
Aspect-Oriented Programming Revisited: Modern
Approaches to Old Problems

1st Tim Träris
Faculty of Computer Science

Furtwangen University
Furtwangen, Germany

tim.jannes.traeris@hs-furtwangen.de

2nd Maxim Balsacq
Faculty of Computer Science

Furtwangen University
Furtwangen, Germany

maxim.balsacq@hs-furtwangen.de

3rd Leonhard Lerbs
Faculty of Computer Science

Furtwangen University
Furtwangen, Germany

l.lerbs@hs-furtwangen.de

Abstract—Although aspect-oriented programming has been
around for two decades and is quite popular in academic circles,
it has never seen broad adoption. For this reason, this work
revisits the early approaches and identifies issues that may
explain the lack of adoption outside academia. In this regard,
we present different weaving mechanisms and showcase modern
approaches to aspect-oriented programming which attempt to
solve some of the issues of earlier approaches. Subsequently, we
discuss difficulties of real-world uses and the gained paradoxical
modularity. Finally, we present a set of issues to consider before
choosing an AOP approach.

Index Terms—Aspect-oriented programming, cross-cutting
concern, modularity, aspect weaving

I. INTRODUCTION

Aspect-oriented programming (AOP) is a programming
paradigm aiming to provide generic functionality across mul-
tiple parts of the program in order to solve cross-cutting con-
cerns and increase modularity. In the following, we introduce
basic concepts and explain commonly used terminology.

A. Separation of Concerns

Software has become increasingly complex [1, 2], especially
over the last two decades. Separation of Concerns, a term
originally coined by Dijkstra [3], has been one generally
agreed upon concept to tackle this issue. In modern terms, the
basic idea intends to split a program into independent parts by
grouping related functionality. As a result, code becomes eas-
ier to read, understand, maintain, extend, and reuse. However,
depending on the level of abstraction, developers face hard
to overcome challenges as separating concerns in practice is
often easier said than done.

B. Cross-Cutting Concerns

Features like logging and security aspects of a program usu-
ally affect, interact with, or rely on other parts of the software.
Such concerns cannot be assigned to a specific part or module
of the software and therefore have to be implemented at
multiple locations in the source code, effectively cross-cutting
the program, hence the name. Inevitably, these fragments
introduce either duplicate code, unnecessarily complex inter-
dependencies, or both. As a result, cross-cutting concerns
compromise the well-established and often striven for concept
of modularity. Unfortunately, this is an issue neither procedural

programming nor object-oriented programming (OOP) can
solve in a clean way [4].

C. Introducing Aspects

Aspect-oriented programming intends to retain modularity
by encapsulating cross-cutting concerns in so-called aspects.
This enables developers to implement otherwise cross-cutting
functionality separately from the core concerns. Aspects can
alter core program behavior by applying changes, commonly
referred to as advice. This happens at implicitly defined
join points throughout the program depending on the exact
implementation (e.g. when a method is called or an object is
constructed). So-called pointcut queries define which advice
is applied at which set of join points in the program. Figure
1 shows a visual representation of this process.

JP JP JP JP JP JP JP JP

Aspect

Pointcut

Advice

Program Execution

Fig. 1. Aspects provide advice which is applied via pointcut query at one or
multiple join points (JP) during program execution

D. Weaving Aspects into Code

Allowing programmers to implement cross-cutting concerns
as aspects implies that those detached parts must be combined
later to form an executable program. This process is known
as aspect weaving. Weaving may happen at different times,
depending on the exact implementation of the aspect weaver.
Exemplary, a simple implementation may generate code based
on the aspect definition, which is injected into the source code
before compilation. However, especially in bytecode languages
like Java, aspect weaving is often integrated into the com-
pilation process. Instead of generating woven code, aspects
and classes are compiled into bytecode before weaving takes



place, usually resulting in more efficient program execution
[5]. We will further explain and discuss the different weaving
approaches in section IV.

E. AspectJ

AspectJ was the first practical implementation of AOP,
initially developed by the AOP pioneers at Xerox. Today, it is
available under the Common Public License and maintained
by the Eclipse Foundation [6]. As such, it has influenced newer
implementations. AspectJ is a commonly used aspect-oriented
extension of the Java programming language [7]. To illustrate
the basic concepts of AOP, listing 1 shows an exemplary aspect
definition in AspectJ. In this example, we define a pointcut
methodCall() which will be applied whenever the method
foo() of class DemoClass is called. This pointcut provides
one advice to be executed before the method is called. The
advice will print a logging message regarding the method call
in our example.

Listing 1
ASPECT EXAMPLE IN ASPECTJ

public class DemoClass {
public void foo() {

System.out.println("This is foo()!");
}

}

public aspect DemoAspect {
pointcut methodCall():

call(* DemoClass.foo(..));

before(): methodCall() {
System.out.println("foo() called!");

}
}

While AspectJ mainly supports compile-time weaving (see
section IV-B), it also supports load-time weaving [8]. As we
will show later, most modern approaches prefer compile-time
weaving and still provide similar pointcut selection features as
AspectJ.

