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requirement for sealed face masks that limit leakage. Thus, 
the development of a smart shirt equipped with inertial 
measurement units to record the respiratory parameters of 
spontaneous breathing would be beneficial. 
Recently, specialised clothing has been developed that can 
measure certain physiological parameters. Novel, improved 
and miniaturized sensors and sensor technologies enable 
research and development of novel wearable systems [6-8]. 
However, in smart clothing the number of sensors should be 
minimized to reduce the complexity, costs, and the size of the 
measurement system.  
To determine the optimal number and position of sensors on 
the upper body, precise values of the tidal volume during 
spontaneous breathing are needed. Optoelectrical 
plethysmography OEP [9] via a motion tracking system can 
measure tidal volume during spontaneous breathing. OEP 
allows the determination of the motion of the upper and 
lower body caused by breathing efforts. Each OEP marker 
can be considered an absolute position sensor and through 
their given position data, the volume enclosed by the nodal 
points (markers) can be obtained. However, to determine the 
optimal number and position of sensors, a large number of 
candidate markers are needed. Redundant markers can be 
eliminated and the optimal combination of nodal points that 
delivers the most accurate results for the tidal volume can be 
determined. However, determining the redundant markers 
among a large set require immense computational cost. This 
study introduces an approach to reduce the computational 
cost needed to determine the optimal combination of sensors. 

2 Methods 

2.1 Measurement system 

The measurement system contained an infrared camera-based 
motion tracking system (used as an optoelectronic 
plethysmograph) and a constant-volume body 
plethysmograph [10] (Figure 1). 
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1 Introduction 

Different approaches are available to monitor spontaneous 
breathing [1, 2], but in daily practice it is usually monitored 
via spirometry or body plethysmography [3-5]. However, 
these methods have some disadvantages such as the 
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The motion tracking-system (Bonita, VICON, Denver, CO) 
had 9 infrared cameras (VICON Bonita B10, Firmware 
Version 404) and operated with a sampling frequency of 100 
Hz. With help of the VICON Nexus Software (Version 
1.8.5.6 1009h, Vicon Motion Systems Ltd.) the data were 
processed and transferred to MATLAB (R2017a, The 
MathWorks, Natick, USA) for further processing. 
 

 
Figure 1: measurement system  

The data sampling frequency of the body plethysmograph 
(PowerCube® Body+, Ganshorn Medizin Electronic, 
Germany) was 200 Hz for flow and mouth pressure and 400 
Hz for the cabin pressure. To record flow and pressure data 
the LF8 software (Version 8.5M RC25r7071, Ganshorn 
Medizin Electronic GmbH) was used. Via the serial port the 
raw data were monitored. 
64 motion tracking markers were attached to a compression 
shirt (size S) (Figure 2). 32 markers ventral, 6 markers 
lateral and 26 markers were placed dorsal in 5 different 
transverse planes in different heights.  
 

   
 
Figure 2: compression shirt with motion tracking markers (front 
view (left) and back view (right)) 

2.2 Data 

Two male and one female volunteers were wearing the 
compression shirt while they did some normal breathing, 
deeper breathing, shallow breathing and three maximal 
breaths inside the body plethysmograph. 

2.3 Data processing 

The combinatorics indicate that the number n of all 
combinations of 64 sensors is 

n = 264 ≈ 1.8∙1019 

and all combinations of i sensors in a group of 64 sensors is 

   
    

Hence, the computational cost to analyse all sensor 
placement combinations is enormous. Anatomical constraints 
imply that 5 sensors along the spine had to be considered 
essential. In each set of sensors, these 5 sensors should be 
included to be able to eliminate noise from the respiratory 
signal due to movements of the upper body that are not 
related to respiration. Hence, the set of candidate position 
locations could be reduced to 64-5=59. Hence, the number of 
all combinations of 59 sensors is n1=5.76∙1017 and the 
number of all combinations of i sensors is 

   
      

Thus, the number of combinations of 3 sensors was 

   
              

2.4 Hierarchical reduction  

Of 32,509 combinations of a set of i=3 sensors, only the best 
m combinations, which provide the smallest mean error for 
the tidal volume, were taken into account for further 
processing. The alphaShape function of MATLAB with an 
alphaRadius of 250 was used to obtain the volume Vmodel, 
based on the data points of the motion tracking system. The 
volume data Vbody and Vmodel were utilized to determine the 
tidal volumes VT,body and VT,model. 

