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Abstract: The aim of this study was to determine possible influences, including data processing
and sport-specific demands, on the validity of acceleration measures by an inertial measurement
unit (IMU) in indoor environments. IMU outputs were compared to a three-dimensional (3D)
motion analysis (MA) system and processed with two sensor fusion algorithms (Kalman filter, KF;
Complementary filter, CF) at temporal resolutions of 100, 10, and 5 Hz. Athletes performed six team
sport-specific movements whilst wearing a single IMU. Mean and peak acceleration magnitudes
were analyzed. Over all trials (n = 1093), KF data overestimated MA resultant acceleration by
0.42 ± 0.31 m·s−2 for mean and 4.18 ± 3.68 m·s−2 for peak values, while CF processing showed errors
of up to 0.57 ± 0.41 m·s−2 and −2.31 ± 2.25 m·s−2, respectively. Resampling to 5 Hz decreased the
absolute error by about 14% for mean and 56% for peak values. Still, higher acceleration magnitudes
led to a large increase in error. These results indicate that IMUs can be used for assessing accelerations
in indoor team sports with acceptable means. Application of a CF and resampling to 5 Hz is
recommended. High-acceleration magnitudes impair validity to a large degree and should be
interpreted with caution.
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1. Introduction

Monitoring performance and workloads in team sports is vital when developing and evaluating
training programs adapted to the intermittent nature of these sports [1]. The gold standard techniques to
capture human movement include three-dimensional (3D) motion analysis systems and force platforms.
Due to complex operational demands and their fixed installation in a laboratory, such systems cannot
be used to directly measure individual performance in the field. Instead, sport practitioners need
more feasible methods that can be applied during training sessions or competitions to quantify overall
locomotion of multiple players at the same time. GPS-based technology is, for instance, widely used
in outdoor sports but cannot be used in indoor environments due to satellite signal interferences.
Therefore, Inertial Measurement Units (IMUs) containing an accelerometer, gyroscope, and occasionally
magnetometer have been proposed as alternatives for performance evaluations in indoor sports [2–4].
Sufficient concurrent validity of these measurement systems is essential to yield sensitive indicators of
an athlete’s power output. Potential sources of error can arise from either internal factors related to
IMU specificities or external factors that are directly associated with the execution of these sports [5–7].
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Internal factors affecting an IMU’s accuracy include the complex process of sensor fusion that
is required to determine the device’s orientation with respect to global space [8]. Team sports are
intuitively observed and described in an earth-related coordinate system, which can be defined
by the z-axis running parallel to earth’s gravitational acceleration and the horizontal axes being
in accordance with the field’s dimensions. In contrast, IMUs typically record data within a local
coordinate system whose axes are defined by placement within the tracking device. Before interpreting
IMU data, an alignment between both coordinate systems is required to eliminate gravity from the
sensor’s readings.

Combining single inertial sensors by sensor fusion allows the global orientation to be calculated
between both coordinate systems. Fusion can be performed by gyroscope integration, vector observation,
Kalman filtering (KF), or Complementary filtering (CF) [9]. The first two algorithms are unsuitable
for sport-specific settings since gyroscope integration suffers from integration-induced drift, and the
accuracy of the vector observation is restricted to slow movement velocities [9,10]. In general, either KF
or CF techniques are applied for orientation estimation during human motion [11,12]. While KF gives
a probabilistic calculation of state estimations, CF relies on analysis in the frequency domain of the
respective sensor readings. Direct comparisons of both filters has found a better accuracy of CF under
simulated orientations. This is probably because CF has a faster rate of convergence, which allows
it to follow the true signal accurately, even during momentary pauses in motion [6,13]. However,
pre-processed parameters provided within the proprietary software of tracking devices typically
rely on KF-based algorithms. Even though the validity of these parameters has previously been
examined, current research is mostly restricted to evaluating the resultant acceleration magnitude [14,15].
More detailed analysis in the horizontal and vertical movement planes is not typically provided by
manufacturers, even though this is crucial for comprehensive and meaningful analysis of athletes’
locomotor demands during sports. Relying on manufacturer-independent algorithms for raw data
processing could improve the analysis of locomotor demands and increase the transparency of data
treatment for other investigators.