II. RELATED WORK

In the paper Aspect-Oriented Programming is Quantification
and Obliviousness [9], Filman and Friedman try to identify
AOP and fundamentally describe its properties. As the title
suggests, they loosely define AOP as a combination of quan-
tification and obliviousness. The former means that one aspect
can apply advice at multiple join points. Thus, aspects enable
programming statements expressing the following:

In programs P, whenever condition C arises,
perform action A. (1)

The authors argue that this quantification must be either
conducted statically (onto the program structure) at compile-
time or dynamically tied to an event happening at run-time
(e.g. due to exceptions, call stack and program history).

Obliviousness refers to the fact that core concerns have
no way of knowing which advice is applied at which join

points. Therefore, program P is oblivious to which actions A
are performed.

In the further course of the paper, Filman and Friedman
bring attention to multiple design decisions and open questions
regarding an AOP systems behavior, composition, implementa-
tion, and development process. In particular, the authors point
to the following issues:

• Different approaches: AOP frameworks can generally
take two different approaches: Clear-box or black-box.
The former quantifies over known program structure as
both program and aspect internals can be examined. The
latter on the other hand wraps aspects by prohibiting the
view of the program and aspect. Therefore, quantification
is carried out by using a public interface and declaring
functions and methods while hiding internals.

• Structural features: AOP systems must provide an effi-
cient way to implement the newly required structures.
This includes a language to define aspects and pointcuts
as well as rules specifying the scope of conditions C
which may serve as join points.

• Interface composition: AOP systems need to reevaluate
compositional questions i.e. provide an interface for ac-
tions A to interact with the base program. Thus, questions
arise like: What privileges does an aspect have, especially
compared to the main program? How are aspects visible
to each other? Can aspects communicate with each other
and are there mechanisms to resolve inconsistencies e.g.
conflicts between aspects?

• Weaver implementation: There are many ways to include
the AOP code into a program. Are aspects compiled sep-
arately? Are they applied to the source code or bytecode?
At which point in time are aspects applied: Before, during
compilation or at run-time?

The authors conclude among other things that, although
most AOP implementations are based on an OOP language,
AOP properties are not per se tied to an OOP language. In
fact, while the AOP paradigm may benefit from some OOP
circumstances, non-OOP languages can describe quantification
and obliviousness as well.

We will confirm this statement as we revisit some of the
presented questions by comparing different weaving mech-
anisms in section IV and subsequently showcasing modern
AOP approaches in section V. To fully understand the need
for modern AOP approaches, we examine the major issues of
early AOP implementations in the following section.

III. SHORTCOMINGS OF THE ORIGINAL

The concept of AOP was introduced two decades ago. At
that time OOP was already widely adopted. Some concerns
regarding the structural cleanliness of OOP code emerged,
mainly because cross-cutting concerns could not be avoided
by the OOP style. OOP decomposes concerns into objects in
order to implement them as separated as possible. Therefore,
in an ideal world, cohesive objects form a solution for one -
and only one - concern [10]. Unfortunately, limitations of that
strategy are quickly reached when trying to separate some



concerns into objects due to the inability to correctly localize
concerns and adapting those to the OOP style [11]. While the
emerging AOP style looked promising to solve some of these
limitations [4], we can identify several shortcomings today.

A. Historic View

In the beginning of AOP, one could only find simple
examples on where to use it. Those examples mostly consisted
of some sort of logging, tracing or debugging problems. What
seemed to be an analogy to widely known OOP examples like
derivation (e.g. Vehicle - Car; Vehicle - Bus), turned out to be
a problem which could be resolved by using tools provided
by an IDE (i.e. tracing), introducing new features (e.g. error
handling) or using different, more domain-specific languages
to address the problem (e.g. database transaction management)
[12]. Alongside some other common examples like a display
updating aspect, those examples are widely used today to
describe what AOP is good for [12]–[14].

Further, the AOP concept has been implemented to varying
degrees depending on the language and objectives [4]. Numer-
ous implementations for different languages and frameworks
have been created. Many of them use only a subset of the
initial theoretical concept of AOP described by Kiczales [4,
15].

B. Debugging Becomes Challenging

As described in section II, AOP is often loosely defined
as the combination of quantification and obliviousness [9].
While both of these properties enable the separation of cross-
cutting concerns, both cause significant difficulties when read-
ing, understanding and debugging code. In fact, AOP can
heavily obscure the control flow of a program. Since aspect
awareness is ruled out per AOP’s definition, the exact order
of programming statements becomes incomprehensible to a
programmer looking just at the base code. As a result, the
overall readability of the program’s source code as well as
its maintainability is severely hampered. Naturally, debugging
and fixing programming error becomes a complex challenge.
This is especially concerning when considering the fact that on
average, programmers spend almost half of their time doing
debugging tasks [16]. Besides, obliviousness may impose
obstacles (e.g. longer familiarization time) in the on-boarding
process for new programmers joining the team.

