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Abstract: Respiratory system modelling can enable
patient-specific mechanical ventilator settings to be
found, and can thus reduce the incidence of venti-
lator induced lung injury in the intensive care unit.
The resistance of a simple first order model (FOM)
of pulmonary mechanics was compared with a flow
dependent term of a non-linear autoregressive (NARX)
model. Model parameters were identified for consecutive
non-overlapping windows of length 20 breaths. The
analysis was performed over recruitment manoeuvres
for 25 sedated mechanically ventilated patients. The
NARX model term, b1, consistently decreased as positive
end expiratory pressure (PEEP) increased, while the
FOM resistance behaviour varied. Overall the NARX b1
behaviour is more in-line with expected trends in airway
resistance as PEEP increases. This work has further
verified the physiologically descriptive capability of the
NARX model.

Keywords: autoregressive models; parameter identifica-
tion; pulmonary modelling.

1 Introduction
Mechanical ventilation (MV) is essential for patients with
acute respiratory distress syndrome (ARDS) in the inten-
sive care unit (ICU). ARDS can be caused by a variety
of injuries or illnesses, and it generally involves inflam-
mation in the lungs, and increased pulmonary elastance
[1]. Mechanical ventilation pushes air into the lungs and
ensures adequate gas exchange is maintained. However,
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suboptimal ventilator settings can result in ventilator in-
duced lung injury (VILI) [2]. Respiratory systemmodelling
can enable patient-specific pulmonary mechanics to be
captured, and aids clinicians in setting optimal venti-
lator settings for each patient, reducing the incidence
of VILI [3].

There are a wide range of physiologically and clini-
cally relevant models. However, simple models have been
limited in their abilities to describe all relevant behaviour
[4, 5], and more complex models have had issues with
non-identifiability or practical usability [6, 7]. In partic-
ular, many models use a single term to represent the ef-
fects of airway resistance, which may be an unreasonable
assumption [8].

A nonlinear autoregressive (NARX) model of respi-
ratory mechanics has been proposed by Langdon et al.
[9]. The NARX model has successfully captured airway
pressure waveforms in ARDS patients during recruitment
manoeuvres. The model uses basis functions to capture
elastance across pressure, and multiple flow-dependent,
time-dependent coefficients to capture resistance, passive
lung relaxation, and viscoelastic effects. In particular, the
NARXmodel has beenmore successful than the first order
model (FOM) at capturing the expiratory relaxation, and
both the pressure relaxation and oscillation during an
end-inspiratory pause.

In this paper, we aim to evaluate the changes in resis-
tance captured by the NARX model in response to PEEP
changes. When PEEP is increased, resistance is expected
to decrease as the higher pressure causes recruitment of
alveoli, and a widening of the bronchial path vessels [10].
The ability of the NARX model to capture the reduction
in resistance at higher PEEP levels will confirm its abil-
ity to describe expected behaviour and will validate this
element of the modelling approach.

2 Material and methods

2.1 Data

The data was obtained from a study conducted in the ICUs
of eight German hospitals between 2000 and 2002. Full

© 2016 Ruby Langdon et al., licensee De Gruyter.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.

mailto:ruby.langdon@pg.canterbury.ac.nz
mailto:paul.docherty@canterbury.ac.nz
mailto:b.laufer@hs-furtwangen.de
mailto:moe@hs-furtwangen.de


624 | R. Langdon et al.: Resistance in a non-linear autoregressive model of pulmonary mechanics

details of this study are available in Stahl et al. [11]. Mea-
surements were taken from 28 patients who suffered from
ARDS. A wide range of patient conditions were captured,
as the cause of ARDS varied, the length of ventilation
was between two and 19 days, and the patient age ranged
from 17 to 77 years. The protocol was approved by the
local ethics committee of each participating institution,
and informed consent was obtained from the patient, or
his or her legally authorised representative.

The volume controlled method of ventilation was
used, with a tidal volume of 8 ± 2 ml/kg body weight.
An end-inspiratory pause of ≥0.2 s was used. Sedatives
were titrated to achieve a Ramsay sedation score of 4–5,
and neuromuscular blocking drugs were administered as
needed. Therefore patient breathing efforts did not occur.

