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Abstract: Electrical Impedance Tomography (EIT) intends
to obtain the conductivity distribution of a domain from
the electrical boundary conditions. This is an ill-posed
inverse problem usually solved on finite element meshes.
Wavelet transforms are widely used for medical image re-
construction.However, because of the irregular formof the
finite element meshes, the canonical wavelet transforms
is impossible to perform on meshes. In this article, we
present a framework that combines multi-scales wavelet
transforms and finite element meshes by viewing meshes
as undirected graphs and applying spectral graph wavelet
transform on the meshes.

Keywords: EIT; finite element method; multi-scales
wavelet transform; spectral graph wavelet.

1 Introduction
Electrical Impedance Tomography (EIT) is a radiation-
free imaging method [1]. A commonly used imaging strat-
egy is called time-difference reconstruction. It attempts
to reveal the conductivity distribution changes inside the
human body between two time points through the elec-
trical data obtained via electrodes attached on skin. In
time-difference lung EIT typically 16 electrodes are placed
equidistantly on a horizontal chest plane. For each EIT
frame, currents are successively injected into the human
body through adjacent electrodes. A conductivity image
is then reconstructed by collecting the voltage measure-
ments recorded from the remaining electrodes.

We denote the conductivity changes of the domain
between two time steps by ∆s and the measured voltage
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changes on the electrodes by a vector ∆V . Employing the
finite element model (FEM) with M elements, the con-
ductivity change ∆s is represented by a M × 1 vector. For
time-difference imaging, the reconstruction problem can
be linearized [2]. Approximately, there exists the following
relation:

JE · ∆s ≈ ∆V (1)

where JE denotes the Jacobian matrix of elements calcu-
lated at the constant conductivity 1:

JEij =
∆V i
∆sj

⃒⃒⃒⃒
1

(2)

This Jacobian matrix of elements could be calculated
by EIDORS toolbox [3]. The Jacobian matrix JE is ill-
conditioned because the degree of freedom of this inverse
problem is too large. Solving the conductivity changes
from the above relation leads to an ill-posed inverse prob-
lem. Especially, the solution ∆s from equation (eq 1) is
unstable. To circumvent this difficulty, additional prior
information is introduced to restrict the flexibility of the
solution [2]. In this study, we employ a prior illustrat-
ing the sparsity hypothesis. Explicitly, we solve ∆s from
the following regularized optimization problem instead of
(eq 1):

̂︁∆s = argmin∆s
1
2

⃦⃦⃦
∆V − JE · ∆s

⃦⃦⃦2
2

+ α‖R · ∆s‖1 (3)

where α is a regularization parameter that controls the
trade-off between the regularization term and the fidelity
term. According to sparse regularization theory, the regu-
larization term ‖R · ∆s‖1 promotes a solution ̂︁∆swithR·̂︁∆s
being sparse.

Triangular finite element meshes are commonly used
in EIT reconstructions. Triangular meshes can simulate
irregular domains as well as the electrical properties
around electrodes without approximation. Wavelet trans-
forms have been widely used in medical imaging such as
Computed Tomography or Magnetic Resonance Imaging
and shown a great success in these imaging techniques.
However, canonical wavelet transforms are not appropri-
ate to apply on general finite element meshes. Instead, in
this article we used spectral graphwavelet transforms and
view the triangular meshes as graphs.
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2 Method

2.1 Nodal Jacobian matrix

Tomake triangular finite element meshes compatible with
graph wavelet transforms, we need to view the meshes
as undirected graphs. Instead of reconstructing the con-
ductivity changes on triangular elements we pursue a
solution of (eq 3) on the nodes. This relies on reforming
the element-based Jacobian JE to a node-based Jacobian
matrix, i.e. nodal Jacobian. We denote this nodal Jacobian
matrix as JN . The entry JNij of Nodal Jacobian records the
i-th voltage measurement changes with respect to small
conductivity changes on the j-th node. For 2D meshes, we
identified the conductivity on each triangular element as
the linear interpolation of the conductivities on its three
vertices. According to this assumption, the nodal Jacobian
can be calculated from the element based Jacobian JE

(see Algorithm 1). Using this nodal Jacobian, conductivity
changes on nodes can be reconstructed. To complete the
reconstruction process, we need additionally interpolate
the conductivity information on nodes back to elements.

