IUCrData

ISSN 2414-3146

Received 27 September 2016 Accepted 28 September 2016

Edited by M. Bolte, Goethe-Universität Frankfurt Germany

Keywords: crystal structure; 2,4,6-trichlorophenyl; pyridine; benzoimidazole; 1,2,4-triazinone.

CCDC reference: 1507208

Structural data: full structural data are available from iucrdata.iucr.org

1-(Pyridin-4-yl)-3-(2,4,6-trichlorophenyl)benz-[4,5]imidazo[1,2-*d*][1,2,4]triazin-4(3*H*)-one

Bassam Abu Thaher,^a Dieter Schollmeyer,^b Basem Qeshta,^a Kanan M. Wahedy,^c Ihab M. Almasri,^c Rami Y. Morjan^d and Hans-Peter Deigner^{e,f}*

^aFaculty of Science, Chemistry Department, Islamic University of Gaza Strip, Gaza Strip, Palestinian Territories, ^bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, ^cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Alazhar University-Gaza, Gaza Strip, Palestinian Territories, ^dDeparyment of Organic Chemistry, The Islamic University of Gaza Strip, Gaza Strip, Palestinian Territories, ^eHochschule Furtwangen (HFU), Fakultät Medical and Life Sciences, Jakob-Kienzle Strasse 17, 78054 Villingen-Schwenningen, Germany, and ^fFraunhofer IZI, Perlickstrasse 1, 04103 Leipzig, Germany. *Correspondence e-mail: dei@hs-furtwangen.de

In the title compound, $C_{20}H_{10}Cl_3N_5O$, the 13-membered ring system makes dihedral angles of 78.64 (9)° with the trichlorophenyl ring and 62.60 (10)° with the pyridine ring. The crystal packing is dominated by π - π interactions between the 13-membered ring systems [centroid–centroid distance = 3.6655 (11)°].

Structure description

Compounds containing a benzimidazole core have been investigated as pharmaceuticals (Karpińka *et al.*, 2011; Singh *et al.*, 2010) and therapeutic agents (Biron, 2006; Pescovitz, 2008), and feature as commercial drugs such as omeprazole (Prilosec), pantoprazole (Protonix), vermox and mibefradil (Karpiń'ska *et al.*, 2011). Several benzimidazole based compounds show anti-cancer activity (Thomas *et al.*, 2007), some exhibiting cytotoxic effects against a panel of human cancer cell lines (Refaat, 2010). For example, benzimidazole-4,7-diones exhibit cytotoxicity against colon, breast and lung cell lines (Gellis *et al.*, 2008). The good efficacy of imidazole-based compounds as anti-cancer agents promoted our work to synthesize a masked benzimidazole in a triazine ring as a new scaffold of a potential anti-cancer candidate. The first derivative of this series gave a good crystal and its structure has been published (Abu Thaher *et al.*, 2016).

In the title compound (Fig. 1), the central 13-membered ring is essentially planar with a maximum deviation of 0.133 (2) Å for atom N1 and makes dihedral angles of 78.64 (9)° with the trichlorophenyl ring and 62.60 (10)° with the pyridine ring. In the crystal, two

data reports

Table 1Experimental details.

Crystal data Chemical formula C20H10Cl3N5O М., 442.68 Crystal system, space group Monoclinic, C2/c Temperature (K) 193 19.5521 (12), 15.1072 (5), a, b, c (Å) 15.5543 (9) 126.057 (4) $\beta (^{\circ})$ V (Å³) 3714.2 (4) Ζ 8 Μο Κα Radiation type $\mu \,({\rm mm}^{-1})$ 0.52 $0.35 \times 0.21 \times 0.20$ Crystal size (mm) Data collection Diffractometer Stoe IPDS 2T No. of measured, independent and 11381, 4574, 3437 observed $[I > 2\sigma(I)]$ reflections R_{int} 0.022 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.665 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.041. 0.113. 1.04 No. of reflections 4574 No. of parameters 262 H-atom parameters constrained H-atom treatment $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å⁻³) 0.89, -0.98

Computer programs: X-AREA (Stoe & Cie, 2006), X-AREA (Stoe & Cie, 2006), X-RED32 (Stoe & Cie, 2006), SIR2004 (Altomare et al., 1995) and SHELXL2014 (Sheldrick, 2015).

molecules related by a centre of inversion show a π - π interaction. The distance between centroids of the C7-C12 and N1/C5/N6/C7/C12($\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$) rings is 3.6655 (11)°.