Error = VT,body – k1∙(VT,model – k2) (1) 

where: VT,body is the tidal volume obtained by the body 
plethysmograph, VT,model the tidal volume obtained by the 
motion tracking system and k1 and k2 are correction 
parameters. 
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Afterwards, one sensor after another from the remaining 
sensor-set of (64-5-3=56) sensors was temporary added to the 
chosen 5+3 sensors. This was iterated for all sets of i sensors. 
For each new combination of i+1 sensors, the tidal volume 
estimation error was calculated and only the best m 
combinations were taken for further calculation. Thus, the 
calculation costs were reduced enormously to n2. 
 

n2 = 32,509 + m∙56 + m∙55 +…+ m 

    = 32,509 + m     
    

    = 32,509 + m∙1596 

Setting m to 1000, which means only the best 1000 sensor 
combinations for each i sensors are taken for further 
processing, the number of calculations were reduced from 
n1=5.76∙1017 to n2=1,628,509.  
To evaluate the hierarchical calculation, we trimmed the 
sensor-set down to 28 sensors, according to anatomical 
constraints, where again the 5 mentioned sensors (along the 
spine) were indispensable and all 8,388,608 combinations of 
the remaining 23 sensors were analysed. Consequently, the 
computational costs were manageable, and the results could 
be compared with the hierarchical approach.  

3 Results 

The mean error for tidal volume calculation is shown in 
Figure 3 for all sensor combinations (solid lines) and for the 
hierarchical approach (dotted lines) using m=1000. 
 

 
Figure 3: Mean error of best models for all combinations and for 
the hierarchical approach, based on m=1000  

In Table 1 the chance to find the best sensor combination 
with the hierarchical approach is given for different m. 

Table 1: Chance to find the optimal sensor combination by the 
hierarchical approach 

m n2 subject1 subject2 subject3 

50 43,009 33% 29% 33% 

100 53,509 38% 52% 42% 

200 74,509 62% 76% 48% 

500 137,509 62% 85% 48% 

1000 242,509 67% 100% 100% 

2000 452,509 100% 100% 100% 

 
 

 
Figure 4: Mean error of best sensor combination for different m in 
the hierarchical approach for subject 3. 

4 Discussion 

The computational effort to analyse exhaustively to search all 
possible combinations of 64 sensors is immense. However, 
ierarchical approach provided the opportunity to obtain the 
desired data with much lower computational cost. The 
method is based on the hypothesis that there are favourable 
chances of obtaining the best combination of i+1 sensors by 
adding 1 sensor to the m best combination of i sensors, 
assumed that m is big enough. Thus, complexity of the 
computational costs is reduced from O(2n) to O(n2), where n 
is the number of sensors. 
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In this study the number of used sensors was significantly 
reduced to 28, being able to calculate the tidal volume error 
of all sensor combinations as a reference. Afterwards, the 
hierarchical approach was applied successfully.  
For smaller m there was a lower chance to find the ideal 
combinations. For example, when m=50, the chance of 
getting the optimal sensor-set was about 30%. In contrast, for 
m=1000, the optimal sensor-combinations was found by this 
method 100% of the time for two of the three subjects. For 
subject 1 with m=1000, the optimal sensor sets were found in 
only 67% of cases. Thus, increasing m to 2000 the approach 
was able to get all (100%) optimal combinations. 
However, even if the best model is not found, the mean error 
for the tidal volume determination in Figure 3 and Figure 4 
shows, that this error is not significantly higher in cases when 
the optimal sensor combination was not found. The mean 
error of the next best sensor combinations was generally 
comparable and still small. Hence, even at low m values, the 
volume estimation error remained within acceptable 
tolerances for clinical value.  

5 Conclusion 

The hierarchical approach is suitable to analyse the minimal 
and best combination of each number of sensors in the 
sensor-set, if the calculation parameters are chosen 
adequately. Thus, the computational effort can be reduced 
enormously. 
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