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Abstract: Over the last years, we have witnessed increasing interconnection between the physical and
digital world. The so called Internet of Things (IoT) is becoming more and more a reality in application
domains like manufacturing, mobile computing, transportation, and many others. However, despite
promising huge potential, the application domain of smart homes is still at its infancy and lags behind
other fields of IoT. A deeper understanding of this type of techno-human system is required to make
this vision a reality. In this paper, we report findings from a three year pilot that sheds light on the
challenges of leveraging IoT technology in the home environment. In particular, we provide details
on data quality issues in real-world deployments. That is, we analyze application level data for
errors in measurements as well as issues in the end-to-end communication. Understanding what
data errors to expect is crucial for understanding the smart building domain and paramount for
building successful applications. With our work, we provide insights in a domain of IoT that has
tremendous growth potential and help researchers as well as practitioners to better account for the
data characteristics of smart homes.
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1. Introduction

The internet of things is promising to revolutionize almost all aspects of our life. From the way
that we experience and communicate with our environment to the way that we manufacture our
products and conduct business. This revolution is heavily based on the deployment of a myriad
of smart things that sense, act, and communicate with the users and among themselves in order to
provide advanced services. One of the first areas that are starting to experience this revolution is
“smart homes”. According to a definition by the United Kingdom Department of Trade and Industry
“A smart home is a dwelling incorporating a communications network that connects the key electrical appliances
and services, and allows them to be remotely controlled, monitored or accessed.” An interpretation of this
could be that a smart home is a house that includes multiple sense and actuate systems that allows
to the users fully control and monitor functions such as lightning, heating and cooling, security and
access, etc. From the aforementioned definition of the common smart home scenarios, it is clear that
a smart home has rigid networking requirements for the connectivity of the smart things with the
actuators and with the operators of the system; which are in the near zero latency range (e.g., if you
need to open a garage door or a valve in a heating system the acceptable latency for the user is at the
sub-second range). We have faced similar strict requirements during our deployment for the data
collection and processing. This time the main issue was not the latency but the quality of the data.
The quality of the data is affecting the results of the analytics and therefore it is fundamental for the
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precision of the system to deal with all root causes during collection, transfer, processing, and analysis
of the data beforehand.

The remainder of the paper is structured as follows. Section 2 provides an overview of the
PeerEnergyCloud project and discusses the overall system architecture. Section 3 describes the data
quality challenges that we faced during the deployment with focus on the main analytical components
of our system. Section 4 presents the detailed analysis of the data quality issues we faced when piloting
the system together with technical details of the key components in our test bed and the mechanisms
for addressing the encountered challenges. Section 5 discuss similar projects and, finally, we conclude
the paper and discuss future work in Section 6.

2. Project Background

In this paper, we present analysis of data that we acquired throughout a three year pilot with
smart home technology. The pilot was conducted as part of the PeerEnergyCloud project [1], which
funded by the German federal ministry of technology. We describe the project background and the
setting for our data collection in this section.

The PeerEnergyCloud was conducted between 2011 and of 2014 by a consortium of academic
institutions and industry. The goal was to coordinate energy consumption within local neighborhoods
to better utilize locally available renewable energy. Specifically, it aimed at finding a means to influence
consumption behavior, so that energy from privately owned solar panels is consumed within the
immediate neighborhood. Such an adaption of consumption behavior is of high interest for electrical
grid operators, because it improves grid stability and saves investments in grid infrastructure [2].
In addition, the project explored ways of how grid operators can provide additional services to
the home owners on top of the piloted infrastructure. The PeerEnergyCloud project addressed the
development of analytics technologies that enable a smarter use of energy. Specific use cases are
detailed in Section 3. All scenarios are driven by a deeper understanding of energy consumption on
the level of individual households. The pilot in PeerEnergyCloud enabled this work though a cloud
based infrastructure for data collection, processing, and service provisioning.

A central aspect of the project was the piloting of smart home sensor systems and applications.
The smart home systems are the backbone of the PeerEnergyCloud project approach. Smart home
solutions are the enabling technology that allows home owners to better understand and manage
their energy consumption. As such, the technology provides the entry point for applications that
help to optimize the consumption behavior and to deliver additional services. The pilot in the
PeerEnergyCloud project allows deep insights into the operations of smart home system under real
world conditions. Throughout the project, we collected data from smart home systems over a period of
up to three years. This enables a long term analysis of the properties of smart home data and provides
the basis for the results in this paper.

2.1. System Architecture

As depicted in Figure 1, our system consists of two parts: the operational infrastructure that
collects data from households and an analytics infrastructure that we used for analyzing the collected
data. Data is transferred into the analytics infrastructure via batch process that export the data from
PostgreSQL into Hadoop Distributed File System (HDFS) as Comma Separated Values (CSV) files.
We used Impala to convert the CSV data to the parquet file format.
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PostgreSQL was chosen because it provided an easy way of storing and querying the data using
the SQL query language. However, we experienced that PostgreSQL is insufficient for performing
ad hoc queries as needed for the results presented in this paper. Running Impala on top of HDFS
filled this gap. We also used additional infrastructures such as Hadoop’s Map Reduce, Storm, and the
complex event processing engine Esper [3].