Another internal factor influencing the accuracy of wearable tracking devices is the sampling
frequency. Commercially-available IMUs typically operate at a sampling frequency of 100 Hz in indoor
environments, while ranges of 5–15 Hz are standard for GPS devices. The validity of GPS signals
has been shown to depend also on the sampling rate itself, whereas no further increase in accuracy
was observed for frequencies >10 Hz [16–18]. To our knowledge, the influence of temporal resolution
on IMU measurement error has not yet been investigated, even though findings from GPS research
suggest a sufficient accuracy at resolutions of 5–10 Hz.

Previous studies investigating the concurrent validity of IMUs primarily identified external rather
than internal factors affecting validity, with respect to manufacturer-provided parameters [14,15,19].
Findings clearly point towards the intensity of motion as well as the performed movement task itself
affecting the IMU’s concurrent validity [14,19], with higher errors being found for high-intensity
movements such as sprinting, jumping, and tackling. However, no study has yet investigated whether
additional upper body motion evoked by ball handling might influence IMU accuracy, even though
ball possession is a crucial part of team sports. Therefore, this study aims to evaluate the concurrent
validity of CF- and KF-derived acceleration values measured by a commercially-available IMU during
team sport-specific movements. A second goal of this study is to determine IMU-specific internal
factors, such as a sensor fusion algorithm and temporal resolution, as well as sports-related external
factors, namely movement intensity, movement tasks, and ball possession, which possibly influence
the device’s concurrent validity.

2. Materials and Methods

Seven female professional basketball players (first division in Germany) took part in this
cross-sectional validation study. All participants gave written informed consent to the experimental
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procedure, which was approved by the ethics committee of the University of Freiburg (429/18) and
was in accordance with the latest revision of the Declaration of Helsinki.

2.1. Data Acquisition

Data from a single wearable tracking device, which included an IMU with a sampling frequency
of 100 Hz (OptimEye S5, Catapult Sports, Melbourne, Australia), were compared to data from a 3D
motion analysis (MA) system operating at 200 Hz (Vicon Motion Systems, Oxford, UK).

Data were collected during the performance of six team sport-specific movements adopted from
Luteberget and colleagues [20] (Figure 1) after a standardized warm-up. All tasks were performed with
and without ball handling. Under both conditions, participants performed each task (except for Task 6)
at three intensity levels ranging from low, moderate, to high intensity, based on the athlete’s perceived
effort. Task 6 was a maximum vertical jump performed at high intensity only. A total of 1120 trials
were recorded. Twenty-seven trials had to be excluded from further analysis due to insufficient data
quality. The resulting number of trials (1093) was sufficient for the power analysis calculated a priori
based on previously-reported results by our working group [13].

Throughout the whole measurement process, participants wore the tracking device in a customized
upper body harness provided by the vendor. The IMU was located in a customized pocket between
the athlete’s shoulder blades. The same device was used for all participants to eliminate inter-device
variability [21,22]. Three retro-reflective markers (∅ 14 mm) were attached directly to the device’s case
to prevent displacement artefact between the markers and the device. To synchronize the measurement
systems during post processing, participants performed a vertical jump serving as trigger prior to each
trial, followed by 5 s of standing still before executing the task. After each task, participants stood still
for 10 s to evaluate the convergence time for each sensor fusion algorithm.

Figure 1. Graphic representation of performed movement tasks. Each task was performed at three intensities
(low–moderate–high) both with and without ball possession. Adapted from Luteberget et al. [20], Task 1
consisted of a straight-line acceleration immediately followed by a deceleration to a stop. Task 2 consisted of
two diagonal forward/backward movements. Task 3 was a straight-line acceleration followed by a 90◦ turn
and deceleration to a stop. Task 4 was a zig-zag course including a 360◦ turn. The course was executed with
forward movements and change of direction cuttings. For Task 5, five continuous laps of the same zig-zag
course were executed without the 360◦ turn. Task 6 was added to expand the test battery through a single
counter-movement jump to include motion in the vertical plane.

2.2. Data Processing

Both the MA system data and the IMU raw data were exported to Microsoft Excel (Microsoft Excel
2013, Version 15.0, Redmond, WA, USA) using the respective manufacturer-supplied software (MA:
Nexus 2, Vicon Motion Systems, Oxford, UK; IMU: Sprint 5.1.7, Catapult Sports, Melbourne, Australia).
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If not stated otherwise, all further calculations were performed using customized scripts (Matlab
R2018a, MathWorks, Natick, MA, USA).

