificant than σuts for optimal torque prediction, or it may
be possible to determine E from σuts using a priori relation-
ships. Experimental testing is also required to validate all
parts of the identification and model and ensure that they
operate correctly under real-world conditions.
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