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Abstract

The relationship between the time duration of movement (t(dur)) and related maximum

possible power output has been studied and modeled under many conditions. Inspired by

the so-called power profiles known for discontinuous endurance sports like cycling, and

the critical power concept of Monod and Scherrer, the aim of this study was to evaluate

the numerical characteristics of the function between maximum horizontal movement

velocity (HSpeed) and t(dur) in soccer. To evaluate this relationship, GPS data from 38

healthy soccer players and 82 game participations (�30 min active playtime) were used

to select maximum HSpeed for 21 distinct t(dur) values (between 0.3 s and 2,700 s)

based on moving medians with an incremental t(dur) window-size. As a result, the rela-

tionship between HSpeed and Log(t(dur)) appeared reproducibly as a sigmoidal decay

function, and could be fitted to a five-parameter equation with upper and lower asymp-

totes, and an inflection point, power and decrease rate. Thus, the first three parameters

described individual characteristics if evaluated using mixed-model analysis. This study

shows for the first time the general numerical relationship between t(dur) and HSpeed in

soccer games. In contrast to former descriptions that have evaluated speed against

power, HSpeed against t(dur) always yields a sigmoidal shape with a new upper asymp-

tote. The evaluated curve fit potentially describes the maximum moving speed of individ-

ual players during the game, and allows for concise interpretations of the functional state

of team sports athletes.

Introduction

Metabolic, locomotor, and physical performance factors such as maximum sprint speed,

endurance, or repeated sprint ability [1] contribute to the success of players in team sports

such as soccer (association football). These factors can be observed as locomotor events using

a relatively new type of wearable measurement device comprising high-resolution GPS com-

bined with accelerometers and/or gyroscopes [2,3]. These micro-sensors not only continually

measure GPS locations and thus running speeds but also, through the use of accelerometers

and gyroscopes, register complex body movement dynamics [4,5].
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However, uncategorized time-ordered motion data from players of soccer and other team

sports are generally chaotic and not obviously interpretable, nor even functionally describable,

between repeated samples [6–8]. Thus, the locomotor activities performed during soccer

matches remain difficult to correctly classify into categories and are not clearly interpretable

by either coaches or athletes.

Most past efforts to classify sports-related movements have used automated or semi-auto-

mated visual video analyses [9]; thus, fixed velocity limits or classifications by comparative

analysis of distinct locomotion types (e.g., standing, walking, jogging, and sprinting) have

been proposed for the interpretation of sports-specific metabolic or locomotor demands [10–

14]. However, recently researchers have increasingly used so-called wearable tracking devices,

and have mainly focused on factors such as cumulative running distances within classified

speed categories [14–17], tactical maneuvers, or specific metabolic load indices for locomotor

activities, such as "Player Load" [18,19] or "Metabolic Power" [8,20].

At present, no distinct and automatically applicable algorithm has been established that can

compare the locomotor profiles of individual players during matches. Arbitrary time intervals

are currently used to analyze player performance during sports games (e.g., 5 min for high

intensity) [21], but there is no approach that describes these requirements in an holistic and

robust way. We therefore propose a derivation of locomotor analysis that enables the direct

comparison and performance diagnostics of whole match plays from computerized data prep-

aration based on the principle of power-to-duration profiles as formerly shown for bicycling

[22,23]. Beyond such graphic depictions, we further aimed to select and evaluate a numerical

fitting model for the description of these types of profiles.

Following approaches introduced to derive maximum power outputs from discontinuous

endurance competitions such as bicycling or mountain bike racing, we previously argued that

competitors would present their individual power maxima at least once during a cycling com-

petition. Clustering all maximum power outputs measured by force-sensitive cranks to the

specified time domains, individual maximum “power profiles” or envelope-curves were gener-

ated, characterizing the individual performances of the related cyclists [22].