Algorithm 1: Nodal Jacobian [4].

Input: the Jacobian with respect to elements: JE .
Output: the Jacobian with respect to nodes: JN.

For each node n in the mesh:

elems = list of elements using node n,
JN:,n =

∑︀
i ∈ elems

1
3 J

E
:,i where J :, i denotes the ith column of matrix J

End for

2.2 Spectral graph wavelets

In the proposed method, the finite element mesh was
viewed as an undirected connected graph G = {V, E, A}
consisting of a set of indexed vertices V with |V| = N ver-
tices, a set of edges E, and the adjacency matrix A. With
this graph representation, the spectral graph wavelets for
finite element mesh can be constructed. We refer to the
original article for the detailed theoretical background
as well as the construction steps of the spectral graph
wavelet [5]. Indeed, the wavelet transforms are generated
from two functions [5], namely, the scaling function φ0
and the mother wavelet transform φ. For any scale t > 0,
a wavelet transform φt can be derived from the mother

wavelet transform. Intuitively, in the frequency domain,
the scaling function φ0 acts as a low-pass filter, while the
wavelet transform φt performs like a band-pass filter with
the frequency band determined by the scale t. Each of
these transforms can be represented as a N × N matrix.
The i-th column of a wavelet transform φt is the wavelet
with scale t centered at the i-th node of the graph. Some
selected graph wavelets locate on the same center are
plotted in Figure 1. In this paper, we employ the wavelet
transform φ0 and the wavelet transforms φt with scales
t = [0.5, 0.25, 0.125].

2.3 Multi-scales wavelet transform

Multi-scales wavelet transforms are commonly used in
image processing. They provide a multi-resolution view
of the underlying problem. In canonical 2D image pro-
cessing, a multi-scales wavelet transform is constructed
through down-sampling the original domain and the
wavelet transforms scale-by-scale. We adapt this strategy
to the graph wavelet transforms developed in Section
2.2. Indeed, such multi-scales wavelet transform can
be considered as a filter bank. Given a set of scales
t ∈ [2−1, · · · 2−l], this filter bank consists of wavelets se-
lected from the wavelet transforms φt and φ0. We select
all those N wavelets with the scale 2−l and select around

Scaling function Wavelet scale = 0.5

Wavelet scale = 0.25 Wavelet scale = 0.125

Figure 1: Some selected graph wavelets. These plots represent the
wavelets located at the 500-th node with different scales.
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Figure 2: The down-sampled node sets from the mesh used in
Figure 1. With the decreasing of wavelet scales t, the denser node
sets are used to select the wavelets from the corresponding φt.

2−j · Nwaveletswith scale 2−l + j. Here,N is thenumber of
nodes in mesh. This process is realized by downsampling
the mesh nodes and forming a chain of node sets Vl ⊃
Vl−1 · · · ⊃ V0. In this article, we fix l = 3. Regarding the
mesh in Figure 1, the downsampled node sets are plotted
in Figure 2. For j = 0, 1, 2, the wavelets of scale 2−l + j with
centers in Vj are selected. For j = 3, the wavelets of φ0
with centers in V0 are selected. Indeed, since the wavelets
are identified as columns of matrices φt, we need only
select the corresponding columns in wavelet transform φt
for each scale. A multi-scales wavelet transform W will
be obtained by setting its column as the selected wavelets
scale-by-scale.

2.4 Regularization with multi-scales wavelet
transform

Combining the above tools, we introduce a sparse solver
using themulti-scales wavelet transform as regularization
matrix. Given the multi-scales wavelet transform W con-
structed in Section 2.3, the regularizedEIT inverse problem
(eq 3) has been rewritten as:

̂︁∆s = argmin∆s
1
2

⃦⃦⃦
∆V − JN · ∆s

⃦⃦⃦2
2

+ α
⃦⃦⃦
WT · ∆s

⃦⃦⃦
1

(4)

Here we abused ∆s to denote the conductivity changes on
nodes. This optimization problem can be solved by Split
Bregman iterative solver [6].

