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Abstract: Ultra-high molecular weight polyethylene (UHMWPE) is widely used in endoprosthetics
and has been the subject of countless studies. This project investigates the dependence of alendronate
(AL) release on the molecular weight of the UHMWPE used (GUR1020 and GUR1050). A 0.5 wt%
AL was added to the UHMWPE during the production of the moldings. In addition to the 14-day
release tests, biocompatibility tests such as live dead assay, cell proliferation assay (WST) and Lactate
dehydrogenase test (LDH) with MG-63 cells as well as a tensile test according to DIN EN ISO 527
were carried out. The released AL concentration was determined by HPLC. A continuous release of
the AL was observed over the entire period of 2 weeks. In addition, a correlation between molar
mass and AL release was demonstrated. The GUR1020 showed a release four times higher than the
GUR1050. Both materials have no negative influence on the proliferation of MG-63 cells. This was
also confirmed in the live/dead assay by the increase in cell count. No cytotoxicity was detected in
the LDH test. The addition of 0.5 wt% AL increased the elongation at break for GUR1020 by 23%
and for GUR1050 by 49%. It was demonstrated that the choice of UHMWPE has an influence on the
release of AL. The particle size in particular has a strong influence on the release behavior.

Keywords: UHMWPE; GUR1020; GUR1050; alendronate; osteoporosis; aseptic loosening; drug
release; HPLC

1. Introduction

The fact that we are living so much longer means that the percentage of people eventually needing
an artificial joint will also rise dramatically. In 2016, there were 187,319 initial implantations of total knee
replacements (TKRs), and 24,940 revision surgeries for TKRs in Germany [1]. The annual operative
frequency of initial endoprosthetic hip and knee surgery among Germans has remained stable and
not risen since 2007. Initial hip interventions in the over-70 age group amounted to 1.1% (in 2007 and
2014), and initial knee interventions 0.7% (2007) and 0.6% (2014). The operative frequency in the entire
German population was 0.26% in 2014 (hips) and 0.19% (knees) [2]. However, 6.5% of the TKR had
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to be replaced within the first two postoperative years. Of the revised interventions, 55% were due
to aseptic loosening [3], a process caused by minute polyethylene particles abraded from the inlay
made of ultra-high molecular weight polyethylene (UHMWPE) in knee endoprosthesis [4]. Despite
good sliding characteristics, wear particles arise that are phagocytized by macrophages. In reacting to
these non-decomposable particles, the macrophages discharge inflammatory mediators that increase
osteoclastic activity [5]. The central mechanism of abrasion particle-induced osteolysis is elevated
bone resorption through osteoclasts. The therapeutic targeting of osteoclast function is a logical means
of treating or at least minimizing the occurrence of aseptic loosening after total joint replacement.
The therapy for an endoprosthesis loosened by periprosthetic osteolysis usually entails removal of
the old and implantation of a new endoprosthesis. Such surgical revisions are associated with a
high degree of morbidity and impaired function. More recent approaches to osteolysis suppression
focus on understanding and manipulating osteolysis at the molecular level through pharmacological
intervention [6]. Potential biological treatments involve reagents such as bisphosphonate, statins, and
antagonists for the Receptor Activator of Nuclear Factor Kappa B Ligand (RANKL), considered a
signal transducer of osteoclasts onto osteoblasts. Various studies have demonstrated that nitrogenous
bisphosphonates such as zolendronate can inhibit abrasion-induced osteolysis and lead to increased
peri-implant bone density [7,8]. Alendronate belongs to the group of bisphosphonates and is
already being applied in medical therapy and prophylactically for osteoporosis [9]. Bone structure is
made denser by the consistent delivery of alendronate, making the bone less fracture prone [10,11].
These effects rely on inhibiting osteoclastic activity. Figure 1 illustrates the chemical structure of
alendronate sodium (C4H12NNaO7P2 · 3 H2O).
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Figure 1. Alendronate sodium.

The type of polyethylene (PE) usually employed to manufacture prostheses is UHMWPE [12].
It triggers fewer abrasion particles than PE with a lower molar mass, as well as greater stability and
better gliding qualities. In working on this project, the focus was on the polyethylenes GUR1020
and GUR1050 [13]. The materials used in our experiments (GUR1020 und GUR1050) are medical
substances and categorized as UHMWPE. These materials have been administered around the world for
orthopedic purposes (e.g., joint replacements). Their only differences lie in their molecular weight [13]:
GUR1020 (3.5 × 106 g/mol) and GUR1050 (5.5–6 · 106 g/mol).