The aim of this study was to evaluate the relationship between effective power output (hori-

zontal movement velocity, HSpeed) and the time duration of movement (tdur) during soccer

games. Thus, this study should evaluate whether there is a general and unique function that

describes the relationship between HSpeed and tdur in soccer. Such a general function describ-

ing the performance/power output of soccer players would be a powerful tool that could be

used to improve the individual assessment of the distribution of metabolic and conditional

preconditions in soccer. As a result, this kind of working model would allow analysis of "cha-

otic" data from soccer matches and would make it much easier for coaches and athletes to

interpret individual performances.

Materials and methods

Participants

Thirty-eight healthy members of three soccer teams participated in this study. The first team

(team A) played in the 5th German men’s amateur soccer league ("Oberliga"; 13 male partici-

pants: age 24.4 ± 2.4 y, body weight 78.6 ± 4.2 kg, height 181 ± 5 cm), the second team (team

B) in the 4th German women’s soccer league ("Oberliga"; 12 female participants: age 18.7 ± 3.3

y, weight 59.6 ± 6.9 kg, height 167 ± 2 cm), and the third team (team C) in the 8th German

men’s amateur soccer league ("Kreisliga"; 13 male participants, age 22.6 ± 3.4 y, weight

75.3 ± 6.7 kg, height 182 ± 4 cm). The mean age, weight and height of team B was significantly
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(p< 0.01) lower than those of teams A and C. The positions played by the study participants

are listed in Table 1.

The study protocol was approved by the ethics committee of Albert-Ludwigs-University Frei-

burg in accordance with the latest revision of the Declaration of Helsinki. All participants gave

their written informed consent following full disclosure of the study protocol and procedures.

Motion analysis

Sensors. Each participant wore a wearable tracking device (miCoach Elite Team System,

adidas, Herzogenaurach, Germany) during the games, which was fixed into position on the

back between the shoulder blades. The sensor location was chosen to maximize the validity of

the recordings without hiding the athlete’s body center, to ensure a sufficient connection with

the global positioning system (GPS), and to minimize disturbances to the player during activ-

ity. The device contained a 10-Hz (10 samples per second) global positioning system (GPS)

combined with an inertial measurement unit.

Data acquisition. The devices were applied 45 min before kick-off and were worn until

30 min after the end of each game by all field players except the goal keepers. Data recorded

before kick-off and after the final whistle were discarded prior to analysis. All other data,

including movements during the half-time break and during any game interruptions by

the referee during regular play time, remained within the analysis. Games from players

with< 45 min play time were excluded from the calculations of the speed to movement dura-

tion relationships.

Computations. First, timed tracking points from the GPS were converted to distances

and filtered through a Kalman filter [24] running at 33 Hz, converting the player-centric frame

of reference of the data to a fixed frame of reference with respect to the earth’s surface (axes:

East, North and Up). The outputs from the filter algorithm were then used to report and save

the filtered location, HSpeed, and accumulated running distances at 10 Hz.

To analyze the basic relationship between tdur and HSpeed for each player and game, we

applied so-called "moving medians". Medians were preferred over (moving) arithmetic means,

because medians often give superior results due to their stability against outliers [25]. Hence, a

sequence of moving medians of HSpeed against the course of play time (t) were computed (Eqs

1 and 2):

HSpfeedðt�i Þj ¼ median HSpeedðti � tdur j=2Þ; � � � ;HSpeedðti þ tdur j=2Þ
� �

ð1Þ

where (Eq 2)

ti ¼ tdur j=2þ 0:1s; � � � ;T � tdur j=2

j ¼ 1; � � � ; 21
ð2Þ

Table 1. Players’ positions.