The technological components of the system (of interest for this work) are the following:

‚ Smart plugs with remote control, containing a high-precision energy meter to measure parameters
like voltage, current, frequency, power, and electrical consumption (KWh). Measured data are
sent via wireless connection (ZigBee [4]) to the Home Gateway. Smart plugs contain a relay to
switch on/off the devices remotely and consume only a few mA for all the operations carried out.

‚ Multi-sensors able to acquire various ambient parameters like brightness, temperature, humidity,
motion detection. Also in this case, measured data are sent via wireless connection (ZigBee) to the
Home Gateway.

‚ Home Gateway which collects all measured data, stores them in a local cache and sends them
using a secure connection to a remote Backend. The gateway provides at least two interfaces: one
wireless interface (ZigBee) able to connect to the smart plugs; one Ethernet/Wi-Fi interface to the
home modem/router to have Internet access.

The analytics infrastructure consists of a small four-node Cloudera cluster. For the quality analysis
presented in this paper we were only using the Impala service using YARN as a resource manager.

The smart metering ecosystem may facilitate a multitude of applications and value added services
(VAS). Security and privacy are a major concern in this context as these applications and services
directly affect users’ everyday life and may collect a substantial amount of sensitive data. In order to
enable these services new security and privacy solutions are required. The user needs simple-to-use
mechanisms that provide a transparent view on all data that is collected and processed within such
an ecosystem. The user should be in perfect control of which data is collected, how it is processed
and which data is exchanged with which third parties. The PEC Privacy Dashboard is one of the
components developed for the PEC project designed to define and control access to sensors. The user
interacts with this component dashboard to review current access control rules and to modify as well
as add rules (see Figure 2).

The user input from the privacy dashboard is transformed into statements in a given policy
language. In order to make our approach as open as possible, XACML is used as the policy decision
language, as its expressiveness allows full coverage of all necessary aspects for our application
scenarios. These policy statements are then used to evaluate access requests from various applications.
More details can be found in [5].
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2.2. Sensor Deployment

We provided some volunteers with smart home packages that have been installed on their
premises. A package consisted of a set of sensors and a gateway to enable communication with a
cloud infrastructure. In addition, volunteers had access to some cloud-based smart home applications.
The volunteers conducted the installations on their own account and they were free in choosing how
and where to install the sensors. Some of the initial installations were done under supervision from
members of the research team and some completely unsupervised. From this point on, we continuously
collected the data without any supervision of the deployment, in some cases for more than three years.

During the installation we faced some connectivity issues related to the connection of ZigBee
devices to the gateway. The ZigBee connectivity heavily depended on the conditions within the
various households. That is, the material of the wall and the distance between sensors (i.e., number of
stories) had a strong impact on the connection quality. We managed to support deployment in large
households by leveraging the multi-hop capabilities of the ZigBee protocol and by carefully selecting
deployment positions (i.e., plugs in stairways between stories).

3. Data Quality Challenges in Smart Home Applications

Data quality is an important factor in any data driven application but the particular requirements
vary between the particularities of the targeted use cases. Smart home technology is an enabler for
a broad range of applications for a variety of stakeholders. The PeerEnergyCloud covered use cases
that address the utilization of smart home technology for private users within the home as well as for
optimizing the operations of utilities. The different applications are sensitive to different data quality
aspects and to varying degrees. This section discusses the impact of data quality along sample use
cases from the PeerEnergyCloud project. In particular, we address the data quality aspects of (a) data
accuracy; (b) completeness; and (c) delay. Here, data accuracy refers to the correctness of captured
sensor measurements. Completeness refers to the presence of absence of gaps in the sensor stream, and
delay refers to the time gap between a change in the physical world and the reflection of this change in
the software system. We discuss the significance of each aspect along the sample applications below
and provide corresponding technical analysis throughout the paper. Specifically, we discuss (1) a
real-time dashboard; (2) long-term consumption analysis; and (3) short-term consumption prediction.
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3.1. Real-Time Dashboard

Trial participants of the PeerEnergyCloud project were provided with a set of web-based
applications to analyze their consumption data. One of the key applications in this set is a real-time
dashboard. Real-time in this application means, that users should get an instant feedback about
changing their consumption. This is, when the user switches a device, the observed values must
change quick enough for the user to relate the consumption change to his or her switching action.
Figure 3 shows a screenshot of the application. The dashboard provides live statistics of device specific
energy consumption. Available visualizations are the current values as number as well as line charts
that get continuously updated. The application furthermore enabled switching of devices via the
web-interface.
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Throughout the PeerEnergyCloud project this application was one of the main ways how users
interacted with the system. Displaying correct data is vital for the perceived usefulness and the trust
in the technical solution. In particular, values that are implausible can easily be spotted by users and
lead to negative perceptions. Note that this aspect does not only relate to the correctness of sensor
measurements. The completeness and timeliness of arrival is even more important. When users switch
a device on, they expect the displayed load curves to go up immediately. However, missing or delayed
values may cause a misalignment between the expected and the displayed data. Incorrect reflection of
loads in the real-time dashboard is very prominently perceived by the users (e.g., I just switched the
lamp is on but shows still a flat consumption line at zero). This makes dealing with gaps and delays in
the data particularly challenging for such types of applications.

