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Abstract 

The use of mathematical models can aid in optimizing therapy settings in ventilated 
patients to achieve certain therapy goals. Especially when multiple goals have to be 
met, the use of individualized models can be of great help. The presented work shows 
the potential of using models of respiratory mechanics and gas exchange to optimize 
minute ventilation and oxygen supply to achieve a defined oxygenation and carbon 
dioxide removal in a patient while guaranteeing lung protective ventilation. The ven-
tilator settings are optimized using respiratory mechanics models to compute a res-
piration rate and tidal volume that keeps the maximum airway pressure below the 
critical limit of 30 cm H2O while ensuring a sufficient expiration. A three-parameter 
gas exchange model is then used to optimize both minute ventilation and oxygen 
supply to achieve defined arterial partial pressures of oxygen and carbon dioxide in 
the patient. The presented approach was tested using a JAVA based patient simulator 
that uses various model combinations to compute patient reactions to changes in the 
ventilator settings. The simulated patient reaction to the optimized ventilator settings 
showed good agreement with the desired goals. 
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1. Introduction 

Mechanical ventilation is a life-saving intervention, routinely used in intensive care. It 
provides breathing support in critically ill patients that are not able to maintain suffi-
cient oxygenation. However, if the ventilator settings are not properly adapted to the 
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individual patient physiology, it can cause injuries to the lung tissue through barotrau-
ma or collaps of alveoli [1]. Optimizing ventilator settings in patients with critically 
poor lung function poses a trade-off between multiple conflicting goals, such as apply-
ing high airway pressures and tidal volumes to ensure sufficient oxygenation versus us-
ing low airways pressures to protect healthy lung tissue [2]. Mathematical models of the 
human physiology can be adapted to the individual physiological properties of a patient 
and thus can be used to predict reactions of that patient to changes in the ventilator set-
tings. Those predictions can aid in providing decision-making support by using opti-
mization algorithms to calculate ventilator settings that lead to achieving the goals de-
fined by the clinician [3]. Model based decision support in ventilated patients should 
consider the effect of air volume on the air pressure in the lung, but should also con-
sider other physiological processes that are influenced by the ventilation. The most 
critical goals to achieve in a ventilated patient are a sufficient minute volume with low 
air pressures, avoiding intrinsic PEEP (positive end-expiratory pressure) by setting an 
expiration time that allows the patient to exhale the air before starting with the next 
inspiration phase and to apply enough oxygen to secure a sufficient oxygenation in the 
blood. Thus, gas exchange in the patient has to be taken into account when calculating 
the optimal ventilator settings. The following example should therefore demonstrate 
how to exploit information from different mathematical models to optimize ventilator 
settings individually for a patient. The goal was to calculate the necessary minute vo-
lume (MV) and inspiratory oxygen fraction (FiO2) to achieve a desired partial pressure 
of oxygen and carbon dioxide in arterial blood (PaO2, PaCO2) while keeping the maxi-
mum airway pressure below a critical limit and avoiding the build-up of intrinsic PEEP 
through a sufficient expiration time. The presented approach is evaluated using a pa-
tient simulator that has been presented previously [4]. It incorporates models of respi-
ratory mechanics, gas exchange and cardiovascular dynamics to simulate mechanically 
ventilated patients with various diseases. 

2. Methods 
2.1. Respiratory Mechanics Models 

The presented approach for combined optimization of ventilation and oxygenation in-
cludes four different models of respiratory mechanics that can be used to predict pa-
tient behavior. Thus, depending on the individual patient physiology and the available 
data detail the model that fits the given data best can be used to calculate optimal venti-
lator settings. The implemented models are ordered hierarchically, i.e. all models are 
related to each other with models of higher order being derived from models of lower 
order by adding additional elements or by changing linear elements into nonlinear 
elements. This hierarchy can be exploited for parameter identification when the para-
meter values of the models of lower order are used as a basis for selecting appropriate 
initial guesses for the identification of the more complex models [5]. To select the 
model that fits the given data best, an algorithm has been introduced previously that 
selects the best model based on fit quality and the number of parameters in the models 
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[6]. The models available for the presented optimization approach are a model of first 
order (FOM) [5], a viscoelastic model (VEM) [5], a recruitment model (PRM) [7] and a 
recruitment model with viscoelastic elements (PRVEM) [8]. Input to the models is air 
flow, output is air volume and airway pressure. 