AL was integrated into UHMWPE as an active ingredient. As such, the active ingredient’s
systemic concentration must be kept as low as possible to prevent potential side effects, something only
possible when it is applied locally onto the target cells. The active ingredient AL must be integrated
homogeneously within the polymer matrix so that the concentration can be achieved that is necessary
to prevent the onset of particle-induced periprosthetic osteolysis prior to OA. This concentration is
maintained during the endoprosthesis’ lifetime by the particles released during the abrasion process
and the associated release of the active substance.

In the release experiments described in the literature of alendronate from UHMWPE [14–16],
abrasion particles were produced from which AL was later released [14,16], and AL release attempts
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were made from GUR1020 [15]. However, no attempt has been made until now to investigate the
relationship between release behavior and the particle size. In this study, the influence of the particle
size of different UHMWPEs on the release behavior of AL was investigated. The biocompatibility of
GUR1020/1050 and alendronate composites was also evaluated, so that alendronate can be eventually
added to the prosthesis material during the manufacturing process.

2. Materials and Methods

2.1. Reagents and Materials

GUR1020 und GUR1050 were obtained from Ticona/Celanese (Dallas, USA). Alendronate (AL)
sodium, o-Phtadialdehyde (OPA), 2-Mercaptoethanol (2ME) and Tetrabutylammoniumperchlorate
(TBA) were purchased from Sigma Aldrich (Darmstadt, Germany). Sodium hydrogen phosphate,
di-sodium hydrogen phosphate and Acetonitril (ACN) were from Carl Roth (Karlsruhe, Germany).
All these chemicals met HLPC standards.

2.2. Sample Preparation

Sample preparation was similar to Qu et al. [16], but with a different temperature control to
keep the AL from disintegrating. A GUR-alendronate batch containing 0.5 wt% alendronate was
prepared. To do this, the AL was dissolved in 1:5 ethanol:double-distilled water and then mixed with
GUR-powder (1020 or 1050). The resultant dispersion was then dried at 35 ◦C in a vacuum drying
oven (Memmert, Schwabach, Germany). A total of 1.55 g of each sample was pressed into shape
(60 × 13 × 2 mm) at 140 ◦C with 60 bar, with a slab press type P 200 P with vacuum function (Dr. Collin
GmbH, Ebersberg, Germany) (see Figure 2). There were also samples from pure GUR (1020/1050)
without adding any chemical agents produced.
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The resultant molds (cf. Figure 2) were cut into sections measuring 10 × 13 × 2 mm for the release
experiments. For the cell experiments, cylinders measuring ø 10 mm were die cut out of the molds.
These round test specimens were better suited for cell-culture slides, whereas the angled ones are more
appropriate for release experiments thanks to having a larger surface.

2.3. Characterization of the GUR and the Molds

2.3.1. Particle Size

The particle size was determined using a Morphologi G3 (Malvern Panalytical, Malvern, UK)
particle measuring device. A defined volume was introduced into the atomizer of the Morphologi G3
with a spatula and atomized at 2 bar for 30 ms on the slide. Then at least 3000 particles per GUR with
5×magnification were recorded and measured. The measurements were repeated 3 times.

2.3.2. Weight and Dimensions

After sawing or punching out the GUR bodies, the exact width and thickness were determined
using an electronic sliding calliper (Burg-Wächter, Wetter, Germany) and the weight of at least
10 samples per GUR/composite was determined using a Sartorius precision balance.
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2.3.3. Surface Roughness

A total of 6 samples from each batch (GUR1020, GUR1050, GUR1020AL, GUR1050AL) were
examined under a 3D laser-scanning microscope (3DLSM) (VK-X210, Keyence, Osaka, Japan), at room
temperature and at 1000×magnification, concentrating on their surface structure. A surface measuring
64,000 µm2 was examined to assess each sample’s surface roughness, and multiple measurements were
taken at five different positions on each sample. The arithmetical mean height Sa of each sample was
determined corresponding to JIS B0601:2001 (ISO 4287:1997).