3.2. Long-Term Consumption Analysis

Part of the application portfolio within the PeerEnergyCloud project were applications that
provide a long term analysis of device specific energy consumption. That is, consumption is displayed
aggregated over days, week or month. Figures 4 and 5 show sample screenshots of such applications
from the pilot. The aggregated long term analysis was a key feature for many pilot participants. This is
because it allows a better understanding how much a particular devices contribute to the overall
consumption and how energy efficient they are overall. For instance, several users were keen to
monitor the consumption of their washing machine to understand the impact of using older machines
compared to modern and more energy efficient solutions.
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Data quality for long term analysis must be sufficient to yield reasonably accurate results.
Compared to real-time analysis, it is less critical if some measurements as missing, as long as the long
term aggregate is not significantly impacted. Also, the applications do not display real-time updates
and hence users do not directly perceive small gaps in the data stream. Thus, delays in measurements
play a minor role for this type of application. However, throughout the pilot we encountered data
quality issues that got to the users attention with negative effects on the perceived usefulness and
trust in the system. The relevant data quality aspects are related to data accuracy and completeness.
Erroneous measurements can in extreme cases lead to considerable distortion of the aggregate values
and noticeably implausible results. Also, long gaps can cause apparent deviations from the actual and
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displayed consumption. For instance, a user may remember to have briefly watched TV yesterday
but—in case of a longer measurement gap—may see zero consumption for the TV on that day. Thus,
while being less time critical, scrutinizing data for display is required and the quality of the input
streams has a significant impact on the applications.

3.3. Short-Term Consumption Prediction

A key challenge for grid operators is balancing out production and consumption at any time.
Growing numbers of solar panels on private homes in Germany introduce additional complexity to
this challenge. For efficiency reasons, it is desirable to balance out the production and consumption
locally in the grid and avoid long distance energy transmission. One goal of the PeerEnergyCloud
project was to investigate means for improving local balancing by proactively influencing energy
consumption in households. Proactive steering however, requires household specific prediction of the
consumption at least a few minutes ahead [6].

Throughout the project, we investigated prediction mechanisms that apply household specific
prediction models on the real-time streams of consumption data. Our experiments show that high
resolution and device specific measurements enable improvements in the short-term prediction
accuracy. Yet, data quality issues can impact the prediction. One aspect is that faulty input data
causes prediction errors. Another aspect, is that missing data reduces the prediction accuracy as well.
We have shown in experiments, that high temporal resolutions in measurements can positively impact
the prediction accuracy [5]. Thus, the data accuracy is major concern for short-term consumption
prediction. The aspect of delay however is comparatively less relevant. This is because the temporal
scope for predictions is in the order of at least several minutes. Thus, compared in dashboards for
real-time consumption monitoring, delays of a few seconds have less impact on an application level.

4. Analysis of Data Quality

This section presents the results of our analysis of data quality. We first provide an overview
of the overall characteristics of the captured data and the observed anomalies. Subsequently,
we report on findings regarding the arrival rates of sensors messages and the downtimes of
infrastructure components.

4.1. Overview of Data Characteristics

Overall, the data quality of six households has been analyzed. Each household contained six or
seven smart plugs and all but one contained three or four multi-sensor devices.

Table 1 details the distribution of sensing devices and the total number of measurements. While
most households provided between 520 and 650 Mio measurements, Houses 4 and 6 only delivered
a fraction of the measurements. This is due to the fact that House 6 was configured with a lower
sampling rate and only reported one sample per minute as compared to a sample of every two seconds
at the other houses. Each smart plug includes six sensors and each multi-sensor device contains five
sensors. Tables 1 and 2 give an overview of the captured data types and total number of measurements.

Table 1. Overview of sensing devices.

HOUSE Smart Plugs Multisensors Sensor Devices Measurements

House 1 6 3 9 522,269,428
House 2 7 4 11 636,928,123
House 3 7 4 11 534,912,560
House 4 7 3 10 159,202,670
House 5 7 4 11 648,517,430
House 6 7 0 7 18,822,263

Total 41 18 59 2,520,652,474
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Table 2. Overview of sensors.

Measurement Type Deployed Device Unit Data Type

Power Smart Plug Watt Float
Frequency Smart Plug Hertz Float
On state Smart Plug n/a ON|OFF
Voltage Smart Plug Volt Float
Current Smart Plug Ampere Float

Work Smart Plug kWh Float
Motion Multi Sensor Motion intensity index Float

Battery State Multi Sensor n/a LOW|OK
Brightness Multi Sensor Lumen Float

Battery Voltage Multi Sensor Volt Float
Temperature Multi Sensor Degree Celsius Float

Overall, we examined the data quality of over 2.5 billion measurements that were stored in a single,
de-normalized, partitioned Impala table backed by parquet files using the default snappy compression.
Several additional, auxiliary tables were created supporting the analysis. The files were stored on
HDFS using our default replication factor of three. The net storage, i.e., not counting the replicated
blocks, of the compressed parquet files amounts to approximately 17 GB of data. As comparison the
uncompressed net storage of the same data on HDFS amounts to approximately 287 GB. Figure 6
shows the aggregated number of measurements per month for each household.
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In the following subsections, we first describe conversion errors of number and non-number types
and then describe the data characteristics for each measurement type. Those measurement types that
did not reveal any insights are not mentioned. For instance, we did not find any irregularities in the
brightness readings.