2.2.1. Motion Analysis (MA) Data

The position of a single virtual marker was calculated at the estimated position of the IMU within
the dimensions of the tracking device. A fourth order, zero-lag, low-pass digital Butterworth filter was
applied to reduce noise from the MA positional data in the x-, y-, and z-axes. According to a residual
analysis [23], a cut-off frequency of 6 Hz was chosen for all trials since the standard deviation (SD) of
residuals between all trials was <1 Hz. The cut-off frequency was then corrected to 6.23 Hz [23] to
exclude phase shift due to dual pass filtering. Acceleration values (m·s−2) in all three orthogonal planes
were calculated through double numerical differentiation of the processed MA data. Magnitudes were
calculated for the vectors of resultant 3D acceleration, resultant horizontal acceleration, and vertical
acceleration according to the following formulas:

|accres| =
√

x2 + y2 + z2

|acchor| =
√

x2 + y2

|accvert| =
√

z2

2.2.2. Kalman Filter (KF)

The resultant acceleration vector (|accres|) was provided by the manufacturer’s software (after
KF-processing) with only one continuous variable: the combined acceleration of the x-, y-, and z-vectors
corrected for gravity. This variable was previously validated under sport-specific conditions [14,24].
A low-pass digital filter (fourth order Butterworth) with a cut-off frequency of 8 Hz (9.97 Hz corrected)
was applied for noise reduction. The cut-off frequency was chosen for all trials after residual analysis
(SD < 1.0 Hz) and on the basis of the lowest mean bias compared to the MA system. Since the choice
of variables was provided by the manufacturer, the data necessary to calculate |acchor| and |accvert|

acceleration were not provided. Evaluation of KF validity is thus restricted to |accres| only.

2.2.3. Complementary Filter (CF)

A CF algorithm was manually implemented using routines written in C++ (Microsoft Visual
C++ 2017, Redmond, WA, USA). The filter was originally developed to navigate unmanned aerial
vehicles, but has since been successfully adapted to correct attitude during simulated sport-specific
orientations [13,25]. Before running the CF, raw accelerometer and gyroscope data were converted
to m·s−2 and low-pass filtered (fourth order Butterworth) to eliminate miscalculations by the CF
algorithm. A cut-off frequency of 8 Hz (9.97 Hz corrected) was chosen after residual analysis for all
trials (SD < 1.0 Hz). Based on previous studies that implemented CF algorithms for human motion
analysis, an initial filtering gain of 0.0072 was chosen, which was adjusted throughout the calculations
by an adaptive gain loop. Original accelerometer data in the x-, y-, and z-axes were rotated using
the orientation quaternion calculated by the CF. The resulting coordinate system was defined by the
z-axis running parallel to earth’s gravity vector. Gravitational influence was eliminated by subtracting
9.81 m·s2 from the resulting z-value. The x- and y-axes were not aligned to earth’s coordinate system
since magnetometer data are disturbed by metal constructions in indoor facilities. Similar to the MA
data, the magnitude of acceleration was calculated for |accres|, |acchor| and |accvert|.

2.3. Data Analyses

Resulting CF, KF, and MA data were equally resampled from 100 Hz to 10 Hz and 5 Hz by
continuously averaging every 10 or 20 data points, respectively. A fast Fourier transformation carried
out on MA data showed the highest frequency components in the resulting power spectrum at 2 Hz,
irrespective of the performed movement. The chosen temporal resolutions therefore are in accordance
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with the Nyquist–Shannon sampling theorem, which suggests that the minimum sampling frequency
should be double the frequency of its highest frequency component [26].

CF, KF, and MA data were synchronized by cross-correlation against the trigger peak signal.
The trigger signals and waiting phases prior to and post each task were excluded from further analysis.
Based on typical applications of monitoring data for performance evaluations, mean and peak values of
|accres|

CF/MA/KF, |acchor|
CF/MA, and |accvert|

CF/MA were calculated. The resulting values were categorized
into pre-defined acceleration bands. For mean values, acceleration bands were: 0–1 m·s−2, 1–2 m·s−2,
2–3 m·s−2, 3–4 m·s−2, 4–5 m·s−2, 5–6 m·s−2, and >6 m·s−2, and for peak values: 0–5 m·s−2, 5–10 m·s−2,
10–15 m·s−2, 15–20 m·s−2, 20–25 m·s−2, 25–30 m·s−2, and >30 m·s−2.