2.3.4. Tensile Testing

The tensile tests were performed on a universal testing machine Z005 (Zwick/Roell, Ulm, Germany)
according to DIN EN ISO 527 with a 5-kN load cell. The specimens were produced as described
previously and die cut in Form 5A for the tensile tests. Following the DIN norm, first the young´s
module at 1 mm/min velocity and then the tensile strength until total failure at a velocity of 50 mm/min
was tested. A total of 6 samples of each GUR and composite specimen were assessed.

2.3.5. Crystallinity

The crystallinity of specimens with and without AL was assessed via differential scanning
calorimetry (DSC). These DSC measurements were taken on a DSC 204F1 Phoenix (Netzsch Gerätebau
GmbH, Selb, Germany) within a 20–200 ◦C temperature range with a heating-up rate or cooling-down
rate of 10 K/min under a nitrogen atmosphere. Four samples of each GUR and composite were analyzed.

The percent crystallinity was measured in dry N2 according to ASTM D3418-03. The enthalpy of
fusion (Hf) was calculated by integrating the DSC endotherm from the second heating curve. According
to the UHMWPE Biomaterials Handbook [17], the Hf of 100% crystalline UHMWPE equaled 288 J/g.
The percent crystallinity was calculated by dividing the Hf of the sample by 288 J/g and multiplying
by 100.

2.4. Release Experiments

Each mold for the release experiments (N = 10) was immersed in 2 mL twice-distilled water and
weighed down with glass rings (outer diameter = 8 mm, inner diameter = 6 mm) to prevent them from
floating to the surface. The release experiments were carried out over 14 days at 37 ◦C. The specimens
were brought into motion with a shaking device (Rocker 2D basic, IKA, Staufen, Germany). The fluids
were removed entirely at specific timepoints (1, 2, 3, 6, 8 und 14 days) and replaced with fresh
double-distilled water (arium pro, Sartorius). These fluid specimens were then deep-frozen at −20 ◦C
for later experimental use. The release behavior of 10 samples from each specimen was examined
in triplicate.

2.5. HPLC

2.5.1. Equipment

HPLC analysis took place with a HPLC System (Shimadzu, Kyoto, Japan) consisting of 2 Nexera
XR LC-20AD pumps and a SIC-30AC autosampler, CTO 20 AC column oven, DGU-20A5R Degasser,
SPD-M20A PDA detector, RF 20A fluorescence detector and a CBM-20A controller. A Hamilton PRP-1
column (5 µm, 150 mm × 4.1 mm) was used to take HPLC measurements.

2.5.2. Buffer Preparation

The phosphate buffer pH 9.6 was produced after Sorensen [18]. The 3 wt% TBA was added; the
pH value was tested and, if necessary, readjusted with phosphoric acid to pH 9.6. The buffer solution
was filtered through a polycarbonate membrane with a pore size of 0.4 µm under a partial vacuum at
500 mbar prior to being employed at the HPLC.
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2.5.3. Derivatization Solution

A working solution according to Al Deeb et al. [19] was used. Therefore, 50 mg OPA was dissolved
in 5 mL 0.05 M NaOH, then 250 µL 2ME was added and the solution was topped up with 0.05 M
NaOH to 50 mL. A fresh batch of this solution was made every day.

2.5.4. Chromatographic Settings

The chromatographic separations and the subsequent quantifications were performed at room
temperature using a reversed-phase HPLC column. The chromatogram was documented using the
fluorescence detector (excitation: 333 nm, emission 455 nm). An isocratic solvent system consisting of
a mixture of ACN/phosphate buffer pH 9.6 (15:85) with 3 wt% TBA according to Al Deeb et al [19] at a
flow rate of 1 mL/min was used.

2.5.5. Calibration Curve

A stock solution containing 1 mg/mL alendronate in 0.05 M NaOH was prepared. Aliquots were
extracted from the stock solution for calibration, then transferred to HPLC vials, mixed 60 µL OPA/2ME
into each one, and filled up to 1 mL with 0.05 M NaOH. After allowing 60 min reaction time, the
specimens were analyzed via HPLC. The various concentrations (10–200 µg/mL) were produced fresh
daily for the calibration.