Synthesis and crystallization

3.1 mmol of NaH was added slowly to a solution of 3.1 mmol of ethyl-2- benzimidazolcarboxylate in 30 ml dry THF and stirring continued at room temperature for about 20 minutes. To this flask, 3.0 mmol of N-(2,4,6-trichlorophenyl)-4-pyridinecarbohydrazonoyl chloride was added slowly portionwise and in parallel 0.5 ml of Et₃N was added drop wise. The reaction was left stirring overnight, monitored by TLC until it had finished. The reaction was filtered and concentrated under vacuum. The solid residue was purified by column chromatography (hexane:ethyl acetate; 2:1, then 1:1). Yield: 20%. Suitable crystals for X-ray analysis were obtained by slow evaporation of a hexane/ethyl acetate solution.

Figure 1

The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Acknowledgements

BAT thanks the Palestinian Research Council (Ramallah) for funding and HFU (Germany) for hosting.

References

- Abu Thaher, B. A., Schollmeyer, D., Qeshta, B. & Deigner, H.-P. (2016). *IUCrData*, **1**, x161380.
- Altomare, A., Burla, M. C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G. & Polidori, G. (1995). J. Appl. Cryst. 28, 842–846.
- Biron, K. K. (2006). Antivir. Res. 71, 154-163.
- Gellis, A., Kovacic, H., Boufatah, N. & Vanelle, P. (2008). *Eur. J. Med. Chem.* **43**, 1858–1864.
- Karpińka, M. M., Matysiak, J. & Niewiadomy, A. (2011). Arch. Pharm. Res. 34, 1639–1647.
- Pescovitz, M. D. (2008). Future Virol. 3, 435-443.
- Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949–2956.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singh, S., Ojha, H., Tiwari, A. K., Kumar, N., Singh, B. & Mishra, A. K. (2010). *Cancer Biother. Radiopharm.* 25, 245–250.
- Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Thomas, H. D., Calabrese, C. R., Batey, M. A., Canan, S., Hostomsky, Z., Kyle, S., Maegley, K. A., Newell, D. R., Skalitzky, D., Wang, L. Z., Webber, S. E. & Curtin, N. J. (2007). *Mol. Cancer Ther.* 6, 945–956.

full crystallographic data

IUCrData (2016). **1**, x161529 [https://doi.org/10.1107/S2414314616015297]

1-(Pyridin-4-yl)-3-(2,4,6-trichlorophenyl)benz[4,5]imidazo[1,2-d]

[1,2,4]triazin-4(3*H*)-one

Bassam Abu Thaher, Dieter Schollmeyer, Basem Qeshta, Kanan M. Wahedy, Ihab M. Almasri, Rami Y. Morjan and Hans-Peter Deigner

F(000) = 1792

 $\theta = 2.6 - 28.3^{\circ}$

 $\mu = 0.52 \text{ mm}^{-1}$

Plate, colourless

 $0.35 \times 0.21 \times 0.20 \text{ mm}$

 $\theta_{\rm max} = 28.2^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$

4574 independent reflections

3437 reflections with $I > 2\sigma(I)$

T = 193 K

 $R_{\rm int} = 0.022$

 $h = -25 \rightarrow 20$

 $k = -20 \rightarrow 18$

 $l = -20 \rightarrow 20$

 $D_{\rm x} = 1.583 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 12681 reflections

1-(Pyridin-4-yl)-3-(2,4,6-trichlorophenyl)benz[4,5]imidazo[1,2-d][1,2,4]triazin-4(3H)-one