Convergence time was calculated referring to baseline ranges for CF, MA, and KF, which were
defined as the corridor between the upper and lower bounds of the mean ± 2SD during the last 3 s of
the waiting phase after movement execution. The start of convergence was defined as the time point
when the last value exceeded the baseline level +2.5 m·s−2 of the 100 Hz MA data. This threshold
was chosen as this amount of acceleration was physically related to actual movements of the athlete
rather than reflecting respiratory-induced torso movements. Further, values of 2.5 m·s−2 were also
reached during lower intensities, which makes this threshold appropriate for all performed intensities
of motion and inter-athlete variation in movement execution. Convergence time was then calculated
as total time elapsed until the signal dropped back to the predefined baseline range (Figure 2).

Figure 2. Inertial Measurement Unit (IMU) data analysis. Representative data of one trial in the 100 Hz
temporal resolution is shown for |accres| (Kalman Filter, KF).

2.4. Method Comparison

Following suggestions made by Atkinson and Nevill [27], the accordance between CF/KF and MA
data was calculated for mean and peak acceleration magnitudes in relevant movement dimensions.
Mean bias (MB), SD, 95% limits of agreement (LoA; 27), Spearman’s % (rs), coefficient of variation
(CV; [28]), and root mean square error (RMSE) were calculated to determine the ability of the IMU
to quantify mean and peak accelerations. MB ± SD, LoA, and RMSE provide information about the
amount of error, while Spearman’s % and CV quantify the variance of the data. Bland–Altman plots
were constructed to visually evaluate the agreement between IMU and MA data [29].

Statistical analyses were performed using JMP Version 13.1.0 (SAS Institute Inc., Cary, NC, USA).
Shapiro–Wilk tests showed homogeneous data for convergence time. A one-way ANOVA was
calculated between groups to determine differences in convergence time between CF, KF, and MA.
Two-sided t-tests were calculated post-hoc to determine differences in the mean between single groups.
The Bonferroni-corrected adjusted alpha level was set to α = 0.017.
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3. Results

3.1. Internal Factors

At the original resolution of 100 Hz, both filtering algorithms tended to overestimate MA
acceleration values over all trials and dimensions by 5.67% to 26.10%. Generally, CF showed lower
errors and higher accuracy for mean and peak values across all temporal resolutions. For KF
measurement, outcomes indicate large ranges for LoA of ≥1 m·s−2 for mean and ≥8 m·s−2 for
peak values. MB data further shows substantial overestimation by KF (MBmean = 13.93%–77.21%;
MBpeak = 22.24%–37.17%) over all trials and temporal resolutions. Differences between both filtering
algorithms were most prominent for higher intensities (Figure 3). Outcome measures of agreement
comparing both sensor fusion methods are shown in Table 1.

Figure 3. Bland–Altman plots showing the relationship between motion analysis (MA) and IMU data
using Complementary Filter (CF) and KF for peak values at the 100 Hz temporal resolution. Mean and
peak values for each trial were categorized according to pre-defined bands. For each acceleration band,
95% limits of agreement (LoA) (dashed line) and mean bias (solid line) are displayed with reference to
zero (black solid line).

In general, lower temporal resolutions were associated with higher accuracy of the CF data than
higher temporal resolutions (Table 1). The 5 Hz resolution demonstrated the best relationship between
the CF and MA system data. In contrast, errors increased with lower temporal resolutions for the KF
results. The results are presented for |accres| and are similar to |acchor| and |accvert|.

Comparing the values measured by the IMU, the lowest agreement was found for |acchor| in terms
of LoA, which ranged from 1.00–1.08 m·s−2 for mean and 7.57–9.45 m·s−2 for peak variables regardless
of temporal resolution, acceleration band, or performed movement task (Figure 4). The highest
agreement was observed for |accvert| variables across all conditions, while |accres| showed a moderate
relationship (Table 1).
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Table 1. Analysis of agreement between CF or KF data and MA system data over all trials (n = 1093). Outcomes for mean and peak values are presented at each
temporal resolution. Results refer to |accres|, |acchor| and |accvert|. MB, mean bias; SD, standard deviation; 95% LoA, 95% limits of agreement; CI, confidence intervals;
RMSE, root mean square error; rs, Spearman’s correlation coefficient; CV, coefficient of variation.