Further, shared characteristics between AOP pointcuts and
the infamous GOTO statement can be identified [17]. This
statement performs a one-way jump in the execution logic of
a program without returning to its origin like a conventional
method call would. Dijkstra criticized this behavior [18] argu-
ing that programmers must always be able to comprehend the
value of variables at certain points (coordinates). Similar to
GOTO, pointcuts can have a major impact on control flow
and their obscurity makes it virtually impossible to create
a reasonable coordinate system based on the programming
language alone.

C. Unforeseen Consequences of Aspect Modularity

The problems with obliviousness and quantification grow
even further as the number of aspects increases. Like the
base code, aspects themselves are also unaware of other
aspects defined elsewhere. As a result, multiple aspects may
apply advice to the same join points. While this provides
opportunities for efficient concern separation, it may also
involve unforeseen complications and inadvertent interactions
between aspects. For example, aspect A may depend on a
certain result of a method which has been modified due to
the behavior of aspect B. While programming, the correlation
between aspect A and B is obscured. Therefore, a developer
writing aspects must have a thorough understanding of the
program and all other aspects in order to assess how they
interrelate.

Additionally, aspects can provide advice applying to them-
selves and therefore modify their behaviour unless not explic-
itly prevented by their definition or the AOP framework [19].
This introduces major recursion risks as well as antinomy
issues like the classical liar’s paradox. The antinomy of the
liar is a logical problem arising when a sentence states its
falsehood. For example, if the statement ’This sentence is
false.’ is false, its assertion is in fact true and vice versa. The
statement therefore dissents itself due to the self reference.
Conferred to AOP, this means that aspects could counter each
other and prevent each other from applying advice.

Further, many AspectJ-like AOP implementations strictly
distinguish between regular parts of the program (advised
code) and aspects (advising code). Aspects can advise classes
as well as other aspects using the adviceexecution
pointcut [10]. This is referred to as an asymmetrical AOP
implementation [20] since it is not true the other way around
(regular classes cannot advise aspect definitions). When com-
pared to symmetric implementations, asymmetric implemen-
tations offer powerful opportunities for cross-cutting concern
definitions. However, some argue that sacrificing symmetry
for AOP is unnecessary as symmetric approaches are capable
of expressing cross-cutting behavior while preserving orthog-
onality and the reusability of components [20]–[22].

D. Concurrency and Thread Safety

The issues discussed so far have an even greater impact
when developing multi-threaded applications. Many program-
ming languages implement thread-safe objects and methods
differently, as they usually introduce a performance penalty
compared to non-thread-safe versions of the same code. With
this in mind, obliviousness facilitates yet another problem: If
the aspect’s code is not written in a thread-safe manner, it may
inadvertently modify otherwise thread-safe code of the base
program. Consequentially, thread safety may be lost, possibly
resulting in data corruption and undefined behavior of the
application.

E. Refactoring Breaks Pointcuts

As shown previously in listing 1, aspect definitions re-
quire detailed pointcut statements including class and method



names in many AOP implementations [23]. Renaming and
deleting classes and methods in the program can therefore
render advice inapplicable when the aspect definition is left
unchanged. This is often referred to as pointcut fragility. Since
the base code contains no trace of applied aspects due to
the obliviousness concept of AOP, developers have no direct
way of knowing whether their change requires a change in an
aspect definition as well. As a result, it is vital that developers
agree on naming conventions and must rely on IDE support
in order to stay on top of things.

F. Performance

AOP performance heavily depends on the used AOP frame-
work and its aspect weaver implementation. In a systematic
literature review of AOP weavers [13], Soares et al. found
that the number of existing experiments in literature regarding
AOP weaving is insufficient to come to a conclusion about
performance. The authors then decided to perform their own
experiment based on the knowledge of the review to test AOP
performance with AspectJ.

For the experiment, they took the time, CPU load, and mem-
ory consumption as measurement indicators and used compile-
time weaving, load-time weaving, and run-time weaving in
comparison with a non-AOP approach. The results indicated
that compile-time weaving had no significant impact on the
measurements. Surprisingly, the CPU performance was about
8% less compared to non-AOP. Having a load-time weaving
approach used one third more memory and having a run-
time weaver used about 40% more time and more memory.
Both load and run-time weaving had slightly better CPU
performances than the normal non-AOP approach [13].

IV. WEAVING MODELS

The presented frameworks use different weaving techniques
to apply the advice of AOP aspects to code. Depending on
the weaving implementation, multiple advantages and disad-
vantages must be considered. In this section, we will illustrate
the impact of run-time, compile-time, and load-time aspect
weaving.

