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Abstract: Online recognition of surgical phases is essential to 
develop systems able to effectively conceive the workflow and 
provide relevant information to surgical staff during surgical 
procedures. These systems, known as context-aware system 
(CAS), are designed to assist surgeons, improve scheduling 
efficiency of operating rooms (ORs) and surgical team and 
promote a comprehensive perception and awareness of the 
OR. State-of-the-art studies for recognizing surgical phases 
have made use of data from different sources such as videos or 
binary usage signals from surgical tools. In this work, we 
propose a deep learning pipeline, namely a convolutional 
neural network (CNN) and a nonlinear autoregressive network 
with exogenous inputs (NARX), designed to predict surgical 
phases from laparoscopic videos. A convolutional neural 
network (CNN) is used to perform the tool classification task 
by automatically learning visual features from laparoscopic 
videos. The output of the CNN, which represents binary usage 
signals of surgical tools, is provided to a NARX neural 
network that performs a multistep-ahead predictions of 
surgical phases. Surgical phase prediction performance of the 
proposed pipeline was evaluated on a dataset of 80 
cholecystectomy videos (Cholec80 dataset). Results show that 
the NARX model provides a good modelling of the temporal 
dependencies between surgical phases. However, more input 
signals are needed to improve the recognition accuracy. 
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1 Introduction 

With the rising number of medical devices and complexity of 
technology in operating rooms (OR), intelligent systems are 
strongly required to be adopted in the surgical environment to 
compensate the complexity of surgical workflow and streams 
of data coming from medical devices. The potential 
applications of such intelligent systems, known as context-
aware systems (CASs), are to provide the surgical team with 
contextual-awareness of the current situation, to support 
decision-making and to optimize OR management. Modelling 
surgical procedures is a key motivation of CASs and is an 
essential step for developing intelligent technologies that can 
provide assistance to the surgical team in future ORs. 

Many works have been done in this area to establish 
automatic recognition of surgical phases. In this context, state-
of-the-art studies have made use of data from different sources 
inside the OR such as videos [1-3], dedicated sensors [4], or 
binary tool signals [5,6]. Furthermore, various approaches 
have been introduced to carry out the recognition of the 
surgical workflow. Indeed, the majority of previous work 
focused on using visual features (i.e. video data) or tool binary 
signals.  In visual-based methods, visual features are either 
handcrafted [1] or automatically learned by convolutional 
neural networks (CNNs) [2,3]. While tool binary signals are 
provided into a machine learning method like Hidden Markov 
Model (HMM) [5,6] or Dynamic Time Warping (DTW) [6] to 
recognize a particular phase from these signals. However, 
these binary signals are generally obtained via manual 
annotation of laparoscopic videos or by installing additional 
sensors. 

In this paper, we present a method that combines a CNN 
with a nonlinear autoregressive network with exogenous 
inputs (NARX) to perform the phase recognition task. The 
CNN model was used to perform tool classification by 
automatically learning visual features from laparoscopic 
videos. The tool usage signals generated by the CNN were 
then provided as input to the NARX neural network for 
performing a multistep-ahead prediction of the surgical phases 
of cholecystectomy procedures. The proposed method was 
finally evaluated on a dataset of 80 cholecystectomy videos. 
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2 Method 

This study relies on formulating the problem of classifying 
surgical phase as a multistep-ahead prediction task using a 
dynamic neural network (i.e. NARX neural network). The 
methodology followed to carry out this work is shown in 
Figure 1. The first step was selecting an efficient NARX neural 
network architecture based on several trials and using manual 
annotations of tool binary signals. Then, a CNN was trained to 
detect the tool presence in laparoscopic images. Once the CNN 
was trained, the tool presence probabilities obtained by the 
CNN were passed to the NARX neural network to predict the 
surgical phases. 