2.5.6. Preparing the Specimens

The samples obtained from the release experiments were mixed with 60 µL OPA/2ME and filled
up to 1 mL, analogous to 2.4.5. These samples were then analyzed 60 min later via HPLC and a
fluorescence detector (333 nm excitation, 455 nm emission).

2.6. Biocompatibility Investigations

The cell-culture experiments were performed with an MG-63 cell line (ATCC CRL-1427). To do this,
the die-cut GUR specimens were first sterilized in an autoclave (Varioklav 135T) (HP Medizintechnik
GmbH, Oberschleißheim, Germany) and then fixed onto the base of a 24-well plate with Futar D
(Kettenbach GmbH & Co. KG, Eschenburg, Germany), a dental adhesive based on vinylpolysiloxane.
A total of 5000 MG-63 cells were seeded onto each specimen and completely covered with medium,
and then incubated in an incubator (Galaxy 170R, New Brunswick, Canada) for a specific time period.
All biocompatibility tests involved at least three specimen GURs or composites at each time point,
and each test was repeated three times. The specimens were examined microscopically under the
BX51fluorescence microscope (Olympus, Tokyo, Japan) and BX51 light microscope (Olympus, Tokyo,
Japan) with Software Stream Motion. In all the following investigations, at least three samples of each
GUR or composite specimen was tested at each timepoint, and at least 5 different positions on each of
those samples were examined microscopically at 5× and 10×magnification. The internal light source
of the BX 51 was used for light microscopy and an external light source with λ = 490 nm was used
for fluorescence microscopy. The filter we used enabled us to observe red and green fluorescing cells
simultaneously. The cell count was performed by hand using the Photoshop CS6 counting software
(Adobe, San José, USA). The mean values of cell count were calculated and then converted into cell
count values per mm2.

2.6.1. Live/Dead Assay

This staining procedure was performed after 24 h, 48 h and 72 h with “Live/Dead Cell Straining
Kit II” from PromoKine. Calcein stains live cells green (Ex/Em 495 nm/ 515 nm), while EthD-III stains
the dead ones red (Ex/Em 530 nm/635 nm). Microscopy was performed as stated previously.
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2.6.2. Cell Proliferation Test (WST)

For this test “Cell Proliferation Reagent WST-1” from Roche was used, measuring after 1, 2, 3, 7
and 10 days at λ = 450 nm and λ = 600 nm as a reference in a photometer (SPECTROstarNano, BMG
Labtech GmbH). The WST reagent was added at a ratio of 1:10 to the DMEM-F12 medium (without
red phenol) and incubated for 2 h at 37 ◦C, 5% CO2. From each well, 100 µL of the liquid was then
pipetted into a new 96-well plate in triplicate.

2.6.3. LDH Test

A total of 25000 cells was seeded onto each specimen. This experiment was conducted with Roches
“Cytotoxicity Detection Kit (LDH)”. Measurements were taken after 1, 2 and 3 days at λ = 490 nm
in a photometer. In so doing, we added 100 µL freshly prepared LDH solution to each 100 µL of the
medium used (phenol red free, 1% Pen Strep, 1% FBS Superior). These mixtures then had to undergo
incubation for at least 30 min in the dark and were then measured photometrically.

2.7. Statistical Analysis

Data were expressed as mean ± standard deviation of the mean and analyzed by one-way analysis
of variance (ANOVA). The level of statistical significance was set at p < 0.05. For statistical calculations,
Origin 2018 Professional SR1 (OriginLab, Northampton, USA) was used.

3. Results

3.1. GUR and Specimen Characterization

3.1.1. Particle Size

Particle size measurements showed different size distributions for the different GUR types.
GUR1050 showed a larger proportion of small particles between 1 and 10 µm with 57%, whereas
GUR1020 with 36.5% had a significantly smaller value for this particle size class. Looking at the small
particle sizes of 1–30 µm together, the GUR1050 with 83.2% had a significantly higher proportion of
small particles than the GUR1020 with 69.1%. Table 1 shows the comparison of the different particle
size classes for the two GUR types. The mean particle diameter for GUR1020 was 54.3 ± 52.5 µm and
36.9 ± 38.3 µm for GUR1050.

Table 1. Particle size distribution of the different GUR types [N = 3000].

