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The increasing interest in assessing physical demands in team sports has led to the

development of multiple sports related monitoring systems. Due to technical limitations,

these systems primarily could be applied to outdoor sports, whereas an equivalent

indoor locomotion analysis is not established yet. Technological development of inertial

measurement units (IMU) broadens the possibilities for player monitoring and enables the

quantification of locomotor movements in indoor environments. The aim of the current

study was to validate an IMU measuring by determining average and peak human

acceleration under indoor conditions in team sport specific movements. Data of a single

wearable tracking device including an IMU (Optimeye S5, Catapult Sports, Melbourne,

Australia) were compared to the results of a 3D motion analysis (MA) system (Vicon

Motion Systems, Oxford, UK) during selected standardized movement simulations in

an indoor laboratory (n = 56). A low-pass filtering method for gravity correction (LF)

and two sensor fusion algorithms for orientation estimation [Complementary Filter (CF),

Kalman-Filter (KF)] were implemented and compared with MA system data. Significant

differences (p < 0.05) were found between LF and MA data but not between sensor

fusion algorithms and MA. Higher precision and lower relative errors were found for CF

(RMSE = 0.05; CV = 2.6%) and KF (RMSE = 0.15; CV = 3.8%) both compared to

the LF method (RMSE = 1.14; CV = 47.6%) regarding the magnitude of the resulting

vector and strongly emphasize the implementation of orientation estimation to accurately

describe human acceleration. Comparing both sensor fusion algorithms, CF revealed

slightly lower errors than KF and additionally provided valuable information about positive

and negative acceleration values in all three movement planes with moderate to good

validity (CV = 3.9 – 17.8%). Compared to x- and y-axis superior results were found for

the z-axis. These findings demonstrate that IMU-based wearable tracking devices can
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successfully be applied for athlete monitoring in indoor team sports and provide potential

to accurately quantify accelerations and decelerations in all three orthogonal axes with

acceptable validity. An increase in accuracy taking magnetometers in account should be

specifically pursued by future research.

Keywords: locomotion analysis, orientation estimation, inertial measurement unit, complementary filter, physical

demands, indoor team sports

INTRODUCTION

Knowledge about physical demands in team sports has become
increasingly important to optimize training programs, to
enhance physical performance and to prevent injuries (Fox
et al., 2017; Vanrenterghem et al., 2017). Several monitoring
systems have been developed to simultaneously quantify multiple
players’ position, velocity and acceleration during sport specific
locomotion (Chambers et al., 2015; Li et al., 2016). In order
to rely on a monitoring system’s output for player monitoring,
data should be both valid and reliable. It is important to note
that high consistency in measurements of a system indicates
its ability to determine evident and meaningful changes in an
athlete’s performance. The amount of error caused by high
variability within or between monitoring tools as well as the
agreement between measured and true values should therefore
always be taken into account when performance is assessed
and evaluated. Especially, GPS-based systems have recently been
evaluated as applicable monitoring tools and are commonly
applied in outdoor sports (Cummins et al., 2013; Johnston
et al., 2014). Reduced signal quality, however, disables their
usage in indoor environments. Alternatively, indoor monitoring
systems have been developed and can be subdivided into
vision-based or microtechnological systems. Although vision-
based motion analysis is widely applied for player monitoring,
findings about validity and reliability are inconsistent due to the
multitude of existing systems and their dependency uponmanual
intervention, quality of video footage or camera positioning
(Duthie et al., 2005; Barris and Button, 2008). Permanently
installed microtechnological local positioning systems are able to
overcome these problems showing high values of reliability (CV
< 2%) and validity with reported typical errors of 1.2-9.3% for
distance, speed and acceleration (Leser et al., 2014; Rhodes et al.,
2014; Serpiello et al., 2017). However, mentionable errors were
found for mean and peak deceleration (TEmean = 84%, TEpeak =
20%) as well as a decrease of accuracy for actions at the side of the
court (Serpiello et al., 2017). Furthermore, high costs and local
restrictions due to their fixed installation limit the application
of local positioning systems (Hedley et al., 2010; Stevens et al.,
2014). Lately, the technological development of inexpensive and
portable Micro Electro Mechanical Systems (MEMS) enabled
possibilities of quantifying physical loads with a robust method
even during games or training sessions in different sports
facilities. Most sport specific tracking devices nowadays include
a 9 degree of freedom triaxial inertial measurement unit (IMU)
containing an accelerometer, gyroscope and magnetometer
within a GPS tracking device. Applied in indoor environments
these devices enable sampling of acceleration-based data in