Position

Team (No. of Games) Central Defender Central Midfielder External Midfielder Full-Back Striker All

A (3) 2 3 4 3 1 13

B (2) 2 3 5 3 3 16

C (3) 2 5 2 2 3 14

All 6 11 11 8 7 43

Number of players analyzed at each playing position.

https://doi.org/10.1371/journal.pone.0181781.t001
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T is the total time recorded in each experiment, and tdur is an ordered set of 21 unique time

durations (tdurj) determining the window sizes for the median calculations (Eq 3):

tdur ¼ f0:3; 0:5; 1; 2; 3; 4; 5; 6:5; 10; 13:5; 18; 30; 60; 120; 300; 600; 900; 1200; 1800; 2400; 2700sgð3Þ

These procedures resulted in 21 distinct time-ordered sets of median-smoothed HSpeed,

one for every time duration domain tdurj and for every player and game. Algorithms proposed

by Härdle and Steiger [26] were used to increase computational efficiency and to optimize pro-

gram running times for these computations.

From every median smoothed set HSpfeedðt�i Þj, unique maximum values for every tdurj were

selected, resulting in distinctive profiles of maximum HSpeed (HSpeedmaxj
) for any specific

time duration tdurj of the mentioned set (Eq 4)):

HSpeedmaxj
¼ maxi 2 nj

ðHSpeedðtiÞjÞ ð4Þ

Here, nj is the size of the related median-smoothed data set. For every player and every

game, the resulting set contains 21 HSpeedmaxj
values, one for each member of the ordered set

tdurj.

Soccer-specific movement characteristics might not only depend on maximum moving

speeds, but also on agility [27], which is potentially represented by dynamic changes in HSpeed
over time. Therefore, we additionally calculated moving medians [28] weighted with the abso-

lute values of concurrent horizontal acceleration (|HAccel|). Thus, the value pairs (HSpeed(ti),

|HAccel|(ti)) in each of the time windows described in Eqs 1 to 3 were transformed into ascend-

ing order by HSpeed(ti). In each set, the weighted median corresponds to the element HSpeed
(tk)j that satisfies the following two conditions (Eqs 5 and 6):

Sk� 1

m¼sjHAcceljðtmÞ < 1=2Snj
m¼sjHAcceljðtmÞ ð5Þ

and

S
nj
m¼kþsjHAcceljðtmÞ � 1=2Snj

m¼sjHAcceljðtmÞ ð6Þ

The starting indices s are thereby set at t (ti − tdur j / 2) with i = 1, � � �, nj. Analogously to Eq

4, the profiles for the maximum weighted medians of HSpeed (HSpeed_weighted) against tdur

were calculated from the given sets (Eq 7):

HSpeed weightedmaxj
¼ maxi2nj

ðHSpeed weightedðtiÞjÞ ; j ¼ 1; � � � ; 21 ð7Þ

As a result, for each player and game, distinct profiles with values for maximal achieved

weighted median HSpeed were given to characterize weighted locomotor performance during

their games.

Nonlinear fittings. To evaluate for regularity and to estimate function parameters for

HSpeed against tdur, seven nonlinear functions were chosen based on their principal applicabil-

ity (s. S1 Appendix), as they had logistic or sigmoidal decay characteristics. Prior to the fitting

procedure, tdur was log-transformed for better clarity. For the optimization procedure, New-

ton-Raphson’s method [29] was applied using a stop limit of 300 iterations aimed at 1.0 � 10-6

for the relative gradient. The Akaike Information Criterion (AICc) [30] was used as a relevant

evaluation criterion to judge fitting quality. Other than the F-statistic, AICc is independent in

the comparison of models with a different number of parameters.

Statistical analysis. Statistical analyses, model fittings and evaluations were performed

using JMP Pro Version 13.1.0 (SAS Institute Inc., Cary, NC, USA). Data are presented as
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means ± standard deviations unless otherwise indicated. For statistical calculations, a critical

significance level of α = 0.05 was assumed. Group comparison considering more than two

groups was performed using a nonparametric one-way analysis of variance (Steel-Dwass all-

pairs rank-order statistics for non-normally distributed data and data that failed the equal vari-

ance test). Where repeated measures occurred in group comparisons (two or more games

were analyzed for most of the players), we applied a general linear mixed model [31,32] with

participant, gender and total play time as random factors to evaluate for significant differences

of the curve fitting parameter results.