4.1.1. Conversion Errors

All the measurements were initially stored as strings. As a first step towards assessing the data
quality we validated the data types. Except for the on state of the smart plug and the battery state of
the multi-sensor, values should represent floating point values. However 452 values could not be cast
to a floating point. This affected all corresponding measurement types of the smart plug. None of
the multi-sensors were affected by such parsing errors. In addition, there exists a single record of a
current measurement where the actual measurement is completely missing (empty string). Of the
non-floating point measurement types there were only two erroneous values of measurement type
“on state”. The values were ONMS = 239 and ON6 and are likely caused by formatting errors in the
sensor message or errors in the parsing process.
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4.1.2. Work Anomalies

Ideally, work values would increase monotonically over time as the measurement was intended
to represent the accumulated work since deploying the sensor. However, house occupants could reset
the plug which would lead to reporting 0 kWh followed by monotonically increasing values. An
event in which a preceding value was truly larger than the current value we therefore considered as
anomaly. The overall number of anomalies is insignificant: out of the 421,589,929 work values only
17,876 anomalies were observed in our dataset. However we realized that only an insignificant part of
the anomalies could have resulted from resetting the smart plug. The majority, i.e. between 98.19% and
99.99% of the anomalies per household showed as a non-zero drop in the work value. Our assumption
is that this is due to network latencies that lead to messages arriving at the gateway out of order.

4.1.3. Voltage Anomalies

Figure 7 shows that most of the voltage values vary between 227 and 239 V and most values are
around the average. We also looked at the minimum and maximum voltage values for each sensor in
order to check whether they deliver plausible values. In terms of the maximum values (not shown in
the figure) only two sensors exhibited unusual high values. One sensor reported a maximum voltage
of over 1392 V whereas the second sensor reported 2099 V. Both sensors were deployed in House 3.
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When considering the minimum current measurements, it can be seen from Figure 8 that for a
majority of sensors, i.e., 33 sensors, the minimum value equals zero. One sensor in House 6 reported
an extremely high minimum value of 173.
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4.1.5. Frequency

As can be seen in Figure 9 all the households exhibit a fairly homogenous statistical data
characteristics. Average and median are both at 49.9 Hz for all households. The standard deviation is
also very homogeneous at 0.15 Hz for all households. Only House 3 has a slightly higher standard
deviation of 0.16 Hz which is mainly caused by the extremely high values reported by a single sensor.
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However, some anomalies are revealed when considering the maximum and minimum values as
depicted in Figure 10. Houses 1 and 2 do not exhibit any significant anomalies. House 1 shows values
between 0 and 50.3 Hz and Houses 3 and 4 show irregularities both in the minimum and extremely
high voltages.

A further drill down on the sensor level reveals that for House 5 the maximum value is caused
by a single sensor) whereas the minimum is caused by another single sensor. A third sensor shows
a minimum value of 12.1 Hz. All other sensors of House 5 exhibit have minimum values of 49.6 Hz
and maximum values of 50.3 Hz. Similar observations hold for House 1. For House 3, the situation is
slightly different as both the minimum and the maximum values are caused by a single sensor.
This may be interpreted as a strong indication that the sensor is faulty. However there is also
second sensor that has a maximum value of 238 Hz. Possible explanations for such value are sensor
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failures communication errors that cause the wrong measurements being interpreted as frequency
measurements (e.g., 238 might actually be a voltage measurement).

The other sensors of House 3 provide values between 49.6 Hz and 50.3 Hz as all other sensors
without outliers do. House 4 has two irregular sensors: one being responsible for the overall maximum
and another one for the overall minimum of 44.5 Hz with a highest value of 63.3 Hz.
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4.1.6. Temperature

Temperature readings are not available for House 6 as no multi-sensors have been deployed in this
household. Statistically, as can be seen in Figure 11, the temperature readings provide plausible values
being on average between 20.5 ˝C and 23.4 ˝C for the households. Also, the minimum and maximum
values provide plausible results, but for House 5 the minimum value of ´18.9 ˝C is unusually low.
However, when drilling down to the time series of this sensor we can observe a continuous drop over
3 h (see Figure 12). A possible explanation is that the sensor was put into a freezer. The multi-sensor
containing the temperature did not report any other readings after the minimum temperature has
been reported. So the device has not been reconnected to the gateway and may have even be rendered
permanently damaged.
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4.1.7. Power

As can be seen from Figure 13 statistically the power readings follow the expectation. The average
is moderately low between 8 and 54 W. Maximum values are between 1.5 and 2.8 kw reflecting
high power consumers such as vacuum cleaners, fridges, or multi-sockets serving multiple devices.
We would expect that there are only a few high power readings compared to the lower power readings.
This is reflected by the small median and a higher standard deviation than the average.
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4.1.8. Motion Values

When considering the motion values (i.e., the count of messages about detected motion), one
sensor of House 5 show considerable higher numbers than the other sensors (see Figure 14). A possible
explanation for these high values could be that the sensor was deployed in a location that was exposed
to direct sunlight.
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Figure 14. Maximum motion values per sensor and house.

4.1.9. Battery Status

The battery status should only contain one of the two values LOW or OK. While 81.5% indicated
a good battery status, only 18.1% indicated a LOW battery state. The remaining 0.3% constitute
erroneous values. All erroneous values originated from two households and constituted floating point
numbers in the range between 3.8 and 4.4, exclusively.