high resolution during sporting activities without the support
from GPS-signals. Extracting sports relevant data from the
sensor’s signals indoors without the aid of external references
is complicated due to multiple sources of noise, mainly by
earth’s gravity acceleration. Several approaches were proposed
therefore to estimate the tracking device’s orientation with
respect to the earth’s coordinate system, e.g., sensor fusion
algorithms without GPS (Madgwick et al., 2011; Sabatini, 2011a;
Valenti et al., 2015). Such algorithms commonly combine
accelerometer and gyroscope signals to compute the device’s
attitude (pitch and roll angles) relative to the direction of
gravity. Including magnetometer readings into the algorithm
enables the computation of the sensor’s heading, meaning
its deviation from magnetic north. Highly dynamic changes
of the device’s orientation as they frequently occur during
sporting activities challenge an algorithm’s accuracy. As accepted
standard, stochastic Kalman-Filter-based techniques (KF) are
commonly applied as effective tool in human motion analysis
(Sabatini et al., 2006; Sabatini, 2011a), giving a probabilistic
determination of modeled state estimations with the goal of
minimizing errors from the true value. Due to multiple tuning
parameters their main advantage lies in a high accuracy and a
broad field of applications exceeding the purpose of orientation
estimation. Complementary Filters (CF) serve as frequency-
based equal alternative because of their algorithmic simplicity,
effective performance and less difficult implementation process.
Due to the dependency upon the single sensors’ frequency
characteristics the potential applications of CF are restricted,
but provide equal and accurate results for orientation estimation
(Madgwick et al., 2011; Tian et al., 2013; Valenti et al., 2015).
Quantitatively, the time required for necessary linear regression
iterations in KFs results in a slower convergence compared
to CFs (Ricci et al., 2016). Considering the high frequency
of movement changes observed in court-based team sports
(Abdelkrim et al., 2007; Luteberget and Spencer, 2017) leading
to consequently frequent changes of the device’s orientation,
the immediate convergence that was found for CFs might
serve as appropriate foundation to provide accurate orientation
estimation in indoor team sports. Although, CFs have not
been evaluated thoroughly especially if compared to KF-based
techniques for sport specific purposes, their effectiveness has
already been proven for the analysis of human movements
(Bachmann et al., 2001; Tian and Tan, 2012; Tian et al., 2013).
Validity of a commercially available IMU-based monitoring
system that relies on KF-techniques have been proven regarding
the magnitude of the resulting acceleration vector or the
instantaneous rate of change of acceleration (Wundersitz et al.,
2013, 2015a,b). Based on those parameters activity profiles and
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quantification of loads during games and training have been
proposed for indoor team sports (Montgomery et al., 2010;
Schelling and Torres, 2016; Luteberget and Spencer, 2017). More
elaborated discriminant analysis, however, is lacking because
continuous information about gravity-corrected accelerations in
the global anterior-posterior, lateral and vertical directions are
typically not provided by manufacturers. Exact coordinates of
the resulting vector with respect to the earth’s coordinate system,
however, would be desirable for profound game analyses, as
they are already standard in outdoor team sports, leading to a
deeper understanding of physical and underlying physiological
demands. Recently a new approach has been proposed describing
the relation between power output and time duration of
movement as a general function for GPS-based analyses of soccer
games (Roecker et al., 2017). The function is independent of
arbitrary or experience-based intensity thresholds which offers
apparently the transfer to acceleration-dominant indoor-sport
analyses with the use of IMUs and appropriate sensor fusioning.
Added value could be provided through additional information
regarding the amount and intensity of acceleration components
in the global x-, y- and z-direction as well as distinction between
positive and negative acceleration. On this basis, interpretation of
individual locomotion might be beneficial for individualization
of training programs, supervision of rehabilitation processes or
control of each player’s injury risk.

The aim of the current study was to compare the concurrent
validity of a recently published CF algorithm with a KF, provided
by the sensor’s manufacturer and a low-pass filtering method
applied to IMU signals to obtain average and peak acceleration
values in all movement planes. Data recorded from an IMU-
based tracking device during simulated team sport specific
movements is set against a 3D motion capture system.

MATERIALS AND METHODS

Preliminary Investigation
In order to use IMUs for the purpose of orientation estimation,
data output should be not only valid but also reliable. A number
of studies already evaluated the tracking device that has been
used in this study (Optimeye S5, Catapult Sports, Melbourne,
Australia) regarding the accelerometer’s intra- and inter-device
variability under laboratory but also field conditions in handball,
ice hockey and Australian football (Boyd et al., 2011; Luteberget
et al., 2017; van Iterson et al., 2017). Coefficient of variation (CV)
values well below the according smallest worthwhile difference
were found during dynamic, mechanical motion (CVinter <

1.04%; CVintra < 1.05%) and sporting activities performed by
subjects in the laboratory (CVinter < 6.7%) or field (CVinter

< 2.1%; CVintra <26.6%). While these results indicate a good
within- as well as between-device reliability of accelerometers,
evidence regarding the gyroscope’s reliability is missing. As
the gyroscope’s data output is critical for accurate orientation
estimation, we evaluated within- and between-device reliability
using a platform rotating at constant angular velocity of 199◦/s
and 270◦/s respectively. A device mounted on the platform was
rotated around either its x-, y-, or z-axis. 10 consecutive trials of
30 s rotation were recorded in each axis for overall 8 devices at

both 199◦/s and 270◦/s. Between trials the turntable was standing
still for 30 s. In both conditions a CV<1% was found for mean
and peak angular velocity within as well as between devices,
indicating an excellent reliability of the gyroscope. Overall,
both accelerometer and gyroscope contained within the tracking
device show low intra- and inter-device variability, indicating
sufficient reliability of the underlying technology. As the output
of the single inertial sensors can be equated with the sensor fusion
algorithms’ input, the applied tracking device can be stated to be
reliable enough for further validation research.

Procedure
Data of a single wearable tracking device including an IMU
with a sampling frequency of 100Hz (Optimeye S5, Catapult
Sports,Melbourne, Australia) was compared to the results of a 3D
motion analysis (MA) system operating at 200Hz (ViconMotion
Systems, Oxford, UK) during several standardized movement
simulations in an indoor laboratory.