A. Run-time Weaving

When code weaving is done at run-time, the weaver must
have the ability to determine where pointcuts should be placed.
Therefore, a way to locate functions and manipulate them is
required. In some languages running inside a virtual machine,
e.g. Java, reflection enables access to and manipulation of
this information using the meta-model of the programming
language. This allows making changes to the cross-cutting
logic at run-time without recompiling the application [24]. As
we present later in section V-C, the Spring AOP framework
uses this approach. However, system programming languages
such as C, C++, or Rust usually do not preserve such infor-
mation during compilation. This makes it more difficult or
even impossible to use run-time code weaving. In general, the
ability to perform run-time code weaving is limited by which
information can be obtained at run-time.

B. Compile-time Weaving

Weaving code at compile-time implies that to apply advice,
the existing code must be parsed and transformed by the
weaver. Therefore, the weaver must either parse and transform
the code itself or be integrated into existing compiler/parser
tools. For example, the C/C++ weaver implementation for
LARA (named CLAVA [25]) uses the latter approach: It is
integrated into clang, enabling it to access any information a
compiler could access.

There are multiple advantages to compile-time aspect weav-
ing:

• The full code is accessible to the weaver and may be
manipulated using AOP.

• The weaved code (which includes the AOP advice) may
be optimized by the compiler.

• The AOP code may choose optimizations the compiler
should apply.

• In case of source-to-source compilation, static analysis of
the generated code is possible.

However, compile-time weaving also has the following
disadvantages:

• Complex additional tooling is required for handling the
source code transformation. If this tooling relies on
compiler/parser internals, it may lead to a vendor lock-
in if not enough alternatives are available. On the other
hand, if the parser is hand-written, it may go out of date
and not support newer language features.

• Parts of the source code required to build an application
may not be available.

C. Load-time Weaving

Although the two weaving methods presented above may be
sufficient for most use cases, neither is optimal for some use
cases e.g. the Open Services Gateway initiative (OSGi) plat-
form. The OSGi presents a framework to provide a component
model in a service-oriented architecture where components can
dynamically be installed, updated, started and stopped, without
the need for a reboot [26].

There is no point in using compile-time code weaving due
to the nature of OSGi. Using run-time code weaving within
the OSGi framework is not possible due to the class visibility
of a bundle. Each bundle supplies its own class loader that can
be accessed through the service registry. However, the bundle
which is accessed needs to be known during compile-time.
This means that a bundle using aspects cannot be modified at
run-time, only when loading, thus introducing load-time code
weaving [26].

D. Summary

AOP requires an aspect weaver that is familiar with the
target programming language. This raises tooling and perfor-
mance requirements either at compile-time (due to required
compiler tooling) or run-time (due to code modification at
load-/run-time). The information available to weavers limits
what can be done in aspects.



V. MODERN APPROACHES

As with OOP implementations, a lot of different AOP
frameworks exist deviating in their way of distributing join
points, applying pointcuts, and defining aspects. In fact, many
AspectJ-like implementations are built on top of an existing
OOP systems. In this chapter, we showcase modern ap-
proaches and AOP implementations attempting to solve some
of the original shortcomings discussed previously.

A. LARA

LARA is an aspect-oriented programming language origi-
nally designed for embedded systems [27]. It allows granular
access to code based on a language-independent abstract
syntax tree (AST).

An example tree of a subset of a common language spec-
ification is shown in figure 2. Using an AST means that
pointcuts are not limited to functions but can be applied to
variables, loops, classes, and other structural features. These
pointcuts may be joined to create an even further refined
selection. The properties of the AST can be examined to filter
pointcuts by their properties. As a result, LARA is not limited
to classes or function calls and may even be used in non-
OOP languages (see II). In general, the LARA domain-specific
language (DSL) allows more granular access to pointcuts than
other AOP implementations [28].

Implementation of the LARA concept is done by supplying
a weaver for the target language. We found LARA weaver
implementations for MATLAB, C/C++, Java, and JavaScript
[29]. When implementing a weaving tool, the LARA code
is source-to-source translated to the target language. This
means that the same advice can be applied to different target
languages. With this in mind, LARA weavers inherit the
advantages and disadvantages of compile-time code weaving.

Fig. 2. Tree-like representation of an exemplary common language specifi-
cation subset [27, 28].

Since the AST is language-independent, an issue arises:
How does code insertion work? LARA solves this issue
by providing a simple language including standard functions

(such as timers and printing to standard output) that compiles
down to whatever language the underlying code uses [28].
Since the LARA DSL itself is independent of the used
languages, the AOP code can easily be applied to multiple
languages.