Results

In total, 82 soccer game participations (� 30 min) of the 38 players from 3 teams (A, B, C)

were analyzed. Total play times, and absolute and relative running distances per minute are

given in Table 2. There were no statistically significant differences between the teams in these

results.

The quantile statistics of maximum HSpeed versus tdur of all game participations (Fig 1)

already represent a characteristically descending sigmoidal shape (S-curve shape with a distinct

inflection point) of the relationship.

During the evaluation of seven formally matching fitting equations for the individual rela-

tionships between the log-transformed time duration (Log(tdur)) and the related fastest hori-

zontal moving speeds (HSpeed), a five-parameter generalized logistic model (adopted from

Richards’ growth function [33], Eq. 8, S1 Appendix) revealed by far the best fitting quality. Fit-

ting details for all equations are shown in Table 3. Based on individual game participations,

root-mean-square error (RMSE) was as low as 0.10 m/s for the best fitting equation without

any obvious bias; in contrast, bias was evident for all other models evaluated (Fig 2).

The range of parameter values for Eq. 8, S1 Appendix regarding each player’s position, sex

or team are given in Table 4. Remarkably, neither decreasing rate (ea) nor power (f) showed

any significant differences when comparing factors of sex, team or position, while inflection

point (eb), lower (c) and upper asymptotes (d) differed depending on position, sex, and team.

In particular, Central Defenders and Central Midfielders showed significantly lower values for

top speed ("Sprint excess", d) than did all other game positions. Similarly, Central Midfielders

showed significantly higher values for c, or long term running speed ("Critical speed"), while

Central Defenders had the lowest values for c. Fig 3A–3E gives a graphical overview of the fit-

ted functions for all participants ordered by their position, gender, or team.

To better reflect the match-specific endurance requirements of soccer players, we also

applied profile fittings using Eq. 8 (S1 Appendix) to HSpeed after weighting the median

values by each participant’s acceleration values (Eq 7). The fitting results for this alternative

approach are shown in Table 5. We assumed that weighing by acceleration would lead to better

Table 2. Minutes of game participation, total and relative running distances grouped by team.

Play time (min) Total running distance (m) Running distance per minute (m�min-1)

Team Mean SD Mean SD Mean SD

A 85.2 10.5 9953 1238 117.6 11.7

B 81.3 12.6 8323 1024 103.7 13.0

C 86.3 8.7 9283 1046 107.9 10.0

All 84.7 10.4 9340 1271 110.9 12.6

Mixed-model analysis revealed no significance for the random factor "Team" for all measures shown. SD: Standard deviation.

https://doi.org/10.1371/journal.pone.0181781.t002
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Fig 1. HSpeed results overview. Quantile statistics (boxplots) for the maximal horizontal moving speeds (Hspeed, blue) and HSpeed

weighted by acceleration (red) for the 21 calculated time durations (tdur, from Eq 3).

https://doi.org/10.1371/journal.pone.0181781.g001

Table 3. Overall evaluation of seven models tested to represent the relationship between maximum horizontal moving speed (HSpeed; y) and time

duration of movement (tdur; x) for every participant and soccer game tested in the study.

Fittings of HSpeedmaxj ; j ¼ 1; � � � ; 21 vs. time duration (tdur)

AICc SSE MSE RMSE

(m�s-1)

R2

1. Richards (Logistic 5P) -2265.1 13.9 0.011 0.10 0.999

2. Logistic 4P -759.1 39.4 0.029 0.17 0.996

3. Gompertz 4P 560.2 91.6 0.060 0.25 0.992

4. Quintic polynominal 583.5 65.6 0.049 0.22 0.994

5. Biexponential 5P 3358.8 340.0 0.237 0.49 0.969

6. Logistic 3P 3385.5 467.7 0.289 0.54 0.957

7. Exponential 3P 4170.4 707.1 0.437 0.66 0.935

Fittings of HSpeed weightedmaxj ; j ¼ 1; � � � ; 21 vs. time duration (tdur)