2.2. Gas Exchange Model 

The presented optimization approach uses a three-parameter gas exchange model that 
allows simulating different ventilation to perfusion ratios (V/Q) to predict the effect of 
oxygen supply and minute volume on PaO2 and PaCO2 [9]. The model consists of two 
alveolar compartments, each of which are provided with a fraction of the inspired air. 
Parameter fA defines the fraction of air that reaches one of the compartments while the 
other compartment receives the rest. Venous blood coming from the body is partly 
shunted away and mixed with the oxygenated blood coming from the capillaries. The 
non-shunted blood is then distributed among the two alveolar compartments. Parame-
ter fs defines the amount of shunted blood, parameter fQ defines the amount of blood 
reaching the alveolar compartment that receives the fraction of air defined by fA. In-
puts to the model are the measured end-tidal oxygen and carbon-dioxide gas fractions 
(FetO2, FetCO2) and blood gas parameters such as Hemoglobin concentration, body 
temperature, base excess and pH. The outputs of the model then are the arterial partial 
pressures of oxygen and carbon dioxide (PaO2, PaCO2). To improve the quality of pa-
rameter identification, a hierarchical approach has been used here as well. Figure 1 
shows a schematic overview of the identification of the three-parameter gas exchange 
model. An initial estimate of the shunt is calculated using a simple shunt-model that 
consists of only one alveolar compartment [10]. This estimate is then used as an initial 
guess in the identification of a two-parameter model that is derived from the three- pa-
rameter model. In the two-parameter model, fQ is fixed to a certain value (fQi = 0.1, 
0.2, 0.3, ∙∙∙, 0.9). Parameters fs and fA of the two parameter model are then identified 
for the specific fQi. The combination of fs, fA and fQi, where the parameter identifica-
tion received the best fit to the data are finally used as initial estimates for the identifi-
cation of the three-parameter model. The simple shunt model requires one measured 
PaO2 and PaCO2 together with the FiO2 that was supplied, while the two- and the three- 
parameter models require four measurements of PaO2 and PaCO2 and different levels 
of FiO2. 

2.3. Optimization Algorithm 

To achieve a specific PaO2 and PaCO2 in the patient, both minute ventilation (MV) and 
supplied oxygen (FiO2) need to be optimized. Simultaneously, the minute ventilation 
needs to be calculated with regards to the underlying respiratory mechanics so that the 
peak airway pressure (Ppeak) does not lead to additional lung injury and the expiration 
time is enough to avoid intrinsic PEEP. A study by the ARDS network has shown that 
ventilation with a peak pressure of 30 cmH2O instead of 50 cm H2O leads to a reduction 
of mortality rate from 39.8% to 31% [2]. To allow an almost complete expiration, 
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Figure 1. Hierarchical order of the gas exchange models. The simple shunt model is used to calculate an initial shunt estimate, the 
two-parameter model is used to calculate appropriate initial guesses for the identification of the three-parameter model by testing differ-
ent blood distributions (fQi) and the fitting shunt fs and alveolar distribution fA to it. The combination of fs, fA and fQi that leads to the 
model reproducing recorded data best is then used. 

 
expiration time should be at least 3 times the expiratory time constant (τE) [3]. The op-
timization thus starts with finding the maximum respiratory frequency that still allows 
a complete expiration by using 

exp, min 3Et τ= ⋅                                  (1) 

in, total, max exp, mint t I E= ⋅                           (2) 
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where texp,min is the minimum expiration time necessary for a complete expiration, 
tin,total,max is the derived maximum inspiration time using a given inspiration to expira-
tion ratio (I/E) and fR,max is the resulting maximum respiration rate. I/E is given as a 
goal by the user, while τE is calculated using an exponential fit of the recorded expira-
tion phase. The maximum tidal volume (Vtid,max) is then found by tuning tidal volume 
(Vtid) so that the forward simulation of the respiratory mechanics model results in a 
peak pressure of 30 cm H2O. Subsequently, both MV and FiO2 are tuned to achieve the 
PaO2 and PaCO2 goals in the forward simulation of the gas exchange model using 
MVmax derived from the previously calculated Vtid,max and fR,max as a boundary condition. 
The optimal tidal volume (Vtid,opt) then is the quotient of MVopt and fR,max: 

All models and algorithms were programmed in MATLAB (R2015a, The Mathworks, 
Natick, MA, USA). Parameter identification and tuning of Vtid, MV and FiO2 was done 
using a Nelder-Mead Simplex Search method, realized in MATLAB as fminsearch 
function. Figure 2 gives an overview of the optimization algorithm. 