To eliminate unintentional artifacts, the device was clamped
into a stiff wooden frame that was adapted to the dimensions of
the device. The investigator manually moved the frame according
to predefinedmovement simulations inside the capturing volume
of the MA system. The simulations were chosen to imitate
orientations and changes of orientation as they would equally
occur during team sport specific movements. Constant mono-
or multi-planar motion of the investigator was combined with
different orientations of the device including rotations around
x-, y-, and z-axis between or during each trial (Table 1). Prior
and after each trial, the frame was stroked against the ground
to evoke a trigger signal for synchronization of the IMU and the
MA system. Each of the 28movement simulations was performed
and recorded two times within one recording session. The device
has not been turned on and off between trials to simulate long-
term usage as it would also appear during training sessions or
games. Calibration has been performed by the manufacturer and
was therefore not repeated manually prior to recording.

Three retro-reflective markers (Ø 14mm) were attached to
the edges of the rectangular wooden frame to capture the
device’s local coordinate system (LCS) optically and to calculate
a single virtual marker at the estimated position of the IMU’s
sensor position within the dimensions of the tracking device.
Calculation of the virtual marker was done with a custom written
script (Bodybuilder, Vicon Motion Systems, Oxford, UK). These
virtual marker’s trajectories were used for further analysis.

For the purpose of our study, ethical approval and written
informed consent were not mandatory since it neither contained
human subject research nor recruitment of human subjects,
physical or psychological interventions or clinical research
practices. Movements of the IMU in the laboratory were
performed by the investigator, being well aware of the executed
simulation movements. At no point of data collection any risks
concerning the investigators physical or psychological health
were apparent.

Data Processing
Raw data for both the MA system and the IMU were
exported to Microsoft Excel (Microsoft Excel 2013, Version 15.0,
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Redmond, USA) through the according manufacturer-supplied
software (Nexus 2, Vicon Motion Systems, Oxford, UK; Sprint
5.1.7, Catapult Sports, Melbourne, Australia).

After frequency-reduction of the MA system data to 100Hz
(Biomechanics Toolbar Version 1.02, Liverpool John Moores
University, UK) a fourth order, zero-lag, low-pass digital
Butterworth-Filter was applied to reduce noise from the x, y
and z positional data. According to a residual analysis (Winter,
2009) an optimal cut-off frequency of 5Hz was chosen. Due to
a standard deviation (SD) <1.0Hz between all trials the same
cut-off frequency was applied to all trials. To exclude phase-shift
dual pass filtering and a correction of the cut-off frequency to
6.23Hz was applied (Winter, 2009). Acceleration values (m∗s−2)
in all three orthogonal planes were calculated through double
numerical differentiation of the smoothed data. Data of the
accelerometer (g) were converted to m∗s−2 and data of the x
and y-axes inverted once due to the tracking device’s orientation
within the wooden frame.

Low-Pass Filter (LF)
As first option to separate gravity from the sensor’s readings a
traditional method for gravity correction was applied. Relying
on the assumption that gravitational signals only contain
low-frequency components body-induced and gravity-induced
accelerations can be separated (Bartlett, 2013; Mönks, 2017).
Through low-pass filtering (LF) the acceleration data in each
axis with a cut-off frequency of 0.3Hz (Butterworth 4th order),
the constant earth’s gravity vector was extracted and afterwards
subtracted from original acceleration values. The resulting signal
was smoothed (Butterworth 4th order) using a cut-off frequency
of 5Hz (6.23Hz corrected) for all trials (SD < 1.0Hz) after
visual inspection of residual analysis outputs (Winter, 2009) and
smallest mean bias to MA reference data.

Complementary Filter (CF)
As second option a sensor fusion algorithm (CF) that was
originally developed to navigate unmanned aerial vehicles
(Valenti et al., 2015) was implemented and adapted to human
motion. These algorithms determine the orientation of the
tracking device’s LCS with respect to the global coordinate system
(GCS) using a quaternion based approach. The applied CF has
been developed to estimate the device’s absolute orientation
in two consecutive steps. In the first step, accelerometer and
gyroscope data are used to correct the LCS for tilt. Through low-
pass filtering the accelerometer signal and high-pass filtering the
integrated gyroscope readings with the same cut-off frequency
the complementary filter creates “complement” signals that are
fused together to estimate the sensor’s orientation. The resulting
intermediate coordinate system with x- and y- axes being planar
to the GCS represents the computed attitude estimation as
relative orientation. The algorithm enables the estimation of
an absolute orientation in a second step by correcting the
intermediate coordinate system’s yaw angle. This second step is
only performed if magnetometer data are included in calculations
and results in a GCS with the positive x-axis always pointing
toward magnetic north (Figure 1).

To compare inertial data with the MA system, only the
first step of the proposed CF was implemented to calculate the

device’s relative orientation as the MA system’s x-axis has not
been aligned to magnetic north during calibration. The cut-off
frequency for the accelerometer data is constantly characterized
using an adaptive gain algorithm within the CF. An initial
filtering gain of 0.0072 was chosen, which is based on another
CF that has been applied in human motion analysis (Tian et al.,
2013). Accelerometer readings were converted to m∗s−2 and
multiplied with the quaternion of attitude estimation to rotate
x-, y-, and z-vectors into the intermediate coordinate system.
Constant gravitational acceleration was removed by subtracting
9.81 m∗s−2 of the intermediate z-vector. All calculations were
performed using routines written in C++ (compiled and edited
with Microsoft Visual C++ 2017, Redmond, USA). Resulting
acceleration vectors were then low-pass filtered (4th order
Butterworth) with a cut-off frequency of 5Hz (6.23Hz corrected;
SD < 1.0Hz). The cut-off frequency has been determined
due to the lowest mean bias between CF data filtered at cut-
off frequencies from 4 to 10Hz and the MA system. Due to
the tracking device’s orientation within the wooden frame the
resulting acceleration values in x- and y-axes had to be inverted
once.