1. Richards (Logistic 5P) -2265.1 13.9 0.011 0.10 0.999

2. Logistic 4P -759.1 39.4 0.029 0.17 0.996

3. Gompertz 4P 560.2 91.6 0.060 0.25 0.992

4. Quintic polynominal 583.5 65.6 0.049 0.22 0.994

5. Biexponential 5P 3358.8 340.0 0.237 0.49 0.969

6. Logistic 3P 3385.5 467.7 0.289 0.54 0.957

7. Exponential 3P 4170.4 707.1 0.437 0.66 0.935

The models are sorted in ascending order with respect to their AICc. AICc: Akaike’s Information Criterion, SSE: Residual sum of squares error, MSE: Mean

squared error, RMSE: Standard deviation of the residual error, R2: Coefficient of determination. For a detailed description of the formulas applied, see S1

Appendix.

https://doi.org/10.1371/journal.pone.0181781.t003
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Fig 2. Residuals of the seven evaluated fitting equations. The differences between the measured and the

predicted values against the mean between both are shown. Only the Richards’ Logistic 5P equation (Eq. 8,

S1 Appendix) does not display a systematic deviation from the measurements. For further descriptions of the

applied equations, see the S1 Appendix.

https://doi.org/10.1371/journal.pone.0181781.g002
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representations of the discontinuous locomotor events that occur during soccer matches.

However, this type of analysis did not further discriminate players by position, sex or team.

As we used repeated measurements from several players, we performed a standard least

squares analysis with the player’s identity as a random effect. This analysis yielded r2-values (in

decreasing order) for the upper asymptote (d) r2 = 0.79 (weighted by acceleration r2 = 0.75),

lower asymptote (c) r2 = 0.64 (weighted by acceleration r2 = 0.57), inflection point (b) r2 = 0.57

(weighted by acceleration r2 = 0.11), decrease rate (a) r2 = 0.29 (weighted by acceleration

r2 = 0.09), and power (f) r2 = 0.02 (weighted by acceleration r2 = 0.11). Furthermore, the corre-

lation analysis shown in Fig 4 illustrates statistical independence between the first two vari-

ables, c and d.

Discussion

Main findings

In this study, we showed for the first time that a sigmoidal decaying function describes the

numerical relationship between horizontal moving speed and the log-transformed time dura-

tion of running for soccer players during a match. A five-parameter logistic decay function

derived from the so-called Richard’s Logistic equation fit this relationship with almost zero

systematic bias. Using this function, the upper and lower asymptotes and the points of inflec-

tion could discriminate the players’ characteristics and positions. The remaining parameters

"power" (f) and "decrease rate" (a) of HSpeed were not different between participants and tests,

meaning that there was a common and reliable curve shape in every case.

Table 4. Mean ± SD values for the parameters found with fittings of Eq. 8, S1 Appendix) to the relationship between time duration of movement

(tdur) and maximum horizontal moving speed (HSpeedmax) for all players.

Decrease rate

(ea)

m�s-2

Inflection point

(eb)

s

Lower asymptote

(c)

m�s-1

Upper asymptote

(d)

m�s-1

Power (f)

–

All

0.103 ± 0.079 6.92 ± 2.74 1.73 ± 0.24 7.62 ± 0.69 0.32 ± 0.17

By

Position

Central

Defender

0.090 ± 0.069 A 5.54 ± 1.92 A 1.48 ± 0.18 A 7.35 ± 0.49 A B 0.26 ± 0.10 A

Central

Midfielder

0.113 ± 0.077 A 7.79 ± 3.84 B 1.91 ± 0.17 B 7.21 ± 0.71 B 0.35 ± 0.21 A

External

Midfielder

0.095 ± 0.080 A 6.75 ± 2.30 A B 1.77 ± 0.25 C 7.97 ± 0.73 C 0.30 ± 0.16 A

Full-Back 0.100 ± 0.070 A 6.99 ± 2.18 A B 1.72 ± 0.19 C 7.76 ± 0.61 A C 0.30 ± 0.12 A