MEAN PEAK

MB ± SD (m·s−2) 95% LoA ± CI (m·s−2) rs CV (%) RMSE (m·s−2) MB ± SD (m·s−2) 95% LoA ± CI (m·s−2) rs CV (%) RMSE (m·s−2)

10
0

|accvert|(CF) −0.16 ± 0.16 −0.48 to 0.16 ± 0.02 0.99 5.40 0.23 −2.63 ± 2.27 −7.07 to 1.81 ± 0.23 0.98 7.85 3.57

|acchor|(CF) −0.38 ± 0.32 −1.01 to 0.25 ± 0.03 0.95 19.44 0.49 −2.24 ± 3.16 −8.44 to 3.96 ± 0.32 0.87 28.62 3.87

|accres|(CF) −0.42 ± 0.31 −1.02 to 0.18 ± 0.03 0.99 7.34 0.52 −2.31 ± 2.25 −6.71 to 2.10 ± 0.23 0.97 10.05 3.30

|accres|(KF) −0.57 ± 0.41 −1.38 to 0.25 ± 0.04 0.99 5.99 0.70 −4.18 ± 3.68 −11.39 to 3.03 ± 0.38 0.95 12.10 5.57

10
H

z

|accvert|(CF) −0.14 ± 0.16 −0.47 to 0.18 ± 0.02 0.99 5.54 0.22 −2.15 ± 2.28 −6.63 to 2.32 ± 0.23 0.97 9.23 3.14

|acchor|(CF) −0.37 ± 0.32 −0.99 to 0.25 ± 0.03 0.95 20.11 0.49 −2.04 ± 3.11 −8.12 to 4.05 ± 0.32 0.86 30.13 3.71

|accres|(CF) −0.40 ± 0.29 −0.98 to 0.17 ± 0.03 0.98 7.46 0.50 −1.87 ± 2.12 −6.03 to 2.29 ± 0.22 0.97 10.63 2.83

|accres|(KF) −0.66 ± 0.55 −1.75 to 0.43 ± 0.06 0.98 8.90 0.86 −3.85 ± 3.52 −10.74 to 3.05 ± 0.36 0.94 12.74 5.21

5
H

z

|accvert|(CF) −0.12 ± 0.15 −0.40 to 0.17 ± 0.02 0.97 10.57 0.19 −0.34 ± 0.84 −1.99 to 1.32 ± 0.09 0.95 12.08 0.91

|acchor|(CF) −0.32 ± 0.32 −0.95 to 0.30 ± 0.03 0.91 29.13 0.46 −0.89 ± 2.67 −6.13 to 4.35 ± 0.27 0.75 43.21 2.81

|accres|(CF) −0.33 ± 0.29 −0.91 to 0.24 ± 0.03 0.96 10.78 0.44 −0.14 ± 1.40 −2.88 to 2.60 ± 0.14 0.95 15.98 1.40

|accres|(KF) −2.00 ± 1.23 −4.41 to 0.40 ± 0.13 0.90 16.48 2.35 −3.25 ± 2.85 −8.83 to 2.33 ± 0.29 0.85 22.56 4.32
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Figure 4. Bland–Altman plots showing the relationship between MA system data and CF data for peak
values of |accres|, |acchor|, and |accvert|. Magnitude values for each trial were categorized according to
pre-defined acceleration bands. For each acceleration band, 95% LoA (dashed line) and mean bias
(solid line) are displayed with reference to zero (black solid line).

3.2. External Factors

Across all conditions, the relationship between IMU and MA system data decreased as the
acceleration magnitude increased. Bland–Altman plots (Figure 3) clearly show a lower agreement
between IMU and MA system data for acceleration magnitudes above 4.0 m·s−2 for mean values and
15.0 m·s−2 for peak values. For mean values, CF was able to maintain a comparable level of error
over all intensities, while a moderate increase of MB and LoA in the higher acceleration bands was
seen for peak values. Larger deviation and linear increases in error was observed in KF for mean and
peak values as the acceleration magnitude increased. The results are presented for |accres| and are
in accordance with analysis of |acchor| and |accvert|.