Kalman-Filter (KF)
As current standard for sensor fusion, a Kalman-Filter (KF)
has not been implemented explicitly since it is provided by
the manufacturer’s software (Sprint 5.1.7, Catapult Sports,
Melbourne, Australia). The manufacturer’s results were chosen
since they have previously been validated and are known to be
designed specifically for sport specific environments (Wundersitz
et al., 2013, 2015b). The manufacturer’s software provides one
continuous Kalman-filtered parameter, which is the magnitude
of the resultant vector representing the combined effects of x-,
y- and z-vectors corrected for gravity. This variable has been
exported to Microsoft Excel for further analysis and was low-pass
filtered for reducing unwanted noise (4th order Butterworth).
8Hz (9.97Hz corrected) has been chosen as cut-off frequency for
all trials after residual analysis (SD < 1.0Hz) and lowest mean
bias compared to the MA system criterion. The same parameter
has been calculated for MA system data as well as for LF and CF
data.

Data Analyses
After data processing CF, KF, LF, and MA system data of
each trial were synchronized by overlaying peaks of the
triggering signals. Trigger signals were then excluded for further
analysis so that only movement sequences were included. For
each trial the average magnitude of the overall acceleration
(totalx/y/z), positive acceleration (accelerationx/y/z), and negative
acceleration (decelerationx/y/z) as well as the peak magnitude
of positive and negative acceleration values were calculated for
CF, LF, and MA system data in x-, y-, and z-axes. Average
magnitude as well as peak magnitude of the resultant vector
(resultantx/y/z) were calculated for CF, KF, LF, and MA system
data. To assess the agreement between IMU-based variables
and MA system variables mean bias, root mean square error
(RMSE; Barnston, 1992), 95% limits of agreement (Atkinson
and Nevill, 1998), Spearman’s correlation coefficient and the
percentage difference in the mean between criterion (MA)
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FIGURE 1 | Rotations performed by the CF algorithm with respect to the reference system. The coordinate system in gray represents the GCS with the x-axis pointing

toward magnetic north. (1) Represents the orientation of the IMU within the GCS. (2) Result of sensor fusing accelerometer and gyroscope data. The horizontal axes

are parallel to the earth’s surface but rotation about the z-axis is missing. Including magnetometer data to the calculations results in (3) with the x-axis of the previous

LCS being aligned with the GCS. For the aim of this study the LCS (1) has only been rotated into the intermediate coordinate system (2).

and measurement (CF, KF, LF) expressed as coefficient of
variation (CV; Hopkins, 2000) were calculated for mean and
peak acceleration values in x, y and z-axes (CF, LF, MA) as well
as average and peak magnitude of the resulting vector (CF, KF,
MA). According to previous research evaluating the relative error
of IMU-based acceleration variables a CV ≤5% was considered
as small, CV ≥5% and <20% as moderate and CV ≥20% as
large (Wundersitz et al., 2015b; Alexander et al., 2016). To
approve the acceptable use of MEMS-based sensors in the field
a CV <20% was intended (Tran et al., 2010; Wundersitz et al.,
2015a).

Statistical Analyses
All statistical analyses were performed using JMP Version 13.1.0
(SAS Instituts Inc., Cary, NC, USA). Data are presented as mean
± SD with statistical significance set at p ≤ 0.05 except otherwise
stated. Shapiro-Wilk-Tests revealed heteroscedastic data sets for
mean and peak accelerations andmagnitude variables. Therefore,
a nonparametric one-wayANOVAon ranks (Kruskal-Wallis test)
was applied to determine differences in mean and peak variables
between CF, KF, LF, and MA system data. Mann-Whitney-
U tests were additionally performed post-hoc to determine if
differences in the means of measurement systems were evident
for each variable. The α-level was adjusted to α = 0.017 after
Bonferroni-correction to compare mean and peak magnitude
acceleration values in all three axes between CF, LF and MA
data. To identify differences in mean and peak magnitude values
of the resulting vector between CF, KF, LF and MA system α-
level was set at α = 0.013 after Bonferroni-correction. Effect
sizes (r) for all performed statistical tests were calculated and
interpreted according to Cohen (1992). Bland-Altman plots for
all CF mean and peak variables against the MA system were used
to visually evaluate the CF data in all axes (Bland and Altman,
1999).

RESULTS

Regarding average acceleration, significant differences were
found between CF, LF and MA system data for totaly,
accelerationx, accelerationy and decelerationy (p < 0.05; r =

0.12 – 0.87; Table 2). Peak values showed significant differences
in accelerationx, accelerationy and decelerationy (p < 0.05, r
= 0.10 – 0.26). Post-hoc Mann-Whitney-U tests revealed, that
without orientation estimation the gravity component could not
accurately be eliminated in all three axes leading to significant
differences for totaly, mean/peak accelerationy, mean/peak
decelerationy, peak decelerationx and peak decelerationz between
LF data and MA system (p < 0.017, r = 0.39 – 0.50), whereas
no significant differences were found between CF data and MA
system. The LF and CF method significantly differed regarding
totaly, mean/peak accelerationx, mean/peak accelerationy as
well as mean/peak decelerationy (p < 0.017, r = 0.34 –
0.55).