Crystal data

 $C_{20}H_{10}Cl_3N_5O$ $M_r = 442.68$ Monoclinic, C2/c a = 19.5521 (12) Å b = 15.1072 (5) Å c = 15.5543 (9) Å $\beta = 126.057 (4)^{\circ}$ $V = 3714.2 (4) \text{ Å}^3$ Z = 8

Data collection

Stoe IPDS 2T diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Detector resolution: 6.67 pixels mm⁻¹ rotation method scans 11381 measured reflections

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_o^2) + (0.051P)^2 + 3.9605P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4574 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
262 parameters	$\Delta \rho_{\rm max} = 0.89 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.98 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.32853 (6)	0.12694 (4)	0.13199 (6)	0.0620 (2)	
C12	0.43245 (5)	0.39787 (5)	0.01324 (6)	0.0644 (2)	
C13	0.34201 (5)	0.45705 (4)	0.27335 (5)	0.05540 (18)	
01	0.18165 (10)	0.29896 (13)	0.14004 (12)	0.0496 (4)	
N1	0.27697 (10)	0.17190 (11)	0.37941 (11)	0.0276 (3)	
N2	0.37972 (10)	0.20832 (11)	0.35279 (12)	0.0300 (3)	
N3	0.31780 (11)	0.25749 (12)	0.26496 (12)	0.0336 (4)	
C1	0.35845 (11)	0.16738 (12)	0.40623 (13)	0.0272 (4)	
C4	0.23280 (13)	0.25910 (15)	0.22150 (14)	0.0359 (4)	
C5	0.21233 (12)	0.21304 (14)	0.28666 (14)	0.0316 (4)	
N6	0.13953 (10)	0.21308 (12)	0.27260 (12)	0.0346 (4)	
C7	0.15680 (12)	0.17234 (13)	0.36360 (14)	0.0303 (4)	
C8	0.10192 (12)	0.16098 (14)	0.39282 (15)	0.0336 (4)	
H8	0.0442	0.1782	0.3469	0.040*	
C9	0.13499 (13)	0.12388 (14)	0.49083 (15)	0.0345 (4)	
H9	0.0994	0.1157	0.5131	0.041*	
C10	0.21982 (13)	0.09796 (14)	0.55831 (15)	0.0338 (4)	
H10	0.2401	0.0722	0.6251	0.041*	
C11	0.27507 (12)	0.10858 (13)	0.53118 (14)	0.0305 (4)	
H11	0.3327	0.0910	0.5775	0.037*	
C12	0.24185 (11)	0.14642 (12)	0.43222 (13)	0.0271 (4)	
C13	0.42283 (11)	0.11300 (12)	0.49832 (13)	0.0264 (4)	
C14	0.40997 (13)	0.02308 (13)	0.50356 (17)	0.0344 (4)	
H14	0.3595	-0.0054	0.4479	0.041*	
C15	0.47300 (15)	-0.02355 (15)	0.59233 (19)	0.0429 (5)	
H15	0.4647	-0.0851	0.5954	0.051*	
N16	0.54470 (12)	0.01269 (14)	0.67379 (15)	0.0459 (5)	
C17	0.55553 (14)	0.09801 (16)	0.66609 (16)	0.0415 (5)	
H17	0.6064	0.1248	0.7231	0.050*	
C18	0.49758 (12)	0.15087 (13)	0.58041 (14)	0.0317 (4)	
H18	0.5091	0.2116	0.5783	0.038*	
C19	0.34486 (13)	0.29350 (14)	0.20419 (15)	0.0344 (4)	
C20	0.35514 (14)	0.23695 (14)	0.14171 (16)	0.0389 (5)	
C21	0.38352 (15)	0.26848 (16)	0.08389 (18)	0.0442 (5)	
H21	0.3918	0.2295	0.0428	0.053*	
C22	0.39927 (15)	0.35738 (17)	0.08770 (18)	0.0441 (5)	
C23	0.38711 (16)	0.41627 (16)	0.14555 (17)	0.0440 (5)	
H23	0.3971	0.4778	0.1455	0.053*	
C24	0.35979 (14)	0.38281 (15)	0.20364 (16)	0.0381 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1095 (6)	0.0359 (3)	0.0802 (4)	0.0179 (3)	0.0779 (5)	0.0153 (3)
Cl2	0.0942 (5)	0.0645 (4)	0.0793 (4)	0.0099 (4)	0.0760 (4)	0.0183 (3)