The mean convergence time over all trials was 3.81 ± 2.67 s for MA system data, 4.25 ± 2.58 s for
CF data, and 4.34 ± 2.79 s for KF data. Accordingly, CF needed 0.44 s and KF 0.53 s longer than the MA
reference signal to reach baseline level, a significant difference (CF: p = 0.0002, CI = −0.67 to −0.21;
Cohen’s d = 0.167; KF: p = 0.0001, CI = −0.76 to −0.29, Cohen’s d = 0.19). However, no significant
differences were observed between CF and KF (p = 0.4519, CI = −0.33 to 0.14, Cohen’s d = 0.33).

No substantial differences were observed between tasks 1 to 5 independent of the variable, applied
sensor fusion, temporal resolution, or intensity (Table 2). In contrast, error and variance in Task 6 for
both mean and peak variables was about twice as large as other tasks. No differences were seen in the
amount of error and variance with respect to ball possession.

Table 2. Analysis of agreement between CF data and MA system data for each movement task.
Outcomes for mean and peak values are presented at a temporal resolution of 5 Hz and refer to |accres|

only. MB, mean bias; SD, standard deviation; 95% LoA, 95% limits of agreement; CI, confidence intervals;
RMSE, root mean square error; rs, Spearman’s correlation coefficient; CV, coefficient of variation.

|accres| (CF, 5 Hz)

MB ± SD (m·s−2) 95% LoA ± CI (m·s−2) rs CV (%) RMSE (m·s−2)

MEAN

Task1 −0.27 ± 0.17 −0.61 to 0.07 ± 0.04 0.95 8.86 0.32
Task2 −0.39 ± 0.30 −0.98 to 0.20 ± 0.07 0.93 8.90 0.49
Task3 −0.31 ± 0.21 −0.72 to 0.10 ± 0.05 0.95 8.58 0.38
Task4 −0.35 ± 0.26 −0.85 to 0.16 ± 0.06 0.95 7.25 0.43
Task5 −0.22 ± 0.31 −0.83 to 0.40 ± 0.07 0.95 5.86 0.38
Task6 −0.73 ± 0.41 −1.53 to 0.06 ± 0.17 0.76 12.80 0.84

PEAK

Task1 −0.50 ± 1.14 −2.74 to 1.74 ± 0.28 0.90 17.16 1.25
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Table 2. Cont.

|accres| (CF, 5 Hz)

MB ± SD (m·s−2) 95% LoA ± CI (m·s−2) rs CV (%) RMSE (m·s−2)

Task2 −0.58 ± 1.41 −3.35 to 2.19 ± 0.33 0.91 16.68 1.53
Task3 0.04 ± 1.14 −2.20 to 2.28 ± 0.27 0.95 15.32 1.14
Task4 0.47 ± 1.12 −1.73 to 2.67 ± 0.27 0.96 11.41 1.21
Task5 0.39 ± 1.14 −1.85 to 2.63 ± 0.27 0.96 11.39 1.20
Task6 −1.74 ± 2.06 −5.79 to 2.31 ± 0.84 0.61 10.42 2.69

4. Discussions

This study aimed to evaluate the concurrent validity of acceleration magnitudes derived from
a commercially-available tracking device after different techniques of data processing. A 3D MA system
served as the criterion measure during team sport-specific movements. With respect to internal factors,
our results showed superior results for CF compared to KF across all conditions. Furthermore, findings
of this study indicate an impaired concurrent validity of the IMU at higher temporal resolutions,
for both horizontal axes as well as for higher movement intensities.

4.1. Internal Factors

When working with IMU-based tracking devices, the technical properties of the hardware require
a significant amount of data processing. High discrepancies between accelerometer data and reference
measures during sporting activities have been demonstrated, usually due to insufficient sensor fusion
due to missing gravity compensation [13,30,31]. Our results demonstrate that the type of sensor fusion
itself influences the tracking device’s concurrent validity. In direct comparison to the manufacturer’s
KF, the CF clearly showed lower errors against the MA reference data across all conditions. The exact
reason for the algorithms’ divergent behavior remains unclear since the exact functions of KF are
confidential. Advantages for the CF are its faster convergence as changes in activity likely include
a brief stop of motion. Those activities have been reported to occur every 2–4 s in multidirectional team
sports, adding 500–3000 changes of activity over a game [32]. Ricci and colleagues [6] demonstrated
an immediate rate of convergence for a self-implemented CF algorithm during stop-after-motion trials
performed by a robotic arm. In comparison, KF required about 10 s to reach a stable signal after
stopping [6]. Even though our study yielded no significant differences, absolute values demonstrated
slight differences in convergence time of about 0.1 s between both filters with lower values for the CF.
Considering the fast-paced nature of typical team sport movements, such as quick changes of direction,
this could easily explain differences in validity. A fast convergence behavior might be preferable for
tracking team sport athletes, as it enables the algorithm to reflect the intermittent nature of these sports
by following sudden changes in acceleration.