Analysis of agreement support these findings with a high
relative error regarding mean/peak acceleration values of the
LF technique in x-, y- and z-axis (CV = 27.4 – 80.7%, RMSE
= 0.37 – 0.72 m∗s−2). LF method showed poor results also
regarding accuracy, precision, correlation coefficient and limits of
agreement (Table 2). Implementation of the proposed CF clearly
improved measurement indices when compared to the LF data
with a relative error of 8.0–15.9% for average magnitude values
and 3.9–17.9% for peak magnitude values respectively. A low
RMSE was found for mean acceleration values (RMSE = 0.04
– 0.22 m∗s−2) whereas a higher error could be determined for
peak values (RMSE = 0.23 – 0.59 m∗s−2). Bland-Altman plots
for mean acceleration values in all axes are shown in Figure 2

and indicate improved agreement of positive acceleration values
compared to deceleration. No systemic bias could be observed for
mean acceleration values as well as for peak acceleration values
(Figures 2, 3). Limits of agreement exceed when regarding peak
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TABLE 2 | Analysis of agreement between CF data respective LF data and MA system data.

Variable CF data LF data

Mean bias

± SD (m*s−2)

95% LoA

(m*s−2)

rs RMSE

(m*s−2)

CV (%) Mean bias

± SD (m*s−2)

95% LoA

(m*s−2)

rs RMSE

(m*s−2)

CV

(%)

MEAN

Totalx −0.02 ± 0.05 −0.13 to 0.09 0.98 0.06 8.0 0.09 ± 0.96 −1.80 to 1.97 0.52 0.96 75.0

Total*y −0.01 ± 0.04 −0.08 to 0.07 0.97 0.04 7.7 0.28 ± 0.74 −1.18 to 1.74 0.37 0.79 58.5

Totalz −0.02 ± 0.15 −0.32 to 0.27 0.98 0.15 9.3 −0.11 ± 0.71 −1.50 to 1.27 0.70 0.71 48.4

accx* 0.08 ± 0.15 −0.21 to 0.38 0.96 0.17 15.9 −0.18 ± 1.03 −2.20 to 1.83 0.53 1.03 77.6

accy* −0.01 ± 0.08 −0.17 to 0.15 0.96 0.08 9.7 −0.27 ± 0.78 −1.79 to 1.25 0.72 0.82 60.3

accz* −0.02 ± 0.22 −0.46 to 0.41 0.97 0.22 11.9 0.25 ± 0.81 −1.33 to 1.84 0.72 0.84 49.6

decx* −0.02 ± 0.11 −0.24 to 0.19 0.97 0.11 11.4 −0.02 ± 0.97 −1.92 to 1.89 0.45 0.96 76.8

decy* 0.04 ± 0.06 −0.07 to 0.15 0.97 0.07 9.3 −0.30 ± 0.71 −1.70 to 1.11 0.69 0.77 57.6

decz* −0.03 ± 0.14 −0.24 to 0.31 0.97 0.14 8.7 −0.03 ± 0.69 −1.39 to 1.33 0.66 0.69 47.6

PEAK

accx* 0.26 ± 0.54 −0.80 to 1.32 0.97 0.59 17.8 −1.07 ± 3.45 −7.84 to 5.71 0.66 3.59 64.8

accy* −0.08 ± 0.38 −0.83 to 0.68 0.95 0.39 15.0 −1.10 ± 2.04 −5.09 to 2.90 0.66 2.30 55.0

accz* 0.12 ± 0.36 −0.60 to 0.83 0.98 0.38 6.7 0.34 ± 1.76 −3.10 to 3.78 0.87 1.77 27.4

decx* 0.04 ± 0.45 −0.85 to 0.93 0.96 0.45 13.2 −0.50 ± 3.99 −8.32 to 7.31 0.50 3.98 80.7

decy* 0.21 ± 0.36 −0.51 to 0.92 0.95 0.42 15.6 −1.12 ± 2.03 −5.09 to 2.86 0.72 2.30 54.0

decz* −0.09 ± 0.22 −0.51 to 0.33 0.99 0.23 3.9 0.37 ± 1.24 −2.06 to 2.81 0.76 1.29 30.4

Mean and peak acceleration values are presented for overall acceleration (total), positive acceleration (acceleration), and negative acceleration (deceleration) in x-, y- and z-axis.
*Significant differences in the mean between LF and MA (p < 0.017) SD, standard deviation; 95% LoA, 95% limits of agreement; rs, Spearman’s correlation coefficient; RMSE, root
mean square error; CV, coefficient of variation.

FIGURE 2 | Bland-Altman plots showing the relationship between MA system data and CF data for average total, positive, and negative acceleration in x-, y-, and

z-axis each. Dashed lines: 95% LoA, solid line: mean bias.

Frontiers in Physiology | www.frontiersin.org 7 February 2018 | Volume 9 | Article 141

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Roell et al. Inertial Sensors for Player Monitoring

FIGURE 3 | Bland-Altman plots showing the relationship between MA system data and CF data for peak total, positive, and negative acceleration in x-, y-, and z-axis

each. Dashed lines: 95% LoA, solid line: mean bias.

acceleration values in all axes (Figure 3) but still are within an
acceptable range.

