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Abstract: This manuscript describes the design considerations, implementation, and laboratory
validation of an odor sensing module whose purpose is to support people that suffer from
incontinence. Because of the requirements expressed by the affected end-users the odor sensing unit
is realized as a portable accessory that may be connected to any pre-existing smart device. We have
opted for a low-cost, low-power consuming metal oxide based gas detection approach to highlight the
viability of developing an inexpensive yet helpful odor recognition technology. The system consists of
a hotplate employing, inkjet-printed p-type semiconducting layers of copper(II) oxide, and chromium
titanium oxide. Both functional layers are characterized with respect to their gas-sensitive behavior
towards humidity, ammonia, methylmercaptan, and dimethylsulfide and we demonstrate detection
limits in the parts-per-billion range for the two latter gases. Employing a temperature variation
scheme that reads out the layer’s resistivity in a steady-state, we use each sensor chip as a virtual
array. With this setup, we demonstrate the feasibility of detecting odors associated with incontinence.

Keywords: ambient assisted living; inkjet-printed p-type semiconducting metal oxide; hotplate;
autonomous odor detection device; wireless connectivity

1. Introduction

Physical disabilities and aging can cause the loss of control of the bladder and intestinal functions.
Affected persons often cannot perceive the odors related to their own excretions. Besides, many are
unable to verbalize explicitly the need of nursing care [1]. One the other hand, a delay in incontinence
care involves physical health risks and may cause emotional and mental health issues of the persons
concerned, which in turn also affects their relatives and also healthcare professionals. Besides,
the sensing of excretions’ odor is also a critical issue for stoma patients. To improve these situations,
odor detection technologies are a possibility and the objectives of an early detection and signalization
of excretion odors by a sensor device include:
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• Avoiding social insecurity and shame;
• Unconfined participation in social life;
• Appropriate or improved care;
• Easing the burden of caregivers.

However, it is fundamental that advances in technological capabilities are tailor-made to the
needs of end-users to ensure acceptance of innovations. As a result, an iterative research process
has been adapted during development of the odor sensing system to prevent rejection of possible
technology-based solutions by the affected person. For the results presented here, we have adopted
a setting- and user-centered approach, which includes the early and continuous involvement of
affected people, considering their living and care environment during the process, as well as the
empirical examination and evaluation. These key principles are at the heart of the research and
development efforts presented here. Figure 1 visualizes our approach which has involved an inter-and
transdisciplinary team of experts and laymen.
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The needs of potential groups of users was analyzed by applying established research
methods [2–6] such as guided interviews, focus groups, expert interviews, context analysis,
and use-cases. The analysis of living and utilization contexts showed that significant gains in terms of
quality of life may be achieved with a miniaturized, mobile odor sensing device for people with mental
and multiple disabilities that live in socially inclusive care homes/inpatient care. The specification and
definition of user and setting requirements led to interesting and valuable results, such as findings
about stoma patients. Excretions in stoma pouches often lead to a strong odor formation. Since the
human olfactory system is strongly adaptable, stoma patients become unable to perceive surrounding
odors over time. Due to this adaption of odor connected with uncertainty about their own excretions,
stoma patients often isolate themselves or even suffer from social exclusion. Here, a mobile odor
sensor can act as a neutral notification system providing the opportunity to restore emotional security.

In the past and currently, extensive research and development efforts have been and are
aimed at developing so-called electronic noses [7]. Main application areas include health, security,
and safety scenarios [8] and often focus on the highly selective detection of a few, well-defined
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gaseous compounds [9–11]. However, because of the complexity of situations in the real world,
data analysis using electronic noses to identify a situation might prove advantageous as compared
to analyzing specific gas concentrations [12]. Also, the mimicking of the human olfactory sense is
being worked on, even though it is inherently difficult for an impartial machine to generate the highly
individual perception of a smell [13]. The methods employed to achieve the specific goals of a given
application include infrared, catalytic, electrochemical, mass sensing, or using semiconducting metal
oxides [14,15]. Metal oxide-based detectors are particularly appealing, because of their long life time,
good sensitivity and low cost production [16]. In order to increase the selectivity of metal oxide based
sensors and utilizing the temperature dependence of surface reactions [17,18], the use and optimization
of temperature modulation techniques has been investigated for several decades now and continues to
be an active research field [19,20]. As compared to using spatial temperature gradients [21] on a sensor
chip, the variation of temperature on a hotplate allows for reducing the overall power consumption
using a quasi-static operation for each temperature value.