Striker 0.123 ± 0.108 A 7.28 ± 2.52 B 1.68 ± 0.17 C 7.77 ± 0.44 A B C 0.35 ± 0.20 A

By

Gender

Female 0.100 ± 0.078 A 6.99 ± 3.52 A 1.58 ± 0.20 A 6.88 ± 0.53 A 0.31 ± 0.19 A

Male 0.104 ± 0.080 A 6.89 ± 2.74 A 1.79 ± 0.23 B 7.87 ± 0.55 B 0.32 ± 0.19 A

By Team

“Team A” 0.093 ± 0.078 A 7.13 ± 2.40 A 1.85 ± 0.25 A 7.95 ± 0.48 A 0.29 ± 0.16 A

“Team B” 0.100 ± 0.078 A 6.99 ± 3.52 A 1.58 ± 0.20 B 6.88 ± 0.53 B 0.31 ± 0.19 A

“Team C” 0.116 ± 0.084 A 6.65 ± 2.54 A 1.70 ± 0.18 A B 7.78 ± 0.61 A 0.33 ± 0.16 A

Different letters indicate significant differences after application of a mixed model analysis with repeated structure.

https://doi.org/10.1371/journal.pone.0181781.t004

Speed profiles in soccer

PLOS ONE | https://doi.org/10.1371/journal.pone.0181781 July 25, 2017 8 / 16

https://doi.org/10.1371/journal.pone.0181781.t004
https://doi.org/10.1371/journal.pone.0181781


Fig 3. Groups of power-profile curve fittings. (A) All fitting results. (B) Fitting results grouped by gender

(blue: male, red: female). (C) Fitting results grouped by team (red: Team A, green: Team B, blue: Team C).

(D) Fitting results of all female participants, grouped by position (red: Central Defenders, green: Central

Midfielders, blue: External Midfielder, orange: Full-Backs, cyan: Strikers). (E) Fitting results of all male

participants, grouped by position (red: Central Defenders, green: Central Midfielders, blue: External

Speed profiles in soccer
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Methodological aspects

We used commercially available GPS sensors with only limited technical documentation in

this study. The reliability of GPS-measured velocities has been reported to depend on many

factors including sampling frequency and, especially, moving velocity (increased velocity

reduces reliability) [34]. The manufacturers state that an integrated Kalman-type filter [24,35]

and sensor-fusion algorithms using an accelerometer, a magnetometer, and a gyroscope "to
adjust the reference frame of the sensor to the horizontal Earth's surface with a frequency of
10Hz" are used for the sensors [36]. An internal validation against a video analysis system

(Immotio, Amsterdam, NL) resulted in mean differences of only 0.1 to 0.3 m�s-1 at the 95%

confidence level [36], indicating excellent validity of the applied sensor system. Also, the par-

ticular profiles analyzed in this study yielded physiologically credible results. For example, for

30 m, the fastest sprints ranged from 3.46 s to 5.91 s (flying), which are overall plausible results

for the tested selection of players and also compare favorably to the reference data of other

researchers [37,38]. The fitting procedure applied further minimizes noise from the measure-

ments of HSpeed, because separate deviating data points are adjusted to the curve’s function.

Maximum acceleration values measured by wearable devices can yield erroneous results

due to passive impacts or tackles to the body [39]. However, such collision-related impulses

only last for fractions of a second, and seldom affect standing or slowly moving players (the

Midfielder, orange: Full-Backs, cyan: Strikers). HSpeed was log-transformed for better clarity in all cases. The

close-ups in (D) and (E) show the upper and the lower part of the fittings, respectively.

https://doi.org/10.1371/journal.pone.0181781.g003

Table 5. Mean ± SD values for the parameters found when Eq. 8 (S1 Appendix) was used to model the relationship between time duration of move-

ment (tdur) and the weighted maxima of horizontal moving speed (HSpeed_weightedmax, Eq 7) for all players.