Percentage [%]
Particle Size Classes [µm]

GUR1020 GUR1050
0.1–10 36.52 56.76
11–30 32.61 26.45
31–50 6.78 4.66
51–70 8.06 3.25
71–90 5.65 1.13
91–110 2.41 1.55

111–130 2.33 1.45
131–150 1.81 1.37
151–170 1.95 1.55
171–190 0.82 1.06
191–210 0.68 0.37
211–230 0.15 0.25
231–250 0.15 0.06
251–270 0.08 0
271–290 0 0.06
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3.1.2. Weights and Dimensions

The specimens were on average 9.51± 0.05 mm in width, 12.80± 0.15 mm in length, 2.09± 0.06 mm
in height and weighed 0.24 ± 0.01 g. Table 2 shows the dimensions and weights of the specimens we
used in our release experiments. Specimens GUR1020AL and GUR1050AL contained 0.5 wt% AL.

Table 2. Dimensions and Weights of Specimens for Release Testing [N = 10].

Specimen Width [mm] Length [mm] Height [mm] Weight [g]
GUR1020 9.57 ± 0.28 12.72 ± 0.03 2.12 ± 0.02 0.25 ± 0.01
GUR1050 9.49 ± 0.31 12.71 ± 0.02 2.11 ± 0.01 0.24 ± 0.01
GUR1020AL 9.52 ± 0.20 13.02 ± 0.02 2.01 ± 0.02 0.24 ± 0.01
GUR1050AL 9.44 ± 0.42 12.75 ± 0.04 2.13 ± 0.01 0.24 ± 0.01

3.1.3. Surface Roughness

Figure 3 shows examples of various specimens photographed via 3DLSM at 1000×magnification.
The images display a surface measuring 64,000 µm2.
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A significant difference (p < 0.05) in the arithmetical mean height Sa between GUR1020 and
GUR1020AL has been observed (cf. Table 3). The Sa of GUR1050 revealed no significant difference to
that of GUR1050AL and neither did GUR1020 and GUR1050 significantly differ in their Sa.

Table 3. Overview of the arithmetical mean height (Sa) of specimens (N = 10).

Specimens GUR1020 GUR1050 GUR1020AL GUR1050AL
Sa [µm] 2.02 ± 0.43 2.26 ± 0.38 2.57 ± 0.48 2.18 ± 0.27
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3.1.4. Tensile Tests

To discover the influence of admixing alendronate on composite stability of the various UHMWPEs,
tensile tests were carried out. The stress–strain curves of the tested specimens are shown in Figure 4.
The elongation-at-break data reveal various values depending on the GUR: GUR1050 71-121% and
GUR1020 150–174%. The tensile modulus exhibited similar behavior—it delivered values ranging
from 771 to 848 MPa for GUR1050, and between 647 and 728 MPa for GUR1020. The fracture stress of
all the tested specimens fell within a similar range: 34–37 MPa (see Table 4 and Figure 5).
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Table 4. Tensile test results (N = 6).

Specimen Et [MPa] εtB [%] σB [MPa]
GUR1050 821 ± 30 71 ± 5 36 ± 10
GUR1050AL 650 ± 70 122 ± 116 38 ± 2
GUR1020 691 ± 27 151 ± 3 37 ± 1
GUR1020AL 635 ± 15 174 ± 7 34 ± 1

Et—Tensile modulus; εtB—nominal elongation at break; σB—fracture stress.
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After adding AL, the tensile modules of GUR1020 decreased to 92.1% and that of GUR1050 to
79.1%. The elongation-at-break after adding AL increased in GUR1020 by 22.9% and in GUR1050 by
50.7%. Fracture stress fell by 6.7% in GUR1020 and rose in GUR1050 by 3.5%.

3.1.5. DSC

The enthalpy of fusion of the samples was determined by means of DSC (see Table 5) in order to
determine the crystallinity. The crystallinity of GUR1020 was 52.47 ± 2.41% and that of GUR1050 was
57.56 ± 2.47%. No significant difference was observed between the two values (p > 0.05). The addition
of AL changed the crystallinity of GUR1020 to 56.23 ± 2.06% and that of GUR1050 to 55.20 ± 3.46%;
neither change was significant at p > 0.05.

Table 5. Crystallinity percents measured by DSC; N = 4.