In our contribution, we do not aim for emulating the human olfactory sense, whose working
principle relies on the binding of odorant molecules to highly specific receptors in the human nose [22].
Instead, the goal here is to reliably detect and discriminate three situations, namely the occurrence of
smells associated with urine, feces and any another situation. This approach is especially advantageous
in environments where typically large amount of cleaning agents are being used. To this end it is
important to first analyze the constituents of the respective odors in order to be able to choose suitable
detection techniques. Table 1 gives an overview about the main gases occurring in both, urine and
feces, as well as odors.

Table 1. Some of the most relevant odorous substances (odorants) occurring in human feces and urine
and their odors [23–27]. The odor threshold values are taken from [28], except for benzaldehyde [29]
and linalool [30].

Type of Substance Perceived Fragrance Chemical Formula Natural Occurrence
Odor Threshold in
Parts-Per-Million

(ppm)

Methylmercaptan Decayed cabbage CH3SH Urine/Feces 0.00007
Dimethylsulfide Decayed vegetables (CH3)2S Urine/Feces 0.003

Dimethyldisulfide n/a C2H6S2 Urine/Feces 0.0022
Indole Fecal/Flowery C8H6NH Odor/Feces 0.0003
Skatole Fecal/Nauseating C9H9N Odor/Feces 0.0000056

Hydrogen sulfide Rotten eggs H2S Urine/Feces 0.00041
Methylamine Putrid/Fishy CH3NH2 Feces 0.035

Ammonia Sharp/Pungent NH3 Urine/Feces 1.5
Acetaldehyde Pungent/Fruity CH3CHO Feces 0.0015

Dimethylamine Putrid/Fishy (CH3)2NH Odor/Feces 0.033
Triethylamine/
Trimethylamine Fishy/Ammonia (C2H5)3N Feces 0.0054

Benzaldehyde Almond C7H6O Odor 0.00017
Limonene Orange C10H16 Odor 0.038
Linalool Floral/Lavender C10H18O Odor 0.000047

From this list it becomes apparent that sulfidic molecules and amines play a central role for
the odor perceived by the human olfactory system in the relevant scenarios. Furthermore, the gas
composition for situations where an odor linked to urine or feces occurs differ from odors, which in
turn should make it possible to reliably detect the associated situations.

The interviews of different user groups yielded as the most important issue for the users the need
to inconspicuously provide information about occurrence of incontinence related odors directly to
the user and if desired also to a supporting person (e.g., caretaker). Therefore, the sensor system is
supposed to give discrete notification to mobile, active, and socially participating people who use it
whenever other people might perceive an odor related to urine or feces. The novel system has been
designed according to the end-user needs and in close collaboration with them.
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To achieve this, we have established a concept that relies on using any pre-existing smart device
of the user and an odor detection unit as accessory for the smart device. The concept of the overall
system is depicted in Figure 2.
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Figure 2. The concept for the technical solution is based on an add-on device to already available
infrastructure, in this case a smartphone. Using Bluetooth LE protocol the raw data from the sensing
components are transferred to the smart device, where the powerful CPU is used to perform data
analysis tasks. All user-notification channels are controlled by the smart device.

On the one hand, this approach allows the use of the smart device’s large computing power
as well as all the human-machine interfaces state-of-the-art mobile devices offer, including apps,
messenger services, and acoustic and tactile signaling. On the other hand, the sensor device might be
fastened at arbitrary locations and independent of the smart device (e.g., a smart phone) within the
communication range of the wireless protocol used.

The gas detection is based on semiconducting metal oxide technology, which allows for low-cost
production, miniaturization, and portable application. The gas sensitive layers are each deposited
using an inkjet printing process allowing for deposition of the functional materials onto arbitrary
sensing structures. While previous reports on the gas sensitive behavior towards malodorous volatile
organic compounds focus mostly on n-type semiconducting metal oxide layers, e.g., using SnO2 [31]
or ZnO [32], or mixtures of metal oxides such as SnO2 and CuO [33] we use the respective gas
sensing properties of ink-jet printed, p-type semiconducting CuO and CTO because of their weaker
sensitivity towards humidity. We do this to be able to investigate whether the anticipated enhancement
in robustness in future real-world deployments is worth the cost of lower sensitivity. To our best
knowledge, the gas sensitive behavior of both gas sensitive materials towards methylmercaptan and
dimethylsulfide has not been reported before. The experimental results provide insights in terms
of the influence of humidity. Using a temperature variation protocol, we convert each sensing layer
into a virtual sensor array and show that the additional information obtained this way increases the
selectivity of the layers.