2.1 Data 

A dataset of 80 cholecystectomy procedures (cholec80 dataset 
[2]) was used for evaluation. This dataset contains videos with 
corresponding manual annotation of surgical phase and tool 
presence. Seven phases were defined, and seven surgical tools 
were used in this dataset. 

2.2 NARX Neural Network 

2.2.1 Data preparation 

The first seventy surgeries were used for training the network 
while the left ten procedures were used for evaluating the 
network performance. Input signals were formatted as 7x1 
vectors representing the tool binary signals, and targets were 
represented by the phase number and matched to the 

corresponding input at each time step. Both input signals and 
targets were normalized to the range [-1, +1]. 

2.2.2 Network architecture 

A pilot study was conducted to select the optimal network 
architecture. A two-layer network (i.e. one hidden layer and 
one output layer) was chosen to perform phase prediction. The 
hidden layer size was initially set to ten neurons. In addition, 
the tapped delay lines (TDLs) for both inputs and outputs were 
set to one.  

Several trials were conducted for seeking the optimal 
number of hidden neurons and TDL lengths by analysing 
network performance. First, the TDLs were kept to one, and 
the network was retrained with different number of hidden 
neurons. By comparing the following metrics: effective 
number of parameters, sum of squared errors and sum of 
squared parameters, the number of hidden neurons was finally 
set to twelve. Second, the network with twelve hidden neurons 
was retrained against various TDL lengths, and the optimal 
length was similarly determined by investigating these 
metrics: autocorrelation, cross-correlation and sum squared 
errors. Consequently, the NARX network with twelve hidden 
neurons and three TDL length was selected as a final 
architecture (see Figure 2). 

2.2.3 Network training 

The NARX neural network was trained using the series-
parallel architecture where the true targets (i.e. phases from 
annotations) are provided into the network instead of feeding 
back the estimated phases. 

The Gauss-Newton approximation to the Bayesian 
Regularization algorithm [9] was used to train the network. 
The objective function is represented by: 

 
𝑭 = 𝜷𝑬𝑫 + 𝜶𝑬𝑾 (1) 

Figure 1: The full pipeline of the proposed method 

Figure 2: NARX network training architecture 
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Where 𝑬𝑫 and 𝑬𝑾 represent the sum squared error and the 
sum of squares of the network parameters respectively, and 𝜷 and 
𝜶 are objective function parameters. 

2.3 CNN model 

Based on our work [7], the pre-trained model Alexnet [8] was 
retrained to perform the tool classification task based on the 
method proposed in [7]. The first 40 videos were used for 
training, and the left 40 videos were used for testing the CNN. 

The trained CNN model was then employed to extract tool 
presence probabilities from the entire dataset. These 
probabilities were then provided into the NARX neural 
network to perform phase prediction. 

3 Result 

Due to random initialization of network weights, ten networks 
were trained, and the network with best performance was used 
to release final results. Tables 1 and 2 show the accuracy and 
precision of the NARX neural network when binary signals 
from manual annotation were fed to the network to perform 
phase prediction. 

Table 1: Prediction accuracy (%) of the validation set using tool 
binary signals obtained by manual annotation 

OP P1 P2 P3 P4 P5 P6 P7 

71 100 99.7 52.4 0 8.4 NaN 100 

72 42.5 95.2 50.4 87.1 97.4 79.7 100 

73 100 99.5 57.6 57.8 31.9 57.1 0 

74 100 100 72.0 86.8 74.5 0 0 

75 100 98.8 35.7 81.2 52.8 NaN 0 

76 59.2 73.9 28.6 100 69.5 90.6 48.3 

77 100 99.8 69.0 99.6 72.6 59.2 100 

78 100 97.5 43.7 0 31.0 0 0 

79 100 97.7 65.6 98.6 69.6 0 56.5 

80 100 99.7 68.1 82.1 41.3 0 0 

 
Tables 3 and 4 show accuracies and average precisions of 

the seven surgical phases defined in the dataset. The phase 
prediction result of surgery 77 (best video) are shown in Figure 
3. 