Beyond code insertion, LARA also allows for easy con-
trol of various language-specific optimizations. For example,
CLAVA (the LARA weaver implementation for C/C++ [25])
allows unrolling loops selected by an AOP pointcut. This
unrolling reduces looping overhead and may improve per-
formance. Types of variables may also be altered (such as
reducing the precision of floating-point variables) to improve
performance at cost of precision.

B. GAMESPECT

GAMESPECT aims to provide a meta-level DSL initially
made for the video game engine Unreal Engine 4 (UE4)
[30]. With this engine, it is possible to run scripts in dif-
ferent languages to perform game-specific tasks - a feature
intending to offer a low barrier entry for new developers.
Those languages include C++, Lua, Skookum, and Blueprints
(an internal GUI-based editor for gameplay mechanics). Like
many game engines, UE4 offers a built-in messaging system
to send messages or events to other 3D objects. This creates
a secondary dependency structure. Classes cannot only derive
from each other but they can also be contacted in a 3D context,
e.g. a player class can derive from an entity class. In the 3D
space, a player is a member of the game scene. Whenever a
player interacts with another player, they contact each other
in a 3D context via systems supplied by the game engine.
This is important because it naturally breaks many standard
code patterns and requires a different way of thinking when
developing code in such engines [31, 32].

The developers of GAMESPECT saw potential in the use
of AOP for game development because similar tasks are often
performed at different locations in the code. This is especially
true for UE4, as it layers a script based ecosystem on top of
the actual game engine.

GAMESPECT’s primary focus lies on join points. It re-
quires only one weaver which supplies platform-independent
implementations. This is achieved by defining GAMESPECT
as a meta-DSL based on the UE4 DSL, thus decoupling
GAMESPECT from the lower level DSL of UE4. This sepa-
ration is important because UE4 supports multiple languages
and code can therefore be generated for AspectC++, Skookum,
and Blueprints. Furthermore it enables GAMESPECT to not
only work in the UE4 context but with other game engines as
well.

GAMESPECT was inspired by LARA in how it supports
multiple languages in source-to-source compilation. To solve
the formal composition specification as described by Mishali
and Lorenz, GAMESPECT applies the work from its prede-
cessor SPECTACKLE [33]. SPECTACKLE’s authors found a
common language specification subset to the languages used
by the game engine [30].



In the GAMESPECT paper, Geisler et al have shown that
GAMESPECT could shorten the amount of code written by
game developers on found aspects from 9% up to 40% while
maintaining efficiency and modularity with concurrent support
for all three target languages Skookum, C++ and Blueprints
[30].

C. Spring

Spring AOP is part of the Java Spring Framework. It
performs run-time weaving, relying on Java reflection to
determine pointcuts and proxy classes to apply the advice code
[34]. As shown in figure 3, the class of the original code is
replaced by a proxy that implements all the methods of the
original class. By inserting the advice code into the proxy
object, the advice code can be executed before or after a call
to the original function. This allows to trace and/or modify
the result of the function call.

Calling Code

Plain Object

foo() on the proxy

then foo() on the object

Proxy

return valuecall foo()

Fig. 3. The proxy pattern as used by Spring AOP [34]

Using reflection and the proxy pattern has various ad-
vantages and disadvantages: The main advantage is that no
extra tooling is required, resulting in portable, easy, and fast
compilation. Solely using the default Java compiler, pointcuts
and advice can be created and used. This means that AOP can
also be used on files where no source is available (e.g. when
using third party libraries) or compilation is not desirable (e.g.
the standard library).

However the use of reflection introduces a few major
drawbacks, some based on technical limitations of the Java
reflection API. One such technical limitation is that the pa-
rameter names are not available and must be specified by the
user [34], introducing potential for errors.

Another technical limitation is that code can only be hooked
on a per-function or per-class field basis. As a result, any
methods containing large amounts of code may not be altered
at the required level of granularity. Other languages like LARA
or GAMESPECT sidestep this issue by using source-to-source
compilation and defining features of the AST as join points.

Since Spring AOP uses reflection, the code can only be
modified at run-time, meaning that it inherits all the advantages
and disadvantages of run-time code weaving.

In general terms, a limitation of any framework using
reflection is that the cost of introducing AOP is moved from
compile-time to run-time. This applies to performance e.g.
setup time for reflection, as well as possible failures e.g. in
case a library is updated and changes its internal API.

VI. DISCUSSION

In this section, we take a critical look at AOP and its
use cases as well as the ambitious goal it tries to solve. In
this regard, we also reflect on its popularity and discuss the
paradoxical problem of modularity. Finally, we review the
performance impact of AOP.

A. An Overambitious Goal?

As introduced in III, the example use cases that are usually
given for aspects do not show the whole potential of AOP.
They are usually limited to a set or type of aspects that
reoccur between different papers. When looking at a real-
world example, as shown by the GAMESPECT authors, the
results are sobering. The cross-cutting concerns found in a
real-world game originally consisted of 288 lines of code.
After converting them to aspects, the amount of lines used
to implement cross-cutting concerns could be reduced to 223,
thus saving one-third of the lines. However, this involves only
code regarding cross-cutting concerns, which represents only
a marginal fraction compared to the whole game code base.