2.4. Data 

The proposed algorithm was tested using a patient simulator that has been published 
previously. The simulator allows calculating real time reaction of a ventilated patient to 
changes in the ventilator settings. It combines models of respiratory mechanics, gas 
exchange and cardiovascular dynamics to achieve a global simulation of physiological 
interactions caused by applying mechanical ventilation. It allows simulating various 
model combinations and different parameter settings. Four different model combina-
tions have been tested with the proposed optimization algorithm (Permutations of the  
 

 
Figure 2. Optimization algorithm to tune MV and FiO2 to achieve specific PaO2 and PaCO2 while 
protecting lung tissue from exceedingly high airway pressures. (a) Algorithm to calculate fR,max 
and Vtid,max; (b) Algorithm to calculate optimal MV and FiO2. 
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viscoelastic and the recruitment model with a constant flow and a tidal breathing model 
of gas exchange). Table 1 shows the relevant parameters that have been used in the 
models. To identify the respiratory mechanics models, flow, volume and airway pres-
sure (Paw) were recorded, for the gas exchange models FetO2, FetCO2, PaO2 and PaCO2 
was recorded at four different levels of FiO2 (30%, 50%, 70% and 90%). For a realistic 
scenario, the recorded data for Paw, flow, volume, FetO2, FetCO2, PaO2 and PaCO2 were 
superimposed with white noise with an amplitude of ±3%. 

The viscoelastic model (VEM) and the recruitment model (PRM) used to simulate 
the respiratory mechanics reaction coincide with the models described in 2.2. To simu-
late gas exchange reactions, models need to comprise body gas exchange, therefore the 
models used to create the patient data differed from the model used for optimizing MV 
and FiO2. The models used for creating the patient data and subsequent evaluation of 
the optimized ventilator settings are based on the model presented by Chiari et al. [11] 
but were extended to comprise two alveolar compartments [9] [12]. One of the models 
assumes constant air flow into the lungs, the other comprises a dead space compart-
ment to simulate distinct inspiration and expiration phases [12]. 

3. Results 

Table 2 shows the results of the parameter identification, Table 3 shows the response 
to optimized ventilator settings as computed in the patient simulator. Parameter identi-
fication of the respiratory mechanics model resulted in a maximum deviation of the 
identified parameters from their true value of 40% and a minimum deviation of 0% 
when the VEM was used to create the patient data, and a maximum deviation of 19% 
with a minimum deviation of 8.9% when the PRM was used to simulate the patient. 
The identification of the gas exchange model resulted in a maximum deviation of 32% 
for fs and fQ when using the tidal breathing model for simulating the patient and a 
maximum deviation of 12% for fs and fQ when using the constant breathing model in 
the patient simulator. Identified values for parameter fA did show no match (>50% 
deviation) with the value used to create the data. 
 

Table 1. Parameters used in the respiratory mechanics and gas exchange models. C—Compliance, R—Resistance, K—Overdistention 
factor, NOpen—Number of recruited alveoli at the beginning of simulation, TOP/TCP—Threshold opening and closing pressure at which 
alveoli open and close, Vds = Dead space volume. 

Model 
Parameters 

C1 [ml/mmHg] C2 [ml/mmHg] R1 [mmHg*s/ml] R2 [mmHg*s/ml]   

VEM 60 150 0.005 0.005   

 C [ml/mmHg] R [mmHg*s/ml] K [1/mmHg] NOpen [%] TOP [mmHg] TCP [mmHg] 

PRM 100 0.01 0.025 40 10 2 

 fs [%/100] fA [%/100] fQ [%/100] Vds [ml] T [˚C] CHb [g/L] pH BE 

Constant flow 0.05 0.8 0.6 0 37 150 7.45 0 

Tidal breathing 0.05 0.8 0.6 150 37 150 7.45 0 
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Table 2. Parameter identification results. 