Decrease rate

(ea)

m�s-2

Inflection point

(eb)

s

Lower

asymptote (c)

m�s-1

Upper

asymptote (d)

m�s-1

Power (f)

–

All

0.066 ± 0.076 8.98 ± 4.06 2.08 ± 0.32 7.62 ± 0.67 0.20 ± 0.17

By

Position

Central

Defender

0.079 ± 0.083 A 8.12 ± 2.67 A 1.84 ± 0.27 A 7.37 ± 0.53 A B 0.20 ± 0.13 A B

Central

Midfielder

0.089 ± 0.070 A 9.92 ± 5.02 B 2.18 ± 0.28 B 7.26 ± 0.73 B 0.26 ± 0.19 A

External

Midfielder

0.098 ± 0.116 A 9.88 ± 4.16 A B 2.15 ± 0.33 B C 8.02 ± 0.64 C 0.21 ± 0.19 A B

Full-Back 0.057 ± 0.094 A 7.96 ± 2.94 A B 2.05 ± 0.30 A C 7.79 ± 0.62 A C 0.14 ± 0.13 A B

Striker 0.089 ± 0.149 A 7.71 ± 4.48 A B 2.08 ± 0.32 A B C 7.82 ± 0.46 A B C 0.11 ± 0.09 B

By

Gender

Female 0.050 ± 0.057 A 8.13 ± 3.20 A 1.84 ± 0.27 A 6.89 ± 0.54 A 0.22 ± 0.27 A

Male 0.072 ± 0.082 A 9.28 ± 4.31 A 2.16 ± 0.30 B 7.87 ± 0.51 B 0.32 ± 0.48 A

By Team

“Team A” 0.058 ± 0.076 A 9.80 ± 4.71 A 2.22 ± 0.32 A 7.99 ± 0.48 A 0.19 ± 0.19 A

“Team B” 0.050 ± 0.057 A 8.13 ± 3.20 A 1.84 ± 0.27 B 6.89 ± 0.54 B 0.17 ± 0.13 A

“Team C” 0.088 ± 0.087 A 8.61 ± 3.72 A 2.15 ± 0.24 A 7.73 ± 0.52 A 0.23 ± 0.15 B

Different letters indicate significant differences after application of a mixed model analysis with repeated structure.

https://doi.org/10.1371/journal.pone.0181781.t005
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only conditions that could cause positive, forward-directed acceleration). From the raw accel-

erometry data, a maximum positive outlier value within a time duration of 0.3 sec was deter-

mined at 8.6 m�s-2 (mean: 6.2 ± 0.9 m�s-2). At 1.0 sec, for comparison, this value decreased

markedly to an overall maximum of 7.1 m�s-2 (mean: 5.1 ± 0.7 m�s-2, p< 0.0001). This is why

low-pass filtering is recommended to improve the validity of accelerometers in team sports

[5]. However, HSpeed profiles are most likely not affected by this phenomenon of passive

impact, because acceleration must be effective for a longer time to induce the maximum

HSpeed values that were observed in this study. Otherwise, reliability of acceleration data from

trunk mounted systems is generally poor, especially at higher levels of acceleration [5]. Thus,

weighting the profiles with acceleration did not improve the characterization of the players in

this study (Tables 4 and 5). The search for alternative means of determining the factor agility is

a promising area for future research.