Although a game engine has a lot of potential for AOP,
the examples shown by Geisler et al. in the GAMESPECT
paper could also be implemented using the internal messaging
system of UE4. This system provides the ability to fire global
events or using the 3D scene hierarchy to contact other objects.
In this case, relinquishing AOP not only makes the code more
readable and understandable, but also results in not working
around the built-in possibilities of UE4 by unnecessarily
introducing a higher level DSL.

Another example is the use of AspectJ during refactoring
of the Berkeley DB project [14]. The authors found that
it is difficult to maintain the original crafted concept of
externally available interfaces while introducing advice and
pointcuts to Berkeley DB. They often found themselves in a
position where they needed to either write method hooks or
lower the scope of methods to public, thus compromising the
public/private concept of Berkeley. Further, AspectJ is not able
to alter method signatures. Since exceptions require a throws
declaration in the method signature, aspects cannot add new
exceptions to methods.

B. An Abating Hype?

We cannot fail to be impressed by the velocity at which AOP
gained traction after its emergence two decades ago. Since
OOP, aspect-oriented programming is one of the most popular
programming paradigms in academia. This even led to mul-
tiple editions of AOSD, an international scientific conference
solely focusing on modularity and AOP, being held annually
from 2002 until 2015 [35]. However, it is still difficult to speak
of AOP as a general success and the new way of programming



- a viewpoint the AOP hype might suggest. In fact, Google
Trends data for interest in the search term ’aspect oriented
programming’ shown in figure 4 paints a different picture.
Although proprietary analytical data must be taken with a grain
of salt, the graph clearly shows the decline of interest in AOP
since its hype in the early years of this century.

In
te
re
st
	in
	%

0

20

40

60

80

100

Date
2004 2006 2008 2010 2012 2014 2016 2018 2020

Fig. 4. Global interest in the search term ’aspect oriented programming’
according to Google Trends [36]. 100% represents the highest amount of
interest within the time period.

One possible explanation for this lies in the nature of
academic research (sometimes cynically) criticized by its
members over the years [12, 37, 38]. Research projects in
computer science usually depend on funding and thus face
pressure to produce promising innovations and new ideas. AOP
ticks a lot of boxes in this regard, as it potentially offers
a way to solve cross-cutting concerns by introducing new
structures for code composition [39]. With this in mind, the
early popularity of AOP among the research community is
hardly surprising.

C. The Paradox of Modularity

Aspects are often implicitly yet strongly coupled to their
respective target join points. This is concerning as it poses
a potential threat to modularity [12], an issue which AOP
initially tries to improve.

In OOP, object modularity is achieved by information hiding
and data encapsulation. Ideally, objects group data and all
methods operating on that data in order to restrict access. Com-
munication between modules is implemented by providing
interfaces, i.e. specification of variables and methods, without
revealing their implementation.

AOP aims to bring modularity to cross-cutting concerns
by moving them into aspects. Paradoxically, this implies that
aspects require access to parts of the program hidden in
modules in order to apply advice according to their pointcuts.
As a result, aspects need one of the following:

• An explicit interface between aspects and modules. Natu-
rally, this interface must be updated whenever the module
and its methods change. Subsequently, aspects must be
modified as well to adopt changes of the interface.

• Implicit access to the module. This approach inherits
the issues of the former while also leaving programmers
unaware of the dependency. As a consequence, data and
behavior which seemed to be encapsulated by the module
might change when advice is applied.

Therefore, improving the modularity of cross-cutting concerns
results in a loss of object modularity. At first, this may sound
like a reasonable trade for some scenarios. However, section
III-C proves the opposite. As soon as aspects interrelate,
obtained modularity is lost in the same way. In conclusion,
early claims in literature that AOP is able to ’modularize the
un-modularizable’ [40] have proven to be untenable [41].

D. Performance considerations

As described in section III-F, the type of weaver can have a
significant impact on performance. However, the authors also
argue that they were not able to find many common concerns
that have been implemented by the reviewed papers [13].
Therefore, this performance study may not be representative.

Additionally, the results of performance studies may be
susceptible to distortion. In all examples of Soares et al. as
well as the refactoring of Berkeley DB, AOP was introduced
to the project in a later stage. Building an AOP approach from
the ground up, i.e. involving AOP in the specification and
design phase of the project, may yield different results.

In fact, AOP may also help to improve performance. By
instrumenting function calls (e.g. with timers), it allows to
evaluate and improve existing code. Some AOP frameworks
(such as LARA) may even directly help to optimize existing
code by allowing fine-grained control over internal compiler
optimizations. In general, further work is needed in order to
investigate AOP performance impacts, especially in regards to
the point of time where AOP is embraced.