Comparison of the resulting vector’s magnitude between CF,
KF, LF, andMA system data revealed no significant differences for
average as well as peak resulting magnitude values (p < 0.013).
Although no significant differences could be found agreement
analysis indicate poor accuracy, precision, limits of agreement
and relative error of the LF method for mean and peak variables.
Analysis of agreement for the results of both orientation filters
(CF, KF) however indicate high accuracy in quantifyingmean and
peak resulting magnitude values. In contrast to the LF method
low RMSE and CV values were found for CF and KF, indicating
a high accuracy of both methods (Table 3). Thereby, slightly
smaller errors of the CF data compared to the manufacturer’s KF
in all reported parameters could be noted.

DISCUSSION

Main Findings
Aim of this study was to evaluate the concurrent validity
of two standard sensor fusion algorithms to accurately
quantify and normalize team sport specific accelerations

TABLE 3 | Analysis of agreement between KF data, LF data, CF data, and MA

system data.

Variable Mean Bias

± SD (m*s−2)

95% LoA

(m*s−2)

rs RMSE

(m*s−2)

CV (%)

MEAN

ResultantKF 0.11 ± 0.10 −0.08 to 0.30 0.99 0.15 3.8

ResultantLF 0.12 ±1.14 −2.12 to 2.35 0.61 1.14 47.6

ResultantCF 0.02 ± 0.05 −0.12 to 0.07 0.99 0.05 2.6

PEAK

ResultantKF 0.52 ± 0.66 −0.78 to 1.81 0.98 0.83 7.1

ResultantLF 0.69 ± 2.08 −3.40 to 4.77 0.77 2.18 34.0

ResultantCF 0.01 ± 0.39 −0.78 to 0.76 0.99 0.39 4.9

Mean and peak acceleration values are presented for the magnitude of the resulting
acceleration vector. *significant differences in the mean between data processing method
and criterion (MA) (p< 0.013) SD, standard deviation; 95% LoA, 95% limits of agreement;
rs, Spearman’s correlation coefficient; RMSE, root mean square error; CV, coefficient of
variation.

as well as decelerations under indoor conditions.
Furthermore, it was intended to receive information
alongside the resulting acceleration vector about positive
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and negative acceleration values in all three movement
planes.

Our findings show that after implementation of a sensor
fusion algorithm, the IMU-derived data do not substantially
differ from the motion capture system data. Analysis of
agreement indicate that the CF algorithm seems to be capable of
quantifying average acceleration magnitude (CV = 8.0 – 15.9%,
RMSE = 0.04 – 0.22 m∗s−2) and peak acceleration magnitude
(CV = 3.9 – 17.8%, RMSE = 0.23 – 0.59 m∗s−2) in x-, y-, and
z-axes within a good to moderate range. Validity could be shown
for both sensor fusion algorithms regarding the magnitude of the
resultant acceleration vector (Table 3). Although no differences
were evident between CF and KF, slight advantages of CF
were found according to analysis of agreement. Overall, MEMS-
based tracking devices seem to provide promising information
to continuously calculate human acceleration and deceleration
through the application of adequate orientation filters and
smoothing techniques evenwithout the aid of external references.

Comparison of LF, CF, and KF
Previous studies with relevance for team sports activities
have reported that raw accelerometer data show insufficient
accuracy as a measure of impacts during jumping movements
or average acceleration during high-speed running (Tran et al.,
2010; Alexander et al., 2016). The authors assumed these
discrepancies to result from a lack of gravity-compensation. As
IMU-based sensors are sensitive to all kinematic phenomena
occurring within a time and space fixed inertial frame, earth’s
constant gravity and rotation is apparent in the sensor’s reading.
While earth’s rotation with 15 degree/h compared to sensor
noise is negligible for the current issue of interest (Sabatini,
2011b; Groves, 2013), a precise separation of human-induced
accelerations and external bias, including earth’s gravity is
essential to accurately describe an athlete’s locomotion. Our
results indicate that the simple low-pass filtering to extract
gravity-induced high-frequency components does not provide
acceptable results (CVmean > 20%, RMSEmean = 0.69 – 1.03
m∗s−2; CVpeak > 20%, RMSEpeak = 1.29 – 3.98 m∗s−2).
In contrast to sensor fusion techniques the exact direction
of gravitational acceleration acting on the tracking device
stays unknown, which seems to hinder accurate distinction
between gravity and body acceleration. While the standard
low-pass filtering method might be sufficient in primarily
static environments, our results reveal serious errors when it
comes to quantifying human acceleration during sport specific
simulations including frequent orientation and movement
changes. Contrastingly, both sensor fusion algorithms resulted
in obvious improvements of accuracy and precision of the
tracking data. Regardless of the filtering technique (stochastic
vs. complementary) a high concurrent validity in measuring
the resultant’s vector magnitude was observed for mean and
peak values. These observations strongly emphasize that future
analysis must consider the orientation of the athlete in regard to
the global coordinate system via sensor fusion. The KF-parameter
provided by the manufacturer’s software has previously been
validated (Wundersitz et al., 2015a,b) during linear movements
(CV= 6.5 – 9.5%) and a team sport specific circuit that included

jumping, change of direction tasks and tackling (CV = 5.5%).
Our findings support these results, indicating good to acceptable
validity of the KF not only for quantifying peak (CV = 7.1%,
RMSE = 0.83 m∗s−2) but especially average values (CV =