Sample % Crystallinity
GUR1020 52.5 ± 2.4
GUR1020AL 56.2 ± 2.1
GUR1050 57.6 ± 2.5
GUR1050AL 55.2 ± 3.5

3.2. Release Experiments

The complex AL–OPA was well determined by HPLC. Compared to the pure OPA peak, the peak
of the complex with a peak height over 4000 mV was significantly higher than the pure OPA at 0.1 mV.
The complex revealed a retention time of 5.73 ± 0.13 min (see Figure 6) for which there were no peaks
in the OPA spectrum.
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Figure 6. Chromatogram comparison of o-Phtadialdehyde (OPA) (above) and alendronate (AL)–OPA
(below). Fluorescence detector: 333 nm excitation and 455 nm emission.

The calibration revealed a determination coefficient of 99.63%, which resulted in a detection limit
of 0.62 µg/mL and quantification limit of 1.88 µg/mL according to ICH [20].

The greatest AL release after 24 h is apparent at the beginning: 8.96 ± 1.51 g/mL for GUR1020 and
1.62 ± 0.36 µg/mL for GUR1050 (see Figure 7). After 14 days, 0.34 ± 0.21 µg/mL of AL was released
from GUR1020, and 0.17 ± 0.08 µg/mL from GUR1050.
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Figure 8. Cumulative AL release depending on the GUR used. 

If one considers the cumulative release, it becomes clear that GUR1020 shows a release approx. 
four times as high as the GUR1050 in relation to the loading quantity. In addition, the release is 
almost linear from day 3 and has not been completed after 14 days (cf. Figure 8). In both cases, 
GUR1050‘s 0.1% and GUR1020‘s 0.45% after 14 days indicate a very low proportion of AL was 
released compared to their initial weight at manufacture.  
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If one considers the cumulative release, it becomes clear that GUR1020 shows a release approx.
four times as high as the GUR1050 in relation to the loading quantity. In addition, the release is almost
linear from day 3 and has not been completed after 14 days (cf. Figure 8). In both cases, GUR1050‘s
0.1% and GUR1020‘s 0.45% after 14 days indicate a very low proportion of AL was released compared
to their initial weight at manufacture.
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If one considers the cumulative release, it becomes clear that GUR1020 shows a release approx. 
four times as high as the GUR1050 in relation to the loading quantity. In addition, the release is 
almost linear from day 3 and has not been completed after 14 days (cf. Figure 8). In both cases, 
GUR1050‘s 0.1% and GUR1020‘s 0.45% after 14 days indicate a very low proportion of AL was 
released compared to their initial weight at manufacture.  
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Figure 8. Cumulative AL release depending on the GUR used.

3.3. Biocompatibility

3.3.1. Live/Dead Assay

The live/dead assay (Table 6 and Figure 9) demonstrated well the increase in cell numbers over
time. GUR1050AL exhibited higher cell counts than GUR1020AL. It was also be observed that the
cell counts of GUR1020AL were significantly lower than those of pure GUR1020. On the other hand,
GUR1050AL did not display such a strong reduction in cell counts compared to GUR1050.
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Table 6. Overview of GUR specimen cell counts [N=10].

Time cells per mm2

24 h 48 h 72 h
Specimen live dead live dead live dead
GUR1020 56 ± 16 6 ± 5 70 ± 16 28 ± 36 123 ± 19 10 ± 9
GUR1020AL 17 ± 14 3 ± 1 45 ± 20 7 ± 4 30 ± 19 2 ± 1
GUR1050 81 ± 43 6 ± 3 126 ± 153 4 ± 4 63 ± 105 6 ± 2
GUT1050AL 78 ± 22 50 ± 66 136 ± 65 8 ± 10 143 ± 96 3 ± 2
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The WST test revealed after 10 days that the cells on all specimens proliferated. Proliferation 
was, however, not as high as that on ThermanoxTM membranes (Nunc, Rochester, USA), which 
served as our controls. Nevertheless, an increase in proliferation over time was documented. The 
increases that GUR1050 and GUR1050 demonstrated were highest compared to GUR1020 (see 
Figure 10). 
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3.3.2. Cell Proliferation (WST)