VII. CONCLUSION

In this work, we revisited early AOP approaches and investi-
gated multiple issues that possibly had an impact on the adop-
tion of AOP. Based on the gained insight, we analyzed modern
AOP implementations to learn how they approach cross-
cutting concerns and aim to solve the gathered issues. We
found that LARA and GAMESPECT directly access the AST
of the programming language while Spring uses reflection to
facilitate run-time code weaving. Both of these techniques
enable a more detailed access to information compared to
the early AspectJ approach. As a result, they allow for more
accurate placement of pointcuts, reducing the risk of pointcut
fragility and mitigating some modularity problems.

However, even the presented approaches fail to solve some
of the identified issues. This is hardly surprising, given that
some issues, such as the paradox of modularity and the liar’s
problem are unsolvable, even in theory.

During our research, we found many hints about the exem-
plary use of AOP in the context of simple use cases like tracing
or logging. Nevertheless, attempted uses in more complex
scenarios lead us to the conclusion that aspects, especially



with inter-dependencies on each other, do not scale well and
are difficult to implement and maintain.

Finally, the following issues must be carefully considered
before choosing an AOP approach:

• Is AOP used to solve simple use cases or complex
use cases? Simple use cases introduce a relatively high
additional workload in order to add aspect systems and
weavers to the project, whereas complex use cases bring
along unwanted inter-aspect side effects due to coupled
aspects.

• Is performance a limiting factor? Choosing an AOP ap-
proach may have a significant impact on the performance
of the applications. The exact impact must be investigated
further since we could not find a representative analysis
that compared simple and complex use cases.

• How will AOP impact the project architecture? Introduc-
ing AOP later in the project might destroy already defined
structural modifiers of the application. On the other hand,
introducing AOP in the specification stage results in
increased planning overhead. Further, AOP cannot easily
be removed later.

• Are there any existing technologies on the same domain
language level that may achieve this behavior? Intro-
ducing a higher level domain might be unnecessary and
increases the complexity of the application.

• What abilities does the weaver have? Its abilities will
limit how AOP can be used, possibly requiring modifica-
tions to the architecture of the application code.

REFERENCES

[1] R. N. Charette, “This car runs on code,” IEEE spectrum, vol. 46, no. 3,
p. 3, 2009.

[2] E. E. Ogheneovo, “On the relationship between software complexity and
maintenance costs,” Journal of Computer and Communications, vol. 2,
no. 14, p. 1, 2014.

[3] E. W. Dijkstra, “On the role of scientific thought,” in Selected writings
on computing: a personal perspective. Springer, 1982, pp. 60–66.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in European
conference on object-oriented programming. Springer, 1997, pp. 220–
242.

[5] E. Hilsdale and J. Hugunin, “Advice weaving in AspectJ,” in Proceed-
ings of the 3rd international conference on Aspect-oriented software
development, 2004, pp. 26–35.

[6] Eclipse Foundation. The AspectJ Project. [Online]. Available: https:
//www.eclipse.org/aspectj/

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of AspectJ,” in European Conference on
Object-Oriented Programming. Springer, 2001, pp. 327–354.

[8] AspectJ Developers. AspectJ load-time weaving. [Online]. Available:
https://www.eclipse.org/aspectj/doc/released/devguide/ltw.html

[9] R. E. Filman and D. P. Friedman, “Aspect-Oriented Programming is
Quantification and Obliviousness,” in Workshop on Advanced Separation
of Concerns, vol. 2000, 2000.

[10] H. Rebêlo and G. T. Leavens, “Aspect-oriented programming reloaded,”
in Proceedings of the 21st Brazilian Symposium on Programming
Languages, 2017, pp. 1–8.

[11] T. Elrad, R. E. Filman, and A. Bader, “Aspect-oriented programming:
Introduction,” Communications of the ACM, vol. 44, no. 10, pp. 29–32,
2001.

[12] F. Steimann, “The paradoxical success of aspect-oriented programming,”
in Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, 2006, pp.
481–497.

[13] M. S. Soares, M. A. Maia, and R. F. Silva, “Performance Evaluation of
Aspect-Oriented Programming Weavers,” in International Conference on
Enterprise Information Systems. Springer, 2014, pp. 187–203.

[14] C. Kastner, S. Apel, and D. Batory, “A case study implementing features
using AspectJ,” in 11th International Software Product Line Conference
(SPLC 2007). IEEE, 2007, pp. 223–232.

[15] W. Golubski, Entwicklung verteilter Anwendungen: Mit Spring Boot &
Co. Springer-Verlag, 2020.

[16] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen,
“Reversible debugging software,” Judge Bus. School, Univ. Cambridge,
Cambridge, UK, Tech. Rep, 2013.