Isolated tests of sprint running performance tend to have high variability and low reliability

[40]. However, maximum sprint speeds are important factors in the functional assessment of

players, and are specifically targeted during training interventions in soccer [41,42]. Similar

arguments can be used for mid- and long-term running endurance performance [43,44]. The

methodology that we describe here allows direct assessment of these performances. With each

reiteration during a player’s season, particularly at the highest intensity as is achieved during

Fig 4. Independence of the lower against the upper asymptotes. A linear (Pearson) correlation between parameters c and d from all

individual measurements is given (r2 = 0.04).

https://doi.org/10.1371/journal.pone.0181781.g004
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competitions, the characterization of the player will be more reliable. Thus, the approach pre-

sented here can lead to much more comprehensive information about individual performance

than other conventional performance testing methods that use out-of-competition sprint time

analysis or laboratory exercise testing.

Curve shape of HSpeed against tdur

The relationship between maximum power output and time has been discussed primarily in

the field of occupational physiology. At first, Monod and Scherrer proposed the term "critical
power [. . .] from the notions of maximum work and maximum time of work" [45]. This ’critical’

power (Wlim) is one parameter of several alternative non-linear functions that are all character-

ized by an asymptotic approximation of power output at [45] or below [46] tlim = 0. Since that

introduction, intense and diverse discussions have taken place regarding the best numerical

interrelationship between power output and time [47], with the aim of achieving interpretable

parameters for performance diagnostics and participant characterization, especially in endur-

ance sports [48–50]. It turns out that experimental approaches to obtaining complete power-

to-duration profiles are a challenging task: several maximum exercise tests in the relevant time

domains are needed to form the basis for comprehensive curve fitting. This makes routine

applications of power-to-duration analyses virtually impossible, and might be the major reason

why modeling approaches have been developed to predict the power duration relationship

from ordinary test procedures [51,52].

Other studies have determined a ’critical speed’ from running instead of work measure-

ments [53,54] based on the assumption that running velocity is linearly correlated to energy

expenditure. This is (approximately) true when running at steady speeds with small accelera-

tions [55]. However, our study used data from intermittent, not steady, running. That is why

the lower asymptotes (“Critical speed”) are at very slow speeds (2.0 to 2.5 m�s-1), although

most of the players reached their metabolic limits. To compensate for this, we tried the weight-

ing by acceleration, which caused interval type variations of HSpeed to be weighted higher. In

spite of this, the sigmoidal characteristics of the performance/duration relationship remained

the same (s. Fig 1). Further investigation is needed to determine whether the model that fit our

data would also apply to continuous running events over short intervals.

Profiles with intermittent maximal sprinting performances might be mathematically much

more complex and hypothetically not describable with a simple or bi- exponential function. In

addition to pure energy expenditure, neuromuscular, power-related and coordinative factors

determine maximum running speeds over short [56] to ultra-short (< 2 sec) time durations

[5,57]. Most importantly, these fast ultra-short sprints could be a prerequisite for successful

participation in team sports [27,58,59].

Furthermore, our observations are in line with previous theoretical discussion by Bundle

and Weyand [56] who claimed that there were specific limitations to all-out sprint exercise

performances below 60-s duration due to these performances were determined by not only

metabolic energy availability but also by musculoskeletal force application. The upper asymp-

tote and flattening of the performances below 60 s, reported for the first time in this paper, are

probably related to “non-metabolic” performance-limiting factors, as proposed by Bundle and

Weyand.

Conclusions

This study shows for the first time empirical proof that the relationship between maximum

running speed and tdur is better represented with a sigmoidal curve than with a simple expo-

nential function. This type of curve shape was found in every game participation in this study,
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with no exceptions. A five-parameter function (s. S1 Appendix, Eq. 8; Fig 5) was sufficient to

fit every profile without any bias. Furthermore, this sigmoidal curve shape varied individually

in terms of upper ("Sprint excess") and lower ("Critical speed") asymptotes, and by tdur of the

inflection point (staying power at maximum sprint speed). The other two parameters of this

function, power and decreasing rate, did not vary individually, emphasizing the ubiquitous-

ness of the described curve shape. Further work will be needed to validate the model by the

modification of selective parameters over time and after certain types of training.
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