Model used to 
create patient data 

Parameters 

Respiratory 
mechanics 

Gas exchange 
C1 

[ml/mmHg] 
C2 

[ml/mmHg] 
R1 

[mmHg*s/ml] 
R2 

[mmHg*s/ml] 
 

fs 
[%/100] 

fA 
[%/100] 

fQ 
[%/100] 

VEM 
Constant flow 

55.9 185.7 0.007 0.005  
0.045 0.104 0.467 

Tidal breathing 0.034 0.108 0.528 

  
C 

[ml/mmHg] 
R 

[mmHg*s/ml] 
K 

[1/mmHg] 
NOpen 

[%] 
TOP 

[mmHg] 
fs 

[%/100] 
fA 

[%/100] 
fQ 

[%/100] 

PRM 
Constant flow 

108.9 0.009 0.028 34 11.9 
0.050 0.120 0.550 

Tidal breathing 0.036 0.116 0.481 

 
Table 3. Patient response to the optimized ventilator settings as computed in the simulator. 

Model used to compute response Response 

Respiratory mechanics Gas exchange Ppeak [cmH2O] PaO2 [mmHg] PaCO2 [ml/mmHg] 

VEM 
Constant flow 16.2 278 33 

Tidal breathing 12.2 264 35 

PRM 
Constant flow 24.3 280 32 

Tidal breathing 29 271 35 

 
The resulting patient responses show a maximum airway pressure below 30 cm H2O 

in all tested combinations, a maximum deviation of 20% and a minimum deviation of 
5.6% in the PaO2 response and a maximum deviation of 8.6% and a minimum devia-
tion of 0% in the PaCO2 response. 

4. Discussion 

Despite its regular use, individually optimizing mechanical ventilation in patients on 
the ICU is a challenging task. Multiple conflicting goals need to be weighed against 
each other while the patient response can predicted on a limited basis only. Using ma-
thematical models helps to not only predict those responses and compute optimal ven-
tilator settings to achieve certain therapy goals but also allow a more detailed insight 
into the patient’s physiology through the identified model parameters. The presented 
work aims at showing the potential of using such models, especially when multiple 
goals need to be achieved.  

The parameter identification showed a good agreement (≤10% deviation) with the 
values used to create the patient data in the patient simulator in most of the parameters 
while some identified parameter values showed a deviation of 20% and more. In the 
respiratory mechanics models that can be explained by the noise applied to the patient 
data in the simulator and the data itself used for identifying the parameters. A single 
standard breath usually is not sufficient to provide enough information to identify the 
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parameters correctly. Instead, multiple maneuvers should be applied to reveal the un-
derlying parameter values. Still, the peak pressures resulting from the optimized set-
tings were all below the critical limit of 30 cm H2O. The identification of shunt and 
blood distribution in the gas exchange models mostly showed a good agreement with 
the values used in the simulator, while the identification of the air distribution seems to 
have failed. However, the models used to create the data and to compute the patient 
response differed from the model that was used to calculate the optimal ventilator set-
tings, thus the results of parameter identification should not be used a quality measure 
for the proposed algorithm. Here, the desired PaCO2 was achieved with only a small 
deviation while the resulting PaO2 did not deviate more than 20% from the desired val-
ue. The reason for the deviation seems to be that model used to optimize the ventilator 
settings shows a stronger decrease in oxygenation when the minute ventilation is re-
duced than the models used in the simulator. 

The presented evaluation of the optimization algorithm is purely simulation based 
and thus can only be used to show the potential of such an approach, a subsequent 
evaluation with real patient data is therefore planned for the future. 

5. Conclusion 

The use of mathematical models can aid in optimizing therapy settings in ventilated pa-
tients to achieve certain therapy goals. Especially when multiple goals have to be met, 
the use of individualized models can be of great help. The presented work shows the 
potential of using models of respiratory mechanics and gas exchange to optimize 
minute ventilation and oxygen supply to achieve a defined oxygenation and carbon 
dioxide removal in a patient while guaranteeing lung protective ventilation. 
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