[17] C. Constantinides, T. Skotiniotis, and M. Stoerzer, “AOP considered
harmful,” in 1st European Interactive Workshop on Aspect Systems
(EIWAS), 2004.

[18] E. W. Dijkstra, “Letters to the editor: go to statement considered
harmful,” Communications of the ACM, vol. 11, no. 3, pp. 147–148,
1968.

[19] F. Forster and F. Steimann, “AOP and the antinomy of the liar,” in
Workshop on the Foundations of Aspect-Oriented Languages (FOAL) at
AOSD. Citeseer, 2006, pp. 47–56.

[20] W. Harrison, H. Ossher, P. Tarr, and W. Harrison, “Asymmetrically
vs. symmetrically organized paradigms for software composition,” IBM
Rsch. Rpt. RC22685 (W0212-147), 2002.

[21] S. Chiba, M. Horie, K. Kanazawa, F. Takeyama, and Y. Teramoto,
“Do we really need to extend syntax for advanced modularity?” in
Proceedings of the 11th annual international conference on Aspect-
oriented Software Development, 2012, pp. 95–106.

[22] H. Rajan and K. J. Sullivan, “Unifying aspect-and object-oriented
design,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 19, no. 1, pp. 1–41, 2009.

[23] K. Gybels and J. Brichau, “Arranging language features for more
robust pattern-based crosscuts,” in Proceedings of the 2nd international
conference on Aspect-oriented software development, 2003, pp. 60–69.

[24] C. Schaefer, C. Ho, and R. Harrop, “Introducing Spring AOP,” in Pro
Spring. Springer, 2014, pp. 161–239.

[25] J. Bispo. Clava: C/C++ Source-to-Source Tool based on Clang.
[Online]. Available: https://github.com/specs-feup/clava

[26] T. Keuler and Y. Kornev, “A light-weight load-time weaving approach
for OSGi,” in Proceedings of the 2008 workshop on Next generation
aspect oriented middleware, 2008, pp. 6–10.

[27] J. M. Cardoso, T. Carvalho, J. G. Coutinho, W. Luk, R. Nobre, P. Diniz,
and Z. Petrov, “LARA: an aspect-oriented programming language for
embedded systems,” in Proceedings of the 11th annual international
conference on Aspect-oriented Software Development, 2012, pp. 179–
190.

[28] P. Pinto, T. Carvalho, J. Bispo, M. A. Ramalho, and J. M. Cardoso, “As-
pect composition for multiple target languages using LARA,” Computer
Languages, Systems & Structures, vol. 53, pp. 1–26, 2018.

[29] J. Bispo and T. Carvalho. LARA implementations. [Online]. Available:
http://specs.fe.up.pt/index.php?page=tools

[30] B. J. Geisler, F. J. Mitropoulos, and S. Kavage, “GAMESPECT: As-
pect Oriented Programming for a Video Game Engine using Meta-
languages,” in 2019 SoutheastCon. IEEE, 2019, pp. 1–8.

[31] E. Games. IMessageBus. [Online]. Available: https://docs.unrealengine.
com/en-US/API/Runtime/Messaging/IMessageBus/index.html

[32] U. Technologies. IMessageBus. [Online]. Available: https://docs.unity
3d.com/Packages/com.unity.ugui@1.0/manual/MessagingSystem.html

[33] D. H. Lorenz and O. Mishali, “SPECTACKLE: toward a specification-
based DSAL composition process,” in Proceedings of the seventh
workshop on Domain-Specific Aspect Languages, 2012, pp. 9–14.

[34] Spring AOP developers. Spring API documentation. [Online]. Available:
https://docs.spring.io/spring/docs/current/spring-framework-reference/
core.html#aop-advice

[35] AOSD. AOSD Conference 2002-2015 On Modularity. [Online].
Available: http://aosd.net/conference/

[36] Google. Google Trends aspect oriented programming. [Online].
Available: https://trends.google.com/trends/explore?date=all&q=aspec
t%20oriented%20programming

[37] T. Caulfield and C. Condit, “Science and the sources of hype,” Public
Health Genomics, vol. 15, no. 3-4, pp. 209–217, 2012.

[38] Z. Master and D. B. Resnik, “Hype and public trust in science,” Science
and engineering ethics, vol. 19, no. 2, pp. 321–335, 2013.



[39] H. Masuhara and G. Kiczales, “Modeling crosscutting in aspect-oriented
mechanisms,” in European Conference on Object-Oriented Program-
ming. Springer, 2003, pp. 2–28.

[40] N. Lesiecki, “Improve modularity with aspect-oriented programming,”
IBM DeveloperWorks, 2002.

[41] A. Przybyłek, “Where the truth lies: Aop and its impact on software
modularity,” in International Conference on Fundamental Approaches
to Software Engineering. Springer, 2011, pp. 447–461.