Airway pressure andflowweremeasured at the airway
opening, using a pneumotachometer and piezoresistive
transducer. The volume was calculated from continuous
integration of the flow, with adjustment for volume drift.
The sampling rate was 125 Hz. The sampling rate was later
reduced to 62.5 Hz for analysis, in order to reduce noise in
the data and improve the speed of simulations.

During the study, patients underwent recruitmentma-
noeuvres (RMs). We have selected a data set from each
patient that spans 8–10 min. During this period, patients
were ventilated at zero PEEP (ZEEP) for approximately
5 min, before PEEP was increased in steps of 2 cmH2O
after every 5–10 breathing cycles. This continued until a
peak inspiratory pressure of approximately 50 cmH2Owas
reached.

The analysis in this paper was performed on 25 pa-
tients. One patient of the 28 was excluded because a re-
cruitment manoeuvre was not performed. Two patients
were excluded due to unusually high intrinsix PEEP, caus-
ing nonlinear behaviour that the NARXmodel was unable
to capture well [9].

2.2 Respiratory models

The first ordermodel is the foundation of theNARXmodel:

Paw = RV̇ + EV + P0 (1)

where: Paw is the measured airway pressure (cmH2O), R
is the airway resistance (cmH2Os/l), V̇ is the airway flow
rate (l/s), E is the pulmonary elastance (cmH2O/l), V is the
inspired volume (l), and P0 is the end-expiratory pressure
(cmH2O).

The NARX model builds upon the structure of the
FOM:

Paw(t) =
M∑︁
i=1

ai∅i,d(Paw(t))V(t)

+
L∑︁

j=1
bj V̇(t−j) + P0(t)

(2)

where: M is the number of b-spline basis-functions to
be used, i is the index of a particular basis function of
degree d, ai is the coefficient for a given basis function
(cmH2O/l), and ∅i,d(Paw(t)) is the basis function value for
a given pressure measurement. The sum of the basis func-
tions multiplied by their ai coefficients defines a pressure
dependent elastance.

There are j = 1 . . . L · bj coefficients (cmH2Os/l) that
capture the pressure responses that occur due to flow and
changes in flow. The subscript−j in the second term refers
to the previous time sample. Thus, each Paw(t) is calcu-
lated from information from the previous L data points.

The b1 coefficient corresponds most closely to the
resistance term R in the FOM. The coefficients b2 − bL
capture other effects related to the pressure response to
flow. These may include the effects of inertance, relax-
ation of the lung during expiration, and viscoelastic ef-
fects occurring during the end-inspiratory pause. The b
allow the NARXmodel to capture both the end-inspiratory
pause and the expiration curvemuchmore accurately than
the FOM.

2.3 Analysis

The NARXmodel was identified on amovingwindow of 20
breaths that shifted across the recruitment manoeuvre of
each data set (Figure 1). Coefficients ai and bj were iden-
tified independently for each of these windows, allowing
the trend of the resistance term b1 to be observed over time
as PEEP increased.

Previous work determining the optimal parameters of
the NARXmodel for this cohort found that d = 1, L = 350,
andM = 5 provided a good fit to the data, when identified
on the entire recruitmentmanoeuvrewith apressure range
of 0–50 cmH2O [9]. When identified over a smaller pres-
sure range, a smaller value ofM is appropriate to provide
a robust result. Therefore,M = 3wasused in this analysis,
as the NARX model was identified on breaths at one to
three adjacent PEEP levels only.

The NARXmodel used in this analysis has 353 param-
eters. The number of data points per breath is in the range
190–380 for different patients, due to varied breathing
rates of patients, and a constant sampling frequency of
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Figure 1: Three pressure windows of length 20 breaths.

62.5 Hz. Therefore the window length must be at least
two breaths long to avoid non-identifiability of the NARX
model. A window length of 20 breaths was chosen as it
enabled robust and stable b1 values that exhibited the
underlying behaviour of the patients.

To observe how b1 varied with PEEP, boxplots for the
25 data sets were created. The average PEEP for each win-
dow was calculated, and the boxplots were plotted using
data from windows where the average PEEP was 0.1–5,
5.1–10, 10.1–15, and 15.1–20 cmH2O.

The same analysis was performed using the R value of
the FOM. All analysis was undertaken on an i7 quad core
PC with 16GB RAM using MATLAB 2014a 64 bit functions
and the statistical toolbox (Mathworks, Natick, MA).