The good baseline stability of the metal oxide devices should allow for producing reproducible
and robust real-world devices. As a result, we can demonstrate an end-used driven design of an
autonomous, stable incontinence sensor module based on metal oxide technology for the first time.

2. Materials and Methods

The odor sensing unit is built around two ink-jet printed, low-power consuming micro-machined
hotplate chips that each employ a p-type semiconducting metal oxide as gas sensitive layer.
The low-power consuming devices consist of a platinum heater and two interdigitated electrode
structures as shown in Figure 3a, which provide an interface to read out the resistivity of
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the gas-sensitive metal oxide layers. Details on the fabrication and characterization of the
micro-electro-mechanical system (MEMS) devices are presented in [34]. The MEMS chips are mounted
in a 12-pin TO5 housing and connected to it via ball bonding. Because of the high thermal insulation
of the hotplate devices, neither the surrounding electronic components nor the chip mount itself are
heated up. As gas sensitive elements we have used layers consisting of copper(II) oxide (CuO) [35]
and chromium-titanium oxide (Cr2−xTixO3+z/CTO) [36]. We have chosen CuO because of its reaction
towards sulfidic molecules [37] and CTO because of its relatively small response towards water [38].
The production of the inks follows our standard approach employing a dual step process as described
in [39]: After generating a base dispersion using a wet grinding process employing a Retsch PM 100
planetary mill, polyethylene glycol (PEG) 400 and deionized water (DI-H2O) are added and mixed
in order to match the viscosity specifications of the deployed Dimatix DMP2831 printer system [40].
Both CuO and CTO layers are printed in six stacked layers on top of the interdigitated Pt-electrodes
of the MEMS chip. We determine the resistivity of the layer by means of a time-to-digital conversion
method [41]. This approach minimizes the power consumption and the cost as compared to using
analog-to-digital converters (ADC). Further information about the ambient air conditions is obtained
by determining the ambient temperature and humidity using a commercially available digital sensor
from Honeywell International, Inc (Morris Plains, NJ, USA) (HumidIconTM 6100 Series [42]) with an
I2C bus. Control and read-out of all system components is achieved using a nRF51822 micro-controller
(µC) from Nordic Semiconductor (Trondheim, Norway) [43]. This choice offers a convenient way
to establish Bluetooth low energy (Bluetooth LE) connectivity since this feature is integrated in the
chip. A 32-bit ARM R CortexTM (Cambridge, UK) M0 CPU with 256 kB Flash +16 kB RAM provides
enough capabilities to readily perform all basic tasks, namely temperature control of the metal oxide
sensor chip, read-out of the resistivity, the digital humidity and temperature sensor. The overall power
supply of the odor sensing module is achieved with a lithium-ion polymer battery from Unionfortune
Electronic Co., Ltd (Guangdong, China) [44] with a total charge of 2000 mAh at 3.7 V output voltage.
Re-charging is possible via a mini USB port. The electronics and all sensing components are packaged
in a (7 × 6 × 2.5) cm3 housing made using the MultiJet Modeling (MJM) technique and using VisiJet
EX200 as plastic material [45] (Figure 3b). The MJM-technique allows 3-D prototyping of complex
structures with high resolution of down to 30 µm, which is needed to package the different components
of the system including gas inlet channels and interfaces. To provide a fully-opaque, black package
and a chemically resistant surface that does not influence the gas sensing chips, the plastic housing was
coated with a two component acrylic lacquer. The acrylic lacquer coating reduces the outgassing of the
plastic material which is a serious disadvantage when using materials suitable for rapid prototyping.
Using a Bluetooth LE connection, the data is transferred between the odor sensing module and the
smart device, which in this case is an iPhone4. We have implemented the possibility to send the
result of the raw data evaluation back to the sensor module, where it triggers signaling light-emitting
diodes (LEDs) indicating an alarm as well as a stable connection. While this has no impact on the
performance of the system and is unnecessary from a technical point of view, it was included because
users wish to assert themselves that the odor module is working properly and to get an indication
directly on the device if incontinence-relevant odors are sensed or not. The main human interface,
however, is an application installed on the smart device. A screenshot of a possible realization is
displayed in Figure 3e. The app has been programmed to highlight the possibilities of realizing an
interface with the user and is divided into different screens to show the current odor status, to change
the detection threshold values, and to activate further notification channels such as a vibrational alarm,
respectively. The complete sensing system is shown in Figure 3 and the sensing module is realized in a
single printed circuit board (PCB). Analysis of the sensor module’s data is performed on the connected
device and the result is displayed in a custom built app that may be individualized.
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 Figure 3. (a) The micro-machined suspended hotplate sensor chip used in the setup features a heating
structure and two interdigitated electrode structures. The image has been taken using a scanning
electron microscope at 80×magnification; (b) The complete hardware of the sensor module (PCB &
battery); (c) Sensor module package with LEDs to indicate incontinence related odors to user directly;
(d) Photo of the system as it may be used with a commercially available smartphone and the sensor
module; (e) Example of a possible realization of the human interface.