When drilling down on sensor level, we can observe that all deployed multi-sensors of both
households reported erroneous values (see Figure 15). More interestingly, we can observe that the
number of erroneous measurements are very close together across the same sensors in a household.
Noteworthy is also the fact that erroneous measurements only occur for each day in a timespan of
seven days.
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4.2. Arrival Rates of Sensor Data

All sensors in the pilot were configured to report data at a fixed sample rate. Thus, under ideal
conditions, an application gets new data at a fixed rate. However, our experience from the pilot shows
that data rates can vary significantly. In this section, we describe our analysis that provide insights
into application level data rates that are achieved under real conditions. We ran separate analysis for
the two different types of sensing devices that we employed in the pilot. The first type are the smart
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plugs that are get their energy from the power line and report new data every 2 s. The second type are
the multi-sensors that are battery powered and configured to report new data every 6 min. Results for
these two separate analyses are provided below.

4.3. Arrival Rates of Smart Plug Data

To analyze the application level data rates of smart plug data we use the application level time
stamps in our data records. These timestamps are set for each new sensors record when it is received
by the gateway and written into the local database. For the analysis we compute the recorded time
difference between consecutive entries from the same sensor source. Under ideal conditions, this
delay between consecutive values resembles the sample rate of the sensor. That is, we expect a new
entry every 2 s. We compute the histogram of delays to understand if and how the actual arrival rates
differ from the expected value. Figure 16 shows histograms of delays aggregated for all sensors in the
six investigated houses. For the analysis, we used data of one month per house. Specifically, for all
houses we took data from the same month in summer where all six houses were active in the pilot at
the same time.J. Sens. Actuator Netw. 2016, 5, 5 14 of 23 
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Figure 16. Histograms of delays between messages.

The results show, that the majority of delays are the expected 2 s in all but one case. The exception
is House 6 where sensors were configured to sample once per minute. However, the histograms also
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reveal substantial deviations from the expected value at all houses. We observe several instances where
consecutive messages are further apart than the sample rate defines. For instance, more than 11% of all
computed time gaps were 3 s and 5% were 4 s at House 3. Also, several messages arrive in shorter
intervals than the defined sample rate. In House 3, more than 8% of messages are recorded at the same
time as their predecessors. More than another 15% of the messages are recorded with timestamps only
1 s apart.

The deviations can be seen at all houses. Yet, the magnitude of deviations differs among the
installations. An obvious outlier is House 6, where the delays peak at 61 s. This is because the sensors
in this particular house are configured to sample every minute. Yet, like in the other installations,
we observe deviations from the expected value. Notably, the peak is at 61 s and not at the expected
60 s, indicating inaccuracies of the sensor clock. All other houses had the same configuration for the
sensor sample rate. However, the magnitude of deviations varies among the installations. For instance,
the histogram for House 5 shows most values at the expected 2 s interval with only few counts for
1 s and 3 s intervals. In contrast, House 3 shows comparatively large deviations from the expected
values. Significant proportions of the messages arrive with considerably longer delays than expected,
i.e., as long as 5 s or in some cases even above. Other messages arrive in shorter intervals, i.e., with 1 s
delay or no measurable delay.

While long delays may partially be explained with dropped messages, the short delays show
that messages travel with different speed through the network. These observations show clearly that
specifics of the deployment environments in the different houses have a considerable impact on the
arrival rates of sensors messages. Applications must be aware that arrival rates are not constant and
the fact that this particular quality aspect varies between installations.

Figure 17 provides more details on the divergence of arrival rates, by drilling down on sensor
level. As the figure shows, arrival rates of sensor measurements vary among sensors within the same
house. For instance, in House 1 we observe that three of five sensors have very similar distribution for
the arrival rates of their measurements. However, two sensors differ from that distributions. For these
two sensors, the arrival rates divert considerably more from the expected two second interval. Similar,
we observe two groups of sensors with similar distributions for arrival rates in House 3. Here, three
of five sensors show similarly distributed and relatively large deviations from the expected value.
The other two sensors show only few and small deviations. Compared to each other, the corresponding
distributions for these two sensors are also very similar.

In particular, for House 3 it is notable how the distributions of arrival rates fall in two very distinct
groups. It is therefore likely that the larger deviations in arrival rates have the same or similar cause
for all sensors. A possible explanation is multi-hop communication in the ZigBee network. Some
sensors have a direct connection to the gateway while others get their messages relayed by a neighbor
sensor. Communication via one hop is potentially more error prone than direct communication.
Another possible explanation is that the different groups of sensors are situated in different physical
conditions. That is, a group of similarly performing sensors may be deployed in the same room, having
to communicate through the same walls to the gateway.

Table 3 provides an overview of the gap distributions of gaps sizes per house and sensor with
regards to the variance. Note that we removed rare outliers (i.e., with only a single observation in
the whole data set) from the computation. For the expectation value we took the sample rate of the
corresponding device. In summary, we find that a considerable proportion of sensors shows low
variance in arrival rates (between 0.32 s and 1 s), while a smaller proportion yields high variance
(between 1 s and 10.83 s). Each house has at least one sensor with a variance below or up to one second.
However, the overall variance differs significantly due to the different numbers of sensors with high
variances in the deployed portfolio.
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Figure 17. Sensor specific histograms of delays between messages.

Table 3. Variance of arrival rates.