C13	0.0916 (5)	0.0457 (3)	0.0555 (3)	0.0027 (3)	0.0581 (4)	0.0002 (3)
01	0.0444 (9)	0.0751 (12)	0.0349 (7)	0.0228 (8)	0.0265 (7)	0.0253 (7)
N1	0.0283 (7)	0.0344 (8)	0.0220 (6)	0.0037 (6)	0.0159 (6)	0.0034 (6)
N2	0.0303 (8)	0.0341 (8)	0.0271 (7)	0.0074 (7)	0.0178 (6)	0.0073 (6)
N3	0.0364 (9)	0.0420 (9)	0.0293 (7)	0.0113 (7)	0.0232 (7)	0.0133 (7)
C1	0.0289 (9)	0.0283 (9)	0.0263 (8)	0.0017 (7)	0.0174 (7)	0.0009 (7)
C4	0.0377 (11)	0.0473 (12)	0.0277 (8)	0.0121 (9)	0.0220 (8)	0.0099 (8)
C5	0.0300 (9)	0.0411 (11)	0.0231 (8)	0.0076 (8)	0.0152 (7)	0.0055 (7)
N6	0.0319 (8)	0.0461 (10)	0.0274 (7)	0.0078 (7)	0.0182 (7)	0.0063 (7)
C7	0.0330 (9)	0.0339 (10)	0.0265 (8)	0.0025 (8)	0.0189 (7)	0.0001 (7)
C8	0.0314 (9)	0.0405 (11)	0.0323 (9)	0.0027 (8)	0.0206 (8)	-0.0006 (8)
C9	0.0382 (10)	0.0396 (11)	0.0357 (9)	-0.0021 (9)	0.0272 (9)	-0.0030 (8)
C10	0.0417 (11)	0.0360 (10)	0.0295 (9)	0.0002 (9)	0.0241 (8)	0.0017 (8)
C11	0.0335 (9)	0.0341 (10)	0.0252 (8)	0.0027 (8)	0.0181 (7)	0.0017 (7)
C12	0.0300 (9)	0.0302 (9)	0.0253 (8)	0.0002 (7)	0.0185 (7)	-0.0011 (7)
C13	0.0280 (8)	0.0286 (9)	0.0264 (8)	0.0030 (7)	0.0181 (7)	0.0038 (7)
C14	0.0325 (10)	0.0297 (10)	0.0456 (10)	0.0014 (8)	0.0256 (9)	0.0025 (8)
C15	0.0469 (12)	0.0328 (11)	0.0631 (14)	0.0107 (9)	0.0402 (12)	0.0177 (10)
N16	0.0430 (10)	0.0521 (12)	0.0448 (10)	0.0175 (9)	0.0270 (9)	0.0224 (9)
C17	0.0361 (11)	0.0492 (13)	0.0293 (9)	0.0055 (10)	0.0137 (8)	0.0048 (9)
C18	0.0321 (9)	0.0322 (10)	0.0289 (9)	0.0027 (8)	0.0169 (8)	0.0020 (7)
C19	0.0394 (10)	0.0410 (11)	0.0321 (9)	0.0118 (9)	0.0262 (8)	0.0125 (8)
C20	0.0501 (12)	0.0373 (11)	0.0414 (10)	0.0165 (9)	0.0336 (10)	0.0152 (9)
C21	0.0599 (14)	0.0460 (13)	0.0458 (11)	0.0210 (11)	0.0416 (11)	0.0167 (10)
C22	0.0533 (13)	0.0531 (14)	0.0437 (11)	0.0105 (11)	0.0384 (11)	0.0161 (10)
C23	0.0576 (14)	0.0431 (13)	0.0443 (11)	0.0027 (10)	0.0373 (11)	0.0078 (9)
C24	0.0450 (12)	0.0444 (12)	0.0328 (9)	0.0070 (9)	0.0273 (9)	0.0064 (8)