3.8%, RMSE = 0.15 m∗s−2) during a variety of team sports
related movement simulations. Although both orientation filters
show good results the applied CF slightly outperformed the KF
regarding mean bias, limits of agreement, RMSE, correlation
coefficient and relative error (Table 3). Bergamini et al. (2014)
found errors in orientation estimation during locomotor trials
depending on the task and type of orientation but independent
of the type of sensor fusion. More detailed analyses under highly
controlled conditions revealed slight differences occurring from
the sensor fusion algorithm itself although the main dependency
still resulted from the performed movement (Ricci et al., 2016).
During dynamic trials with a robotic arm imitating human
movements the implemented KF indeed showed an overall better
performance but also a remarkably slower rate of convergence
during static trials. While the CF immediately adapted to stops
after a motion the KF technique required about 10 s to reach
a stable signal. As in court-based sports movement changes
occur about every 3 s (Abdelkrim et al., 2007; Luteberget and
Spencer, 2017) and likely induce pauses of short duration, a
faster rate of convergence might be beneficial in particular
to follow these intermittent changes between highly dynamic
motion and momentary stops. Since most of our trials were
short of duration (<30 s) and included temporary pauses, e.g.,
during change of direction movements, the observed advantages
of the CF could be explained by its faster adaption. However,
we did not examine the algorithm’s convergence rate directly.
Furthermore, the properties of the manufacturer’s algorithm are
unknown while the choice of tuning parameters is critical for
an algorithm’s accuracy (Ricci et al., 2016). The exact reason
for the discrepancies between the stochastic and complementary
approach can therefore not be explained completely by our work.

Analysis in Movement Planes
The proposed CF enables to overcome the restriction of
analyzing primarily the magnitude of the resulting acceleration.
Continuous discrimination in average acceleration and
deceleration can be provided with moderate to good accuracy
in all axes. For peak values, RMSE indicates a high accuracy in
vertical direction, but an increase in the magnitude of the error
for x- and y-values compared to average accelerations. Still, these
values allow a good approximation of peak values within an error
range of 0.39 – 0.59 m∗s−2 and are lower than RMSE values
found for resultant peak impacts in team sport movements
(Wundersitz et al., 2015b). However, in addition with relatively
high CV values practitioners should be aware of limited accuracy
when analyzing single maximum values in both horizontal axes.
Previous research examining the validity of MEMS-based sensors
during sporting activities applied a maximum CV of 20% as limit
for acceptable validity (Tran et al., 2010; Wundersitz et al., 2013,
2015a). Therefore, relative errors of 6.7% (accz) and 3.9% (decz)
found in this study for peak acceleration values in the z-axis
indicate good validity of the CF data. In the horizontal plane,
RMSE values generally speak for the CF’s validity and according
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relative errors could objectively be described as acceptable (CV
< 20%). However, the measures in x- and y-axes cannot be
stated to be accurate enough when quantifying especially high
peak acceleration values. Relative errors up to 17.8% (accx) could
in fact equal errors >1 m∗s−2 for high intense acceleration
efforts (>6 m∗s−2) and lead to large misinterpretations of a
player’s true performance. An internal non-orthogonality of the
tracking device’s axes could explain these findings, but is usually
prevented with the use of calibration routines (Groves, 2013).
For the purpose of this study, no calibration was performed
prior to the recording as the manufacturer recommends to
rely on the built-in calibration of the devices. More likely the
described error results from a misalignment between the x- and
y-axes of the computed intermediate frame with the reference
axes of the MA coordinate system. Since no correction of the
yaw-angle was performed deviations in the horizontal plane
of the intermediate coordinate system with respect to the MA
coordinate system could account for higher relative errors. This
hypothesis is supported by the lowest CVs and RMSEs found
for peak vertical parameters (RMSEmean = 0.23 – 0.38 m∗s−2,
CVpeak =3.9 – 6.7%) indicating a good correction of pitch and
roll angles. It is assumed to reach similar values also for x- and
y-axes if a perfect alignment of the calculated and the reference
coordinate system is accomplished. However, our results show
that the implementation of a complementary filtering technique
results in a good level of validity when determining average and
peak acceleration values in vertical direction as well as promising
precision for the horizontal plane.

Practical Applications
Although accuracy should further be improved for horizontal
and lateral direction our results suggest a successful application
for developing discriminant acceleration-based activity profiles
in indoor sports. Recent studies emphasize the importance
of accelerations during team sports for the imposed external
load on the athlete. Accelerations and decelerations are known
for higher metabolic loads (Osgnach et al., 2010) and greater
processes of muscular damage due to their eccentric loading
(Nosaka and Newton, 2002; Lakomy and Haydon, 2004). Both
could account for the decrease in acceleration efforts over time,
observed in football matches which is assumed to indicate an
increase in fatigue (Akenhead et al., 2013; Mara et al., 2017).
A greater amount of physical loads including acceleration and
deceleration based movements can be assumed for indoor court-
based sports as an increase in physical demands and acceleration
patterns has been observed with the reduction of pitch sizes
during soccer games (Hodgson et al., 2014). Although the
importance of this topic is widely accepted, only a limited
number of studies examined the proportions of accelerations
and decelerations in indoor sports (Manchado et al., 2013;
Luteberget and Spencer, 2017; Puente et al., 2017). According
information about required acceleration-based locomotion for
each sport can easily be provided to sport scientists and coaches
with the use of a complementary filtering technique, helping
them to execute well-directed player replacements, adapt training
programs, individualize recovery protocols and optimize athletic
conditioning. In contrast to assessing the resulting vectors