House 1 House 2 House 3 House 4 House 5 House 6

overall per sensor overall per sensor overall per sensor overall per sensor overall per sensor overall per sensor

0.90

0.67

0.41

0.32

1.90

2.37

1.69

1.70

0.49

0.53

4.85

3.98

1.16 0.41 0.76 1.57 0.48 1.00

0.66 0.33 2.50 1.27 0.59 4.58

0.67 0.58 0.79 1.15 0.47 10.83

1.35 0.45 2.37 0.98 0.46 3.96

0.35 2.39 2.20

0.40 0.74 7.43

4.4. Arrival Rates of Multi-Sensor Data

Similar as in the analysis for smart plug data, we use the application level time stamps in our data
records to analyze the application level data rates of multi-sensor data. Like for the smart plugs, these
timestamps are set for each new sensors record when it is received by the gateway and written into the
local database. Unlike smart plugs, the multi-sensors are battery powered. We chose a sample rate
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of one sample every 6 min to ensure a sufficient battery life time (i.e., more than 6 months with one
set of batteries). For all houses we took data from the same month in summer. Like for smart plugs,
we compute the recorded time difference between consecutive entries from the same sensor source
to analyze arrival rates on application level. Under ideal conditions, this delay between consecutive
values resembles sample rate of the sensor. That is, we expect a new entry every 6 min. To understand
how the actual arrival rates compare to the expected value we count for each observed delay how
often a delay of that length occurs (with a time resolution of one second). Figure 18 visualized the
results as scatter plots.J. Sens. Actuator Netw. 2016, 5, 5 17 of 23 
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Figure 18. Number of observations of different time gaps between messages.

The x-axis reflects the delay duration and the y-axis marks the observed count for each delay.
House 6 is missing from the analysis because no multi-sensors were available in this installation.

As Figure 18 shows, the observed arrival rates differ significantly from the expected 6 min.
The delay values with the highest count are about 6 min for all houses (361 s in most cases), but a
substantial number of observations deviate from that value by several seconds or even minutes. Also,
in the vicinity of the expected value we observe high counts for values that are several seconds off from
the expected 6 min. Figure 19 details the analysis of these deviations by zooming in on the time-axis.
The figure shows several occurrences where the time between message arrivals is tens of seconds
shorter or longer than expected. The order of magnitude and frequency of these deviations is notably
higher than for the smart plugs.
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Figure 19. Number of observations of different time gaps between messages, zoomed in on
lower values.

The overview in Figure 18 further reveals that the time spans between consecutive messages
accumulate around certain values. For House 1, we observe high counts for values that are roughly
multiples of 6 min. Such a pattern is expected as results for lost messages. Notably, House 1 is the only
house were such patterns materialize. For the other houses we do not observe accumulations around
the multiples of 6 min. That means, drop rates were overall low in 4 of the 5 analyzed cases. However,
at all houses we do find accumulations at values that are not multiples of the sample rate. In particular,
some spikes can be seen for values around one minute, 250 s. These patterns cannot be explained
by dropped messages and are assumed to be a result of hardware properties of use sensors. Overall,
the analysis shows that time spans between consecutive messages are scattered across large ranges.
This leads to rather unstable arrival rates that must be accounted for by applications that use the data.

4.5. Downtimes of Infrastructure Components

In this section, we analyze the behavior of the gateways during the months they were supposed
to be active. Specifically, Figure 20 shows the behavior of each gateway in terms of cumulative number
of measurements received per month. As the figure shows, the behavior is very different every month.
In order to understand the reason, we report from Figures 21–26 also the number of measures received
from sensors and smart plugs separately, so this can help us to identify when the gateway was down
or when some devices were disconnected from the gateway causing a drop on the measurement count.
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Figure 20. Gateways behavior per month.

J. Sens. Actuator Netw. 2016, 5, 5 19 of 23 

 

Looking at the figures, it is clear that the gateway of House 1 went down in the last part of 
November till December 2013 maybe due to some power issues or an operating system crash. It was 
rebooted in January 2014. Apart from Smart Plug 4 (that was on only some days in August 2013 and 
off all the other months) all the other devices in House 1 reported results with a very close frequency. 

House 2 presents a behavior that changes during the months. We note a minimum in November 
2013 where the gateway was disconnected for several weeks and all the devices reported a low 
number of values. The other minimum value was in April 2014 for the same reason. Instead, in 
August 2014 we observe that both a smart plug and a multi-sensor were disconnected for several 
days. This can be related to a disconnection in the ZigBee network due to the removal of the smart 
plug and consequently disconnection of the multi-sensor that used that specific smart plug to reach 
the gateway. 

(a) (b)

Figure 21. (a) Smart plugs and (b) multi-sensors behavior over the time for House 1. 

(a) (b)

Figure 22. (a) Smart plugs and (b) multi-sensors behavior over the time for House 2. 

(a) (b)

Figure 23. (a) Smart plugs and (b) multi-sensors behavior over the time for House 3. 