Geometric parameters (Å, °)

Cl1—C20	1.721 (2)	C10—H10	0.9500
Cl2—C22	1.738 (2)	C11—C12	1.393 (2)
Cl3—C24	1.732 (2)	C11—H11	0.9500
01—C4	1.215 (2)	C13—C18	1.377 (3)
N1C5	1.385 (2)	C13—C14	1.393 (3)
N1C1	1.391 (2)	C14—C15	1.385 (3)
N1-C12	1.400 (2)	C14—H14	0.9500
N2	1.286 (2)	C15—N16	1.334 (3)
N2—N3	1.392 (2)	C15—H15	0.9500
N3—C4	1.377 (3)	N16—C17	1.323 (3)
N3—C19	1.435 (2)	C17—C18	1.386 (3)
C1—C13	1.479 (2)	C17—H17	0.9500
C4—C5	1.466 (3)	C18—H18	0.9500
C5—N6	1.307 (2)	C19—C24	1.382 (3)
N6—C7	1.391 (2)	C19—C20	1.395 (3)
С7—С8	1.400 (3)	C20—C21	1.390 (3)
C7—C12	1.403 (3)	C21—C22	1.371 (3)
С8—С9	1.377 (3)	C21—H21	0.9500

data reports

C8—H8	0.9500	C22—C23	1.382 (3)
C9—C10	1.399 (3)	C23—C24	1.388 (3)
С9—Н9	0.9500	С23—Н23	0.9500
C10—C11	1.381 (3)		
C5—N1—C1	121.08 (15)	C18—C13—C14	118.72 (17)
C5—N1—C12	105.83 (15)	C18—C13—C1	120.06 (17)
C1—N1—C12	132.97 (15)	C14—C13—C1	121.22 (17)
C1—N2—N3	117.77 (16)	C15—C14—C13	117.98 (19)
C4—N3—N2	126.33 (16)	C15—C14—H14	121.0
C4—N3—C19	118.44 (15)	C13—C14—H14	121.0
N2—N3—C19	113.84 (15)	N16-C15-C14	124.0 (2)
N2—C1—N1	122.12 (16)	N16—C15—H15	118.0
N2—C1—C13	118.59 (16)	C14—C15—H15	118.0
N1—C1—C13	119.29 (15)	C17—N16—C15	116.66 (18)
O1—C4—N3	122.37 (18)	N16—C17—C18	124.4 (2)
O1—C4—C5	124.34 (19)	N16—C17—H17	117.8
N3—C4—C5	113.19 (15)	C18—C17—H17	117.8
N6—C5—N1	114.25 (16)	C13—C18—C17	118.23 (19)
N6—C5—C4	126.71 (17)	C13—C18—H18	120.9
N1—C5—C4	118.69 (17)	C17—C18—H18	120.9
C5—N6—C7	103.98 (15)	C24—C19—C20	118.44 (18)
N6—C7—C8	127.68 (18)	C24—C19—N3	122.39 (18)
N6—C7—C12	111.52 (16)	C20—C19—N3	119.16 (19)
C8—C7—C12	120.69 (17)	C21—C20—C19	121.1 (2)
C9—C8—C7	117.32 (18)	C21—C20—C11	119.30 (17)
С9—С8—Н8	121.3	C19—C20—Cl1	119.51 (16)
С7—С8—Н8	121.3	C22—C21—C20	118.2 (2)
C8—C9—C10	121.43 (18)	C22—C21—H21	120.9
С8—С9—Н9	119.3	C20—C21—H21	120.9
С10—С9—Н9	119.3	C21—C22—C23	122.57 (19)
C11—C10—C9	122.24 (17)	C21—C22—Cl2	118.58 (17)
C11—C10—H10	118.9	C23—C22—Cl2	118.82 (19)
С9—С10—Н10	118.9	C22—C23—C24	118.0 (2)
C10-C11-C12	116.45 (17)	C22—C23—H23	121.0
C10—C11—H11	121.8	C24—C23—H23	121.0
C12—C11—H11	121.8	C19—C24—C23	121.6 (2)
C11—C12—N1	133.68 (17)	C19—C24—Cl3	120.51 (15)
C11—C12—C7	121.88 (17)	C23—C24—Cl3	117.90 (18)
N1—C12—C7	104.36 (15)		
C1—N2—N3—C4	-7.9 (3)	C8—C7—C12—C11	0.1 (3)
C1—N2—N3—C19	-174.11 (18)	N6—C7—C12—N1	-0.7(2)
N3—N2—C1—N1	-0.7 (3)	C8—C7—C12—N1	-177.00 (18)
N3—N2—C1—C13	178.54 (16)	N2-C1-C13-C18	57.3 (2)
C5—N1—C1—N2	7.2 (3)	N1—C1—C13—C18	-123.43 (19)
C12—N1—C1—N2	-168.14 (19)	N2-C1-C13-C14	-121.9 (2)
C5—N1—C1—C13	-172.08 (17)	N1-C1-C13-C14	57.3 (2)
	× /		× /