3 Results
Figure 2 shows how the NARX b1 term and the FOM R
termchangedover time, for three data sets. Separate linear
trend lines have been plotted over the ZEEP portion and
over the recruitmentmanoeuvreportion. These three cases
show the range of behaviours observed in this cohort. In
the recruitment manoeuvre, the NARX b1 tended to de-
crease. In contrast, the FOM resistance exhibited three dif-
ferent types of behaviour. The FOM resistance increased,
decreased, or had a quadratic shape as PEEP increased.

Table 1 shows the mean gradient of the linear trend
line applied to the ZEEP and RM portions for b1 and R.
Within the 90% confidence interval, the RM gradient of
b1 was negative, as b1 consistently decreased with PEEP.
In fact there was only one patient for which the RM b1
gradient was positive. In contrast, the varied behaviour
of R as PEEP increased meant that the 90% confidence
interval for the R gradient in the RM surrounded zero. The
t-test revealed a significant difference between the mean
gradient of b1 and R during the recruitment manoeuvres.
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Figure 2: The NARX b1 (left) and the FOM R (right) for three patients.
T= time at the start of the window.
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Figure 3: Boxlots for the NARX b1 and FOM R parameters,
normalised to the average value at ZEEP. The box limits are the 25th

and 75th percentiles, and the whiskers show the range limited to
data points that are within 1.5 IQR.

There was no significant difference in the behaviour of R
and b1 at ZEEP.

The boxplots for the b1 and R terms (Figure 3) shows
that the median of b1 decreased as PEEP increased. The
median of R also decreased with PEEP, but with a much
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Table 1: The mean gradient of the NARX b1 and FOM R terms for the
ZEEP and RM portions.

Mean ZEEP gradient Mean RM gradient
and 90% CI and 90% CI

NARX b1 −0.011 [−0.021, −0.0012] −0.031 [−0.041, −0.021]
FOM R −0.0012 [−0.0027, 0.0003] −0.0035 [−0.011, 0.0036]
p-Value 0.11 0.0006
(t-test)

shallower slope. The boxplot at PEEP = 10.1–15 cmH2O
contains 23 data sets out of the total of 25, because the
highest PEEP for two patients was less than 10 cmH2O.
Similarly, the boxplot at PEEP = 15.1–20.1 cm H2O con-
tains data from 17 patients only.

4 Discussion
The resistance to flow is primarily described by the NARX
model via variance in the b1 parameter. Figure 2 and
Figure 3 show that the resistance captured by the NARX
b1 term consistently reduced as PEEP increased, over 25
recruitment manoeuvres. This behaviour is concomitant
with expected behaviour, as high pressures cause widen-
ing of airway passages, thus reducing resistance.

In contrast, the behaviour of the FOM R term was
inconsistent. In response to the RM, the R term either
decreased, increased, or had a quadratic shape (Figure 2).
While Figure 3 shows that the general trend of R as a
function of PEEP was downwards, the variance exhibited
by the FOM was significantly larger than that of the NARX
b1 value.

The average trend in both b1 and R during ZEEP was a
very shallow negative slope. The 90% confidence interval
indicated no consistent trend in R at ZEEP, and the t-test
showed no significant difference in the gradient of R and
b1 at ZEEP (Table 1). This behaviour was expected, as
patient’s resistance at ZEEP would be likely to be roughly
constant, unless patient condition changes.

The R term of the FOM had inconsistent behaviour
across patients. Many patients experienced an increase in
this modelled resistance as PEEP increased, from either
the beginning of the RM or from midway through the RM.
It is suspected that those patients that had an apparent
increase in modelled resistance at higher pressures were
actually exhibiting non-linear elastance behaviour that
was being compensated for by increased resistance val-
ues in the FOM. In contrast, the non-linear elastance be-
haviour was captured by the more complex NARX model,

due to the multiple elastance parameters and the other
flow-dependent terms. Thus, the b1 termwas robust to this
non-linearity.

This work has further validated the descriptive capa-
bility of the NARX model for capturing changes in airway
resistance over PEEP steps. Hence the NARX may offer a
unique methodology for observing changes in ARDS pa-
tients, most notably, those suffering from chronic obstruc-
tive pulmonary disease (COPD). Future work will assess
the physiological relevance and numerical robustness of
the b2 – bL coefficients that are necessary to capture the
viscoelastic effects observed in the end expiratory pause,
and expiratory phase [9].
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