Table 2: Precision of surgical phases, average precision and 
average accuracy (%) of the validation set using tool binary signals 
obtained by manual annotation 

 Precision Av. 
Prec. 

Av. 
Acc. 

 P1 P2 P3 P4 P5 P6 P7 

Mean 96.2 82.5 32.9 70.9 58.0 39.8 81.3 65.9 78.9 

Std 3.1 16.5 33.2 38.5 41.9 48.8 17.9 16.2 12.3 

 

Table 3: Prediction accuracy (%) of the validation set using tool 
probabilities obtained by the CNN 

OP P1 P2 P3 P4 P5 P6 P7 

71 93.9 100 13.1 73.0 21.5 NaN 100 

72 50.7 82.2 86.7 66.7 91.0 91.4 100 

73 100 78.8 100 66.8 25.5 0 0 

74 91.6 100 0 20.0 87.2 0 0 

75 78.1 100 0 70.3 69.5 NaN 0 

76 88.8 77.8 0 91.0 100 92.7 100 

77 61.2 100 0 60.5 93.1 80.6 100 

78 100 95.8 0 0 7.9 0 0 

79 100 99.2 50.7 82.3 48.0 0 52.3 

80 77.7 100 0 0 0 0 0 

  

Figure 3: Predicted phases against ground truth of surgery 77. 
Top figure shows predictions when tool manual annotations 
were used, bottom figure shows results of the CNN and 
NARX combination 
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Table 4: Precision of surgical phases, average precision and 
average accuracy (%) of the validation set using tool probabilities 
obtained by the CNN 

Precision Av. 
Prec. 

Av. 
Acc. 

P1 P2 P3 P4 P5 P6 P7 

Mean 95.3 82.5 11.7 70.6 40.1 37.2 69.2 58.1 69.3 

Std 8.4 14.8 18.7 39.0 39.7 50.3 32.2 29.3 13.1 

4 Discussion 

In this work, we tested our hypothesis that NARX neural 
network can learn tool presence patterns in surgical phases and 
model temporal dependencies between them. Therefore, the 
NARX neural network was firstly evaluated on tool binary 
signals obtained by manual annotation of laparoscopic videos. 
Then, a convolutional neural network was employed to 
automatically generate tool usage signals from videos and 
combined with the NARX model. 

Prediction accuracies vary for the different surgeries, 
where they are high for some procedures like surgeries 72 and 
77 and low for others like surgery 78 (see Table 1). More 
precisely, it can be noticed from Table 1 and Table 2 that 
prediction accuracies of phases 1 and 2 for almost all surgeries 
are above 95%, and their average precisions are 96% and 82% 
respectively. In contrast, the NARX seems to have difficulties 
in predicting the phases 3, 6 and 7. Similarly, the prediction 
accuracies of phase 5 changes between 8% and 97%, that 
indicates the NARX is not able to precisely predict this phase 
for all surgeries. 

After combining the NARX with the CNN model, 
accuracies and precisions for all phases generally decreased. 
Yet, phases 1 and 2 are still precisely predicted with average 
precision 95% and 82% relatively. As expected, Prediction 
accuracy and precision for phase 3 decreased since the CNN 
model exhibits low ability to identify tools that appear in phase 
3 (i.e. scissor and clipper) [7]. Additionally, phases 6 and 7 are 
still either precisely predicted or not predicted at all. To sum 
up, average accuracy and precision after combining NARX 
with CNN are 69% and 58% respectively compared to 79% 
and 66% using manual annotations. 

A limitation of the study was that the CNN-NARX was 
not evaluated with different splitting of training and testing 
sets because training the CNN is a time consuming process. In 
summary, the obtained prediction accuracy shows that using 

NARX neural network for modelling surgical phases is 
promising. Nevertheless, tool presence signals alone seem to 
be not sufficient to obtain perfect performance, and thus 
additional signals need to be provided to the NARX network. 
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