magnitude alone, this could lead to a deeper understanding of
players’ movements during training and competition indoors.
A promising potential of IMU’s is assumed in their ability to
quantify locomotion but also to distinguish between distinct
movement patterns. A number of studies in this relatively
new field of interest has previously evaluated the validity of
IMU-based variables, mainly PlayerLoad R© and the resultant
acceleration vector with respect to different movement patterns
(Wundersitz et al., 2015a,b). Comparing peak acceleration
values during walking, jogging and running a slight increase
of the relative error was found for running (CV = 9.3%)
compared to walking (CV = 6.5%) and jogging (CV = 7.5%)
(Wundersitz et al., 2015b). In contrast no clear differences
were observed when subjects performed 7 different team sport
movements within a circuit, where CVs ranged from 3.7 to
6.9% only (Wundersitz et al., 2015b). When comparing validity
of IMU-based accelerations during 3 different tackling tasks
no differences in accuracy were apparent between two of the
three movements (Wundersitz et al., 2015a). Overall, indications
from literature do currently not suggest any obvious differences
in validity of IMU’s based on the performed movement itself.
However, our results indicate that more detailed analysis in single
movement planes seem to be possible and thereby might lead
to according discrimination and quantification of movement
patterns using IMU’s in future by overcoming the restriction of
the resulting acceleration vector only. Still, this study focused on
the more general concurrent validity of sensor fusion algorithms
under sport specific conditions and showed the potential of the
applied complementary filtering technique to correctly estimate
sports-related orientations in principle rather than for distinct
movement patterns. Our findings therefore seem not sufficient
enough to answer this question properly but should be taken
into account for future research regarding the discrimination of
movement patterns based on IMUs’ output.

Limitations
As a limitation of the study, the previously described
misalignments between the tilt-corrected coordinate system
and the reference axes of the MA system probably have an
impact on accuracy in anterior-posterior and lateral direction,
mainly affecting the relative error. Including only accelerometer
and gyroscope data results in an orientation estimation relative
to the direction of earth’s gravity vector. Calculating absolute
orientation with respect to the court’s coordinates might be
possible with the aid of magnetometer data and calibration trials,
but further has to be validated. Ferromagnetic disturbances as
they might occur during game days due to electronic sound
systems around the court have to be considered for calculations.
A certain amount of error has to be mentioned regarding the
derivatives of MA system data, as the MA system directly
measures displacement data not acceleration itself. Numerical
differentiation of positional data can increase high-frequency
noise of the MA data. Despite the attempt to partially dampen
according inaccuracies, a potential influence on the criterion
data has to be considered (Cole et al., 2014). However, MA
system data are accepted as standard validation criterion for
multiple player monitoring systems including acceleration
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estimates (Stevens et al., 2014; Vickery et al., 2014; Wundersitz
et al., 2015a). Due to the short duration of recorded movement
simulations we could not be aware of drifting phenomena as
they might appear during longer trials. Drifting errors were not
apparent during two recorded long-duration trials of 1.5min,
however this should be proved for a larger number of samples.
When monitoring players during training or games another
source of error might arise from enhanced vibrations of the
device. For our experiments, the sensor has been fixed within a
wooden frame to reduce unintentional whippings, which could
occur when placing the sensor in a looser harness. This could
presuppose different tuning parameters of the complementary
filter as well as adaptions of the smoothing cut-off frequencies.
Other microtechnological monitoring systems like GPS-devices
showed a decrease in accuracy during short-distance or high-
acceleration movements (Akenhead et al., 2014; Johnston et al.,
2014). With a view to these findings it has to be mentioned that
validity of IMUs in quantifying acceleration and deceleration
efforts might also vary between specific movement patterns or
intensities. This has not been part of this study, since we focused
on the simulation of orientations as they might also occur
during team sport activities rather than on actual movement
performances. Therefore, our results are missing a conclusion
about the advantages or disadvantages of IMU regarding the
quantification of acceleration efforts during distinct movements.

CONCLUSION

The findings of this study show that wearable tracking devices
containing a MEMS-based sensor have a great potential to be
applied also indoors as valid tool to determine accelerations
and decelerations during of team sport specific movement
including walking, running, jumping and change of direction
simulations. The possibility to continuously analyze acceleration-
values in horizontal and vertical planes broadens the field of
player monitoring and comprehension of physical demands
in indoor court-based sports. Coaches and sports scientists
should be aware of the applied sensor fusion algorithm, its
tuning parameters, correct smoothing technique and avoid
analyzing raw accelerometer data to accurately determine

the athlete’s acceleration. Future research should aim to

increase accuracy of accelerometer-derived data with the aid
of magnetometers especially in x- and y-axes. Based on this,
emphasis should be given to develop appropriate tools to detect
an athlete’s exact orientation on the court and the direction
of performed movements in relation to the court’s coordinate
system. Discrimination between single movement patterns like
backwards and forward movements, but also lateral motions and
their proportion to each other should be investigated in future
research and help to develop distinct activity profiles. Therefore,
it would be critical to assess the validity and reliability of sensor
fusion algorithms during actual performed different movement
patterns and intensity zones. Further, numerical integration of
acceleration values enables the calculation of according velocity
which would lead to a deeper understanding of external loads
in indoor team sports. For this purpose drift, which occurs
due to the additive integration of noise within the IMU signal,
has to be eliminated by appropriate algorithms. By providing
comprehensive information about locomotion that exceed the
restriction to resulting acceleration vectors, IMUs could become
a meaningful tool for player monitoring in indoor team sports in
future.
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