According to our results, the validity of the tracking device further depends on the extent of
resampling. For the CF, only marginal differences were seen when resampling the 100 Hz data to
10 Hz. However, lower errors indicating a better accuracy were observed for 5 Hz. This is probably
caused by lower overall acceleration amplitudes, possibly resulting from the averaging process.
The resampling by averages was chosen because the original sampling frequency of 100 Hz was likely
to cause oversampling of the true acceleration, and therefore inaccurately measuring unintentional
movements of the sensor within the harness due to external impacts rather than actual body motion.
A substantial error between peak vertical acceleration of the thoracic segment between IMU and MA
data has been observed in a similar experiment [33]. The authors explained this discrepancy through
artefacts caused by the elastic material of the harness. The process of resampling, as performed in our
study, might have reduced this specific source of noise in the data. Resampling might ensure higher
congruence between IMU measures and actual upper body motion. In addition to yielding higher
validity, resampling to 5 Hz might be more appropriate to reflect actual movements of the upper body.
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This should be considered in future studies evaluating the criterion validity of IMUs. Regardless of the
temporal resolution, validity was substantially impaired with respect to horizontal acceleration. Thus,
providing meaningful information in this movement plane is difficult, especially at higher intensities.
The strongest relationships were found for the vertical magnitude. The accuracy of the resultant
acceleration lies within a range comparable to previous validation studies [14,19]. Similar observations
were made during a highly controlled technical validation of a tracking device equivalent to the one
used in this study [22]. Higher percentage errors between the device and an industrial IMU were found
on the x- and y-axis compared to the z-axis during steadily oscillating movements. Further, larger
errors in the horizontal plane were reported for IMU-based variables compared between multiple
devices [22,24]. The authors assigned the reduced accuracy of both horizontal axes to a possible error
in device calibration. Inconsistencies of the specified measurement ranges in each axis could further
explain this result. Gravitational acceleration primarily acts on the z-axis, thus increasing raw data by
9.81 m·s−2 compared to the x- and y-axes, which in itself could require adjustments to axis-specific
measurement ranges.

4.2. External Factors

The second aim of this study was to determine how factors of sporting activities such as movement
intensity, movement task, and ball possession could impair the device’s validity. Again, convergence
might play a role and might also explain the stronger discrepancy between IMU and MA at higher
intensity levels. In lower acceleration bands, both sensor fusion algorithms demonstrated a comparable
level of accuracy. However, they drifted apart after 15.0 m·s−2 at peak values and 4.0 m·s−2 at mean
values. Therefore, KF data well exceeds acceptable limits of agreement and we conclude that it is
not valid at these intensity ranges. Comparable findings were shown during treadmill locomotion,
with IMUs overestimating acceleration values by more than 1.5 g at higher acceleration magnitudes [19].
While the authors suggested the relatively loose fit of the harness as the source of error, our results
suggest that the delayed convergence of sensor fusion hinders an exact measurement of the true signal
in higher intensities and also affects the device’s accuracy. Researchers and practitioners should be
aware of the increased error at higher intensities and interpret these data with caution. However,
choosing a tightly-fitting harness and an appropriate data processing method could help to decrease
errors to an acceptable level.

In contrast to movement intensity, there was little evidence to suggest that the performed movement
itself affected the IMU’s validity. No differences in accuracy were observed during straight-line and
change-of-direction movements, although the IMU tended to overestimate true acceleration for the
vertical jump. While the former tasks consisted of complex movements, including changes of directions,
multidirectional acceleration, and deceleration, the latter was intended to reflect a single vertical jump.
Considering that the primary movement direction of jumping is in the vertical axis, higher accuracies
could be expected due to the IMU’s axis specificity. However, during a maximum vertical jump,
higher absolute accelerations were reached, which seemed to have a stronger influence on the device’s
validity. In contrast to our findings, Wundersitz and colleagues [14] did not find any explicit differences
between a double legged jump and other sport-related movement patterns performed within a team
sport-specific circuit. However, as the jump was not performed as an isolated task, lower absolute
values than our study can be expected. Instead, a tackling motion performed at the end of the circuit
seems to be more comparable to our jumping task as both movements represent a single short bout of
maximum intensity. The results of both studies indicate that IMUs can be applied to quantify complex
movement tasks but have difficulties when accurately measuring rapid movements (<1 s) performed
at highest intensities.