0

1

2

3

4

5

6

7

8

9

Ju
l-1

3

Au
g-

13

Se
p-

13

O
ct

-1
3

N
ov

-1
3

De
c-

13

Ja
n-

14

Fe
b-

14

M
ar

-1
4

Ap
r-

14

M
ay

-1
4

Ju
n-

14

Ju
l-1

4

Au
g-

14

Se
p-

14

O
ct

-1
4

N
ov

-1
4

De
c-

14

M
ea

su
re

m
en

ts
 (c

ou
nt

)
M

ill
io

ns

Date

Smartplugs

1 2 3 4 5 6

0

5

10

15

20

25

30

35

40

45

50

Ju
l-1

3

Au
g-

13

Se
p-

13

O
ct

-1
3

N
ov

-1
3

De
c-

13

Ja
n-

14

Fe
b-

14

M
ar

-1
4

Ap
r-

14

M
ay

-1
4

Ju
n-

14

Ju
l-1

4

Au
g-

14

Se
p-

14

O
ct

-1
4

N
ov

-1
4

De
c-

14

M
ea

su
re

m
en

ts
 (c

ou
nt

)
Th

ou
sa

nd
s

Date

Multisensors

1 2 3

0

1

2

3

4

5

6

7

8

9

Se
p-

13

O
ct

-1
3

N
ov

-1
3

De
c-

13

Ja
n-

14

Fe
b-

14

M
ar

-1
4

Ap
r-

14

M
ay

-1
4

Ju
n-

14

Ju
l-1

4

Au
g-

14

Se
p-

14

O
ct

-1
4

N
ov

-1
4

De
c-

14

Ja
n-

15

Fe
b-

15

M
ea

su
re

m
en

ts
 (c

ou
nt

)
M

ill
io

ns

Date

Smartplugs

1 2 3 4 5 6 7

0

10

20

30

40

50

60

Se
p-

13

O
ct

-1
3

N
ov

-1
3

De
c-

13

Ja
n-

14

Fe
b-

14

M
ar

-1
4

Ap
r-

14

M
ay

-1
4

Ju
n-

14

Ju
l-1

4

Au
g-

14

Se
p-

14

O
ct

-1
4

N
ov

-1
4

De
c-

14

Ja
n-

15

Fe
b-

15

M
ea

su
re

m
en

ts
 (c

ou
nt

) Th
ou

sa
nd

s

Date

Multisensors

1 2 3 4

0

1

2

3

4

5

6

7

8

9

Ju
l-1

3

Au
g-

13

Se
p-

13

O
ct

-1
3

N
ov

-1
3

De
c-

13

Ja
n-

14

Fe
b-

14

M
ar

-1
4

Ap
r-

14

M
ay

-1
4

Ju
n-

14

Ju
l-1

4

Au
g-

14

Se
p-

14

O
ct

-1
4

N
ov

-1
4

De
c-

14

M
ea

su
re

m
en

ts
 (c

ou
nt

)
M

ill
io

ns

Date

Smartplugs

1 2 3 4 5 6 7

0

5

10

15

20

25

30

35

40

45

50

Ju
l-1

3

Au
g-

13

Se
p-

13

O
ct

-1
3

N
ov

-1
3

De
c-

13

Ja
n-

14

Fe
b-

14

M
ar

-1
4

Ap
r-

14

M
ay

-1
4

Ju
n-

14

Ju
l-1

4

Au
g-

14

Se
p-

14

O
ct

-1
4

N
ov

-1
4

De
c-

14

M
ea

su
re

m
en

ts
 (c

ou
nt

) Th
ou

sa
nd

s

Date

Multisensors

1 2 3 4

Figure 21. (a) Smart plugs and (b) multi-sensors behavior over the time for House 1.
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Figure 22. (a) Smart plugs and (b) multi-sensors behavior over the time for House 2.
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Figure 23. (a) Smart plugs and (b) multi-sensors behavior over the time for House 3.J. Sens. Actuator Netw. 2016, 5, 5 20 of 23 
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Figure 24. (a) Smart plugs and (b) multi-sensors behavior over the time for House 4.
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Figure 25. (a) Smart plugs and (b) multi-sensors behavior over the time for House 5.
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Figure 26. Smart plugs behavior over the time for House 6.

Looking at the figures, it is clear that the gateway of House 1 went down in the last part of
November till December 2013 maybe due to some power issues or an operating system crash. It was
rebooted in January 2014. Apart from Smart Plug 4 (that was on only some days in August 2013 and
off all the other months) all the other devices in House 1 reported results with a very close frequency.

House 2 presents a behavior that changes during the months. We note a minimum in November
2013 where the gateway was disconnected for several weeks and all the devices reported a low number
of values. The other minimum value was in April 2014 for the same reason. Instead, in August 2014
we observe that both a smart plug and a multi-sensor were disconnected for several days. This can be
related to a disconnection in the ZigBee network due to the removal of the smart plug and consequently
disconnection of the multi-sensor that used that specific smart plug to reach the gateway.

The Gateway of House 3 was down three weeks in October 2013, then it was rebooted. In January
and February 2014, it was on only for half of the time. Also in this case the motivation can be a power
failure or a crash in the operating system. We note also that, in August and September 2013, the data
collected are less with respect to the other months. This can be due to a not very stable connection of
the network at the beginning. The same happened in September and October 2014 before dismissing
the Gateway, due to the fact that probably the user started to disconnect the smart plugs causing a
disruption in the ZigBee network.
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House 4 presents a ramp-up in the number of data collected maybe due to the fact that the
number of devices increased over the time. Two smart plugs reported very few measurements at the
beginning and one was off most of the time. We note a minimum in April 2014, this was not caused by
a malfunction of the gateway, but due to two smart plugs that reported few values.

House 5 is characterized by a very unstable environment. The number of measurements reported
by both smart plugs and multi-sensors changes a lot due mainly to the weak network connection or
the location change of the devices. The gateway itself seems to behave correctly.

House 6 is characterized by having only smart plugs, but here the number of measurements
collected is quite constant due to a more stable network connectivity and a more stable topology.