12.6 (3)	C18—C13—C14—C15	0.8 (3)
-174.6 (2)	C1—C13—C14—C15	-179.91 (17)
-9.0 (3)	C13-C14-C15-N16	1.0 (3)
8.9 (3)	C14—C15—N16—C17	-1.7 (3)
174.55 (18)	C15—N16—C17—C18	0.5 (3)
-179.24 (17)	C14—C13—C18—C17	-1.9 (3)
-2.8 (2)	C1—C13—C18—C17	178.83 (17)
-5.5 (3)	N16-C17-C18-C13	1.3 (3)
170.92 (17)	C4—N3—C19—C24	84.0 (3)
-5.5 (4)	N2—N3—C19—C24	-108.6 (2)
170.9 (2)	C4—N3—C19—C20	-94.8 (2)
-178.4 (2)	N2—N3—C19—C20	72.6 (2)
-2.0 (3)	C24—C19—C20—C21	3.0 (3)
2.3 (2)	N3-C19-C20-C21	-178.17 (19)
-170.8 (2)	C24—C19—C20—Cl1	-174.58 (16)
175.1 (2)	N3—C19—C20—Cl1	4.3 (3)
-1.0 (2)	C19—C20—C21—C22	-1.6 (3)
-175.5 (2)	Cl1—C20—C21—C22	175.98 (18)
0.2 (3)	C20-C21-C22-C23	-0.7 (4)
-0.4 (3)	C20—C21—C22—Cl2	-178.54 (18)
0.5 (3)	C21—C22—C23—C24	1.6 (4)
-0.2 (3)	Cl2—C22—C23—C24	179.36 (18)
176.0 (2)	C20—C19—C24—C23	-2.1 (3)
0.0 (3)	N3—C19—C24—C23	179.1 (2)
-174.6 (2)	C20—C19—C24—Cl3	176.14 (16)
1.2 (4)	N3—C19—C24—Cl3	-2.7 (3)
1.9 (2)	C22—C23—C24—C19	-0.1 (3)
177.75 (19)	C22—C23—C24—Cl3	-178.39 (18)
176.42 (18)		
	$12.6 (3) \\ -174.6 (2) \\ -9.0 (3) \\ 8.9 (3) \\ 174.55 (18) \\ -179.24 (17) \\ -2.8 (2) \\ -5.5 (3) \\ 170.92 (17) \\ -5.5 (4) \\ 170.9 (2) \\ -178.4 (2) \\ -2.0 (3) \\ 2.3 (2) \\ -170.8 (2) \\ 175.1 (2) \\ -1.0 (2) \\ -175.5 (2) \\ 0.2 (3) \\ -0.4 (3) \\ 0.5 (3) \\ -0.2 (3) \\ 176.0 (2) \\ 0.0 (3) \\ -174.6 (2) \\ 1.2 (4) \\ 1.9 (2) \\ 177.75 (19) \\ 176.42 (18) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{llllllllllllllllllllllllllllllllllll$