The WST test revealed after 10 days that the cells on all specimens proliferated. Proliferation was,
however, not as high as that on ThermanoxTM membranes (Nunc, Rochester, USA), which served as
our controls. Nevertheless, an increase in proliferation over time was documented. The increases that
GUR1050 and GUR1050 demonstrated were highest compared to GUR1020 (see Figure 10).
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The WST test revealed after 10 days that the cells on all specimens proliferated. Proliferation 
was, however, not as high as that on ThermanoxTM membranes (Nunc, Rochester, USA), which 
served as our controls. Nevertheless, an increase in proliferation over time was documented. The 
increases that GUR1050 and GUR1050 demonstrated were highest compared to GUR1020 (see 
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3.3.3. LDH

LDH revealed no cytotoxicity in the specimens (Figure 11); all values fell within the
negative-control range.
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4. Discussion

4.1. Characterization of the Different GUR Types and the Molds

4.1.1. Particle Size Distribution

The GUR particles used by Kumar et al. [21] had a mean particle size of 90± 30 µm. Greer et al. [22]
unfortunately did not provide any information on the particle size of the GUR used. Gong et al. [15]
used a GUR with a mean particle size of 150 µm. The particles we used had a much wider size range.
The average particle size for GUR1020 was 54.3 ± 52.5 µm and for GUR1050 was 36.9 ± 38.3 µm.
Compared to these values [15,21,22], the GUR types we used for this project showed a significantly
smaller particle size.

4.1.2. Surface Roughness

The surface roughness of specimens can affect cell growth [23]. We found no significant difference
in surface roughness (Sa) among the specimens. It is the manufacturing process, which was identical
in all our samples, that exerts the strongest influence on surface roughness. A change in this value due
to the addition of alendronate can therefore be ruled out.

4.1.3. Tensile Testing

We noted a significant difference in elongation-at-break, in the tensile modules, and in fracture
stress among the various GUR types. The findings of Greer at al. [22] were similar. However,
they investigated the influence of radiation on crosslinking in UHMWPE. Their elongation-at-break
values from native unirradiated specimens were at 396 ± 20% for GUR1020 and 376 ± 52% for
GUR1050, much higher than the values we measured. This may be attributable to the difference in
manufacturing processes—in this paper, the pressing of UHMWPE+AL having been performed at
140 ◦C rather than extrusion like Greer et al. [22]. An influence of AL on the mechanical parameters
was documented: GUR1020’s tensile module and fracture stress decreased due to the addition of AL.
With GUR1050, adding 0.5 wt% AL revealed that the tensile module was also reduced, but fracture
stress increased. This factor can be attributed to the reduction in crystallinity. James et al. [17] report
a similar relationship between UHMWPE and hyaluronic acid. Crystallinity fell from 52.79 ± 0.08%
through the addition of hyaluronic acid to 47.14 ± 0.04%. Comparable values for the tensile moduli for
alendronate-containing UHMWPE were also determined by Gong et al. [15], which have dealt with
the mechanical and tribological behavior of UHMWPE + AL after mechanical loading. They, however,
did not draw comparisons with unloaded UHMWPE. The addition of 0.5 wt% alendronate increased
the elongation at break for GUR1020 by 23% and for GUR1050 by 49%. This could be explained by a
decreasing crystallinity.
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4.1.4. DSC

The DSC investigations revealed no significant change in crystallinity. There was, however, a
slight difference that could have had an influence on release and mechanical characteristics. In the
findings of James et al. [17], who investigated changes in UHMWPE crystallinity, the latter was
reduced by the addition of hyaluronic acid, but they do not mention whether those changes were
significant. We observed that the crystallinity of GUR1020 and GUR1050 lies within the same range of
values as reported by Hofmann et al. [24], who investigated the crystallinity of various UHMWPEs.
They reported UHMWPE crystallinity values of 2.7 × 106 g/mol of 60% and for UHMWPE with
1.5 x 106 g/mol of 62%. Our crystallinity values lie slightly lower: GUR1020 52.5% and GUR1050 57.6%;
however, the UHMWPEs used for this work had higher molar masses: GUR1020 3.5 × 106 g/mol, and
GUR1050 5.5 × 106 g/mol