To have a comprehensive view of the behavior during the months of observation, in Figure 27 we
present a graph showing the percentage of months where we registered an “optimal data collection”
per house, quantified as a number of months (in percentage over the total) with a collection volume
greater than 80% of the maximum volume. Only Houses 1 and 6 had more than 60% of the total
months more than 80% of the maximum volume of data collected.
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Overall the results show, that continuous connectivity must not be expected in the described
setting. The physical deployment on site is out of the control of the system operators and home
owners may handle the system with varying degrees of care or intentionally temporary disconnect the
system (e.g., to plug some other device in the used network socket). The reasons for human-induced
disruptions are manifold and depend on the individual household inhabitants as well as on their
living situation. For instance, we learned about incidents where the network cable was accidentally
disconnected while cleaning the house, kids disconnected the plugs while playing, or the internet
connection is generally unstable.

Applications that use the data must be aware that the data collection happens in an uncontrolled
environment and availability of the components inside the households cannot be ensured.

5. Related work

According to our knowledge, several systems integrating sensor networks with energy
management systems at the consumer premises have been proposed so far. The closest to our project
is Linear [7], a Flemish Smart Grid project focusing on solutions to match residential electricity
consumption with available wind and solar energy, an approach referred to as demand response.
The project suffered from the amount of data and transactions collected since no big data technologies
to handle that were used. Additionally, in-house communications were one of the major sources of
technical malfunctions. Linear installed, on average, 11 ZigBee plugs in each home, half of them
serving exclusively to bridge communication signals. Linear preferred “Ethernet over PLC to Wi-Fi
“for connecting the different modules in the house with the gateway. This choice quite often caused
conflicts with existing applications such as the home network and digital television. According to
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the Linear support team, “some families were so excited about the possibilities of the Home Energy
Management System that they started moving plugs to different locations in order to trace standby
losses, not being aware that they were messing up the network to the extent that the fridge plug started
showing the behavior of a television in our databases”. Similar issues have been experienced also in
our pilot as described earlier.

Another set of related projects was conducted as part of the e-energy funding scheme of the
German government [8]. For instance, the MeRegio conducted a pilot, mainly focused on using smart
meter data [9] and the project Smart Watts addresses the development of communication standards [10].
However, to our knowledge, none of these projects provide detailed insights on the data quality aspect
for smart home applications.

In [11], the authors evaluate the performance of an in-home energy management system based on
a ZigBee wireless sensor network. The focus there is the performance of the system on the application
level, meaning the investigation of the potential of both energy management and demand management.
The evaluation that has been performed by the authors is based on simulation results, and not on real
network deployments in households as in our work.

In [12], energy management in homes has been investigated on a pilot consisting of only three
households in Sacramento. The solution has been implemented using off-the-shelf components based
on power line communication, and it included a web-based monitoring and control of home appliances.
Similarly, the MIT provides a detailed dataset with plug-level energy data [13]. However, the dataset is
designed to drive research on energy disaggregation and not to understand data quality issues under
realistic conditions. Also, it is limited to a few weeks of recorded data.

In [14], the authors present experiences from a pilot study carried out in Norway, focusing on
daily demand response from households, utilizing smart metering, remote load control, pricing based
on the hourly spot price combined with a time of day network tariff, and a token provided to the
customers indicating peak hours. The pilot study has shown that household customers through simple
and predictable means can adapt their electricity demand to the market situation.

6. Conclusion and Lessons Learned

In this paper, we have provided insights from a three year pilot with a cloud-based test bed for
capturing and analyzing smart-home data. Our results include findings on real-world challenges
in the application domain as well as our learnings regarding the data quality issues we have faced.
The key challenge that we came across was data loss and reduced data quality on several layers of
our cloud-based architecture. In many cases, the issues are inherent to the application domain which
we were addressing (home environments) where users intentionally or unintentionally interfere with
the operations of the system, but apart from this unavoidable problem we have presented a detailed
analysis of the main causes that are responsible for data quality related issues.

In our tests, we quantify the data quality of a real-world smart home deployments and show how
errors in such an environment are characterized. The derived characteristics concern (a) data errors;
(b) arrival rates; and (c) behavior over time. Regarding (a) data errors we found that these occur only
rarely. For instance, only 0.004% of measured work values showed a detectable anomaly. However,
due to the overall high number of measurements, the total amount false data reaches high numbers.
For instance, overall 17.876 faulty values were detected in the measurements of work.

Regarding (b) arrival rates for smart plug data we found significant variations across sensors.
The analysis show variance values between about 0.32 and 2.5, for plugs with a sample frequency
of 2 s. For the setup with sampling once per minute, we observe a variance of about 4.9. The overall
variance differs significantly (i.e., between 0.49 and 4.85 s). However, we found in each house sensors
with low variance (i.e., up to 1 s). Thus, we can conclude that ideal communication conditions allow
for low variance in arrival rates, yet most real world setup will cause high variance in data arrival for
at least some sensors in the portfolio.
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Regarding (c) system behavior over time, we found that under real world conditions data quality
changes considerably over time. We observe several drops in the overall measurement rate, both on
the gateway and on the sensors level. Overall, only a third of the analyzed houses close to optimal
reporting rates more than 60% of the time.

Overall, our work shows researchers as well as practitioners in the smart grid domain what
challenges they have to expect when integration smart home technology and provide quantified
insights into data quality in that domain. The findings support the design of systems and applications
that cope with the data challenges and fuel future research on improving data quality for smart homes.
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