We summarize the proposed sparse solver with
wavelet-based regularization (SSWR) by flowcharts in
Figure 3.

3 Simulation results
The performance of this wavelet based regularization
framework has been evaluated through simulation. The
simulations were executed on a circular finite element
domain with radius 1 (see. Figure 4A). On the boundary,

Represent mesh as

graph: G = {V, E, A}

Calculate graph

wavelets

Calculate

Nodal Jacobian

Constructe multi-scales

wavelet transfrom

Reconstruction impecance

changes on nodes by split

Bregman iterative solver

Interpolate the

data on nodes to

elements

Down-sampling

graph

Figure 3:Workflow of the proposed framework.

16 electrodeswere attached equidistantly. Thebackground
conductivity is fixed to s0 = 1.0 S · m−1. Alternative cur-
rents of 10 mA were injected successively and adjacently
through the electrodes, the voltages between adjacent
electrodes were recorded and denoted by Vh. Two con-
trasts with conductivities 1.6 S · m−1 (blue contrast) and
0.6 S · m−1 (red contrast) are embedded into the back-
ground (see Figure 4B). After embedding, another voltage
measurement (denoted byV ih) was simulated. The voltage
differencewas calculated by ∆V = V ih − Vh . In addition,
10% white noise was added to ∆V .

The reconstructions were applied on the coarser mesh
shown in Figure 4C and D to avoid the so-called “inverse
crime” problem. This coarser mesh is the same as the
meshes used for Figures 1 and 2. Indeed, the multi-scale
wavelet transform matrix was obtained as described in
Section 2.3 using the down-sampled node sets depicted in
Figure 2. In Split Bregman iterative solver, the number of
iterations was fixed to be 5. The regularization parameter
is set to be α = 10−5. In simulation, computation time
for SSWR solver takes around 0.4 s to accomplish the
reconstruction. Please insert your manuscript here.

The proposed SSWR solver has been compared with
the standard one step Gauss-Newton method (GN) [3]. GN
was combined with standard Tikhonov regularizer which
employs the identity matrix as regularization matrix. The
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Figure 4: Simulation results. (A) shows the background of the
simulated phantom. (B) shows the ground truth. Two contrasts are
embedded into the background. (C) and (D) are the reconstructed
images from the proposed SSWR solver and the one step GN solver
with Tikhonov regularization respectively. The reconstructions are
performed on a coarser mesh (C and D).

regularization parameter used for Tikhonov regularization
is set to be 5 · 10−3. The reconstructed images are plotted
in Figure 4D. All the parameters are heuristically chosen
for different solvers to get the best performance.

4 Discussion
The reconstructed images (see Figure 4C and D) demon-
strated that the proposed wavelet-based regularization
generates reconstruction with fewer artefacts. In particu-
lar, the image reconstructed by SSWR is more smooth and
homogenous in contrast value. Moreover, the shape of the
contrasts is better detected by the SSWR solver.

In this study, all parameters, such as the regulariza-
tion parameters and the number of iteration for SSWR
solver, are determined heuristically. A strategy to find the

optimal parameter setting is preferred. Another shortcom-
ing is the computational time. The proposed SSWR solver
is an iterative solver. It is very efficient, but not enough for
real-time imaging.

5 Conclusion
In this preliminary study, amulti-scales wavelet transform
is constructed in the context of irregular finite element
mesh. This is realized by applying the spectral graph
wavelet transforms and down-sampling the nodes. Sparse
regularization using this multi-scales wavelet transform
was applied in simulation. Simulation results indicated
that the proposedwavelet-based sparse solver obtains bet-
ter images. In particular, the image reconstructed by the
wavelet-based sparse solver avoids small turbulences and
the shape of contrasts can be better recovered.
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