4.2. Release Experiments

The alendronate can only be found on the surfaces of the various GUR particles, which are then
pressed further in the course of the process. Depending on the mean diameter (d1020 = 54.3 ± 52.5 µm;
d1050 = 36.9 ± 38.3 µm) of the particles, the surface area of the GUR1020 particles (a1020 = 9263 µm3) is
almost twice as large as that of the GUR1050 particles (a1050 = 4278 µm3). The particle size distribution
shows a significantly higher value for all other size classes with the GUR1020, except for the very small
particles of 0.1–10 µm which predominate with GUR1050 (see Table 1). This effectively increases the
surface area of the particles and thus the AL loading, which can explain the much higher AL release
from GUR1020. Considering that there is no diffusion in the GUR, except the marginal areas, one
comes to the same conclusion. Oral et al. [25] showed similar results, where the question was reversed
and vitamin E should diffuse into the GUR. But they also show that a 1-mm deep penetration without
special measures can be assumed. The same should then apply to the release as well. This would also
explain the relatively minor amount of released alendronate. In contrast to Manoj Kumar et al. [21],
the active ingredient was added to the GUR before the moldings were pressed and not impregnated
on the surface after the moldings had been fabricated, and they applied gentamycin rather than AL.
Their impregnation procedure as well as the different substances used are the reasons for the very
pronounced release behavior differences: our 0.5% as opposed to 90% by Manoj Kumar et al. [21]).
Qu et al. [16] describe a similar method to produce UHMWPE but at a much higher temperature.
Moreover, both Qu et. al [16] and Liu et al. [14] reported wear particles from molds made of UHMWPE
with AL that displayed significantly larger surface area than our molds. The larger surface of the wear
particles led to a much greater release of AL [14,16]. However, it became clear that the release depends
very much on the particle size of the UHMWPE used: GUR1020 released four times as much AL as did
GUR1050 despite the fact that both specimens had undergone the same production method and were
subject to the same release conditions. A comparative description of the release behavior of different
UHMWPE as a function of particle size has not yet been described in the literature.

4.3. Biocompatibility

4.3.1. Live/Dead Assay

In the live/dead assay, GUR1050 exhibited much higher cell counts than GUR1020. This is because
GUR1020 exhibited greater amounts of AL release and, in line with Im et al. [26], concentrations
exceeding 10−4 M, leading to a decrease in cell proliferation. However, it was also the case that with
decreasing released AL concentrations, an increase in the cell count was observed, similar to what
has already been described by Guiliani et al. [27] and Im et al. [26]. Guiliani et al. [27] reported on
AL concentrations ranging from 10−8 to 10−13 mol/L and of etidronate concentrations between 10−7

and 10−9 mol/L. Im et al. [26] described AL concentrations in the 10−7 to 10−12 range; the lowest
concentration’s effect on proliferation was rather weak. These results were also observed in all
live/dead experiments.
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4.3.2. WST

In their investigations, Qu et al. [16] und Liu et. al [14] tested the biocompatibility of
AL-loaded UHMWPE by using the MTT test instead of the WST test. Their results resembled
ours. We observed, exactly as Xiong et al. [28] did, that cell counts rose in relation to AL concentration.
In addition, a slight inhibition of proliferation was observed at the beginning, as already described
by Reinholz et al. [29], who dealt with the regulation of cell proliferation, differentiation and gene
expression of human osteoblasts by bisphosphonates. However, they employed the bisphosphonates
etidronate, pamidronate, and zolendronate in their investigations.

4.3.3. LDH

The results from the cytotoxicity assay very slightly exceeded those from our negative controls
(cells only). Compared to the wear particle findings of Liu et al. [14], our results (with values of 2% for
cytoxicity) also lie within the same range as the controls. Liu et al. studied the in vitro release and
cellular response of AL-loaded UHMWPE wear particles. Their controls revealed a 2% cytotoxicity
value and a range of 5 to 7% for wear particles containing AL. Thus, our values were clearly below
their values for the controls. It was thus possible to prove that no cell toxicity was present at all.

5. Conclusions

In the present work, it has been proved that the selection of the UHMWPE has an influence on the
release of AL. The particle size of the GUR in particular has a strong influence on release behavior.
The way in which the UHMWPE/AL blends are produced, e.g., by pressing instead of extrusion, or
the temperature control during pressing at 140 ◦C instead of 180 ◦C also influences the release of
AL. In addition, an influence of the concentration of alendronate on cell proliferation, as described
in the literature [26–28], was demonstrated. An AL concentration over 104 M resulted in inhibited
proliferation, whereas a falling AL concentration correlated with a rise in cell counts.
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