Team sports not only have specific movement patterns, but also require a certain amount of
ball handling using either the lower or upper limbs. Indoor sports such as basketball, handball,
or volleyball are typically restricted to handed ball contact, which likely induces a certain amount of
acceleration due to a transfer of arm motion to the upper body. This might affect the device’s concurrent
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validity. However, according to our results, accuracy was not impaired by ball handling. It should be
noted that this study did not evaluate the ability of the IMU to correctly measure upper body motion.
In an extensive experiment, a tri-axial accelerometer did not serve as a valid representation of the
thoracic segment with respect to vertical acceleration [33]. An exact alignment between local and global
coordinate systems has not been possible. Thus, the validity of tracking devices remains inconclusive.
Further research should focus on the validity of upper body-mounted devices and consider possible
influences such as ball handling.

4.3. Limitations

As a limitation of this study, the proposed CF algorithm was only able to correct the tracking
device’s attitude with respect to the global coordinate system and could not calculate the device’s
heading. This hinders the alignment between local and global x- and y-axes and forces the calculation of
horizontal movement proportions by the resultant horizontal acceleration. The respective x- and y-axes
cannot be quantified. The direction of movement remains unclear and thereby hinders discrimination
of acceleration and deceleration on the horizontal axes. In outdoor environments, magnetometer data
can be used to estimate the devices’ heading, however, when indoors, metal or electric constructions
induce ferromagnetic disturbances that distort magnetometer readings. Even though intense research
in indoor navigation has highlighted this problem, it remains unresolved. Promising approaches
include creating specific magnetic maps and/or landmarks to determine a device’s absolute position
and orientation [34,35]. However, these techniques have not yet been tested in sport-specific settings.

As the MA system records displacement data rather than acceleration itself, a certain amount
of high-frequency noise must be accounted for during numerical differentiation of positional MA
data. Even though appropriate filtering algorithms partially dampen these errors, an influence on the
criterion data cannot be excluded. Still, MA system data serve as an accepted criterion for validation of
acceleration estimates in player monitoring systems [14,36].

5. Conclusions

Given the results of this study, wearable tracking devices containing an IMU can be used for indoor
player monitoring with acceptable validity to determine magnitudes of acceleration during team
sport-specific movements. Researchers and practitioners should be well aware of internal and external
factors affecting the device’s validity. In particular, the choice of sensor fusion possibly influenced
the IMU’s accuracy. Overall, the implemented CF algorithm showed superior accuracy over the
manufacturer-dependent KF due to its faster convergence. According to our results, a resampled 5 Hz
resolution showed the strongest relationship between CF and MA data, but still met the requirements
of Nyquist–Shannon’s sampling theorem. Caution must be given to the impaired accuracy in the
horizontal plane. While the CF data in the 5 Hz resolution can be seen as valid, KF accuracy should be
seen critically, especially for higher intensities. Regarding external factors, movement intensity showed
the highest impact on device accuracy with substantially larger errors found for higher acceleration
bands. In contrast, movement task and ball possession did not considerably affect the device’s validity.
For researchers and practitioners to rely on the device’s data, they should be aware of the implemented
data processing methods as well as the underlying hardware.

Overall, our results legitimize the use of IMUs for accurate measurement of players’ workloads
in team sports under the premise of adequate data processing. The manufacturer-independent
implementation of a CF with a resampled temporal resolution of 5 Hz is recommended since it enables
the accurate quantification of movement in vertical and three-dimensional acceleration efforts. Further,
this study proposes and validates an approach of raw data treatment, which allows controlled and
transparent processing, long-term data collection, and avoids inaccuracies due to software updates.
This broadens the content of information given in acceleration-based activity profiles and leads to
a deeper understanding of true physical demands in indoor team sports.
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