2.1. Operational Protocol

Metal oxide-based gas sensors are known to have poor selectivity but are highly sensitive to a
large number of oxidizing and reducing gases. Also, because the adsorption processes at the surface
are temperature dependent, a single metal oxide layer reacts differently at different temperatures.
By employing a specific temperature protocol in which quasi steady state conditions over a large range
of temperature range are achieved we convert each chip into a virtual array while at the same time
reducing the overall power consumption. The MEMS platform allows for fast temperature variation
and here we implement a scheme where we set the temperature of the two chips to four temperature
levels between 150 ◦C and 420 ◦C. The results presented here only make use of one gas sensitive layer
(CuO or CTO) per chip. For this reason, the chip employing CuO as a gas sensitive layer is denoted
CuO chip, and the other one is denoted CTO chip.

The temperature of each hotplate is set via a voltage-controlled current source (VCCS), built with
a simple op-amp and a load resistor, whose control signal is generated through a filtered pulse
width modulation (PWM) signal generated by the µC. To determine the temperature of the hotplate,
the resistivity of the heating structure is determined by the known applied current, which is set by
the VCCS, and the heater voltage determined by the µC through an external op-amp in differential
configuration and the internal ADC of the µC. Because an active control of the temperature will
reduce the data acquisition frequency and increment the power consumption using this configuration,
we have divided the operational protocol into two parts. After switching the device on, it is calibrated
by creating a look-up table. For this, several PWM signals are generated and the heater’s resistivity
is determined, which corresponds to a well-defined sensor temperature. The sensor system then
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automatically enters the measurement mode, where the PWM signal is generated according to the
look-up table. Within every measurement cycle, both sensor chips are operated at four different
temperatures each—i.e., 150 ◦C, 225 ◦C, 260 ◦C and 330 ◦C for the CuO chip and 260 ◦C, 330 ◦C,
360 ◦C and 420 ◦C for CTO, respectively. Each temperature step is held for 300 ms before triggering
the time-to-digital read-out of the resistivity of the gas sensitive layer. This results in a variable time
for each temperature step depending on the layer’s resistivity. The total time tTTD necessary for
resistivity determination (using a 1 nF capacitor) varies between 2.9 ms and 200 ms corresponding
to 10 kΩ and 10 MΩ, respectively. The resistivity value used for analysis is then calculated from
an average of 16 repetitions of the time-to-digital measurement, which results in a duration of 3.2 s
for a resistivity value at most. Afterwards, the dummy resistance is determined using the same
method. Each time a measurement is triggered, the sensor temperature is checked to ensure it is at
the desired value, according to the values and parameters defined by the temperature control unit
calibration module. If this test fails, the value is discarded. The calibration function is triggered when
the ambient temperature sensor detects drastic changes in the ambient conditions exceeding 10 ◦C or
if measurement is discarded twice in a row.

Once the resistivity values of one chip have been acquired, the hotplate is turned off, the data are
transferred to the smart device, and the second chip is utilized. Figure 4 highlights the protocol as
we use it in the operational mode. Because the time-to-digital method is inherently restricted in its
acquisition speed by the probed resistivity and the fixed values of the circuitry, we are unable to record
transient responses of the resistive layers upon temperature change. Therefore, we only use steady-state
values of the resistivity, which we check to be a valid assumption for our system. While this scheme
prevents us from using the transient response of the sensing layer upon temperature modulation,
which would yield more features for pattern recognition [46], we still increase the information extracted
by operating these virtual arrays at different temperatures [47].
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300 ms preheating time (a), and two (b, c) time to digital measurement phases of both sensor resistive
layers. A 2.5 s time gap between every step is used for wireless data transmission. Please note that
the times b and c depend on the layer’s resistivity values and consequently vary considerably. As a
consequence, the total duration time of the measurement cycle is not constant.

To evaluate the performance of the systems in terms of its capability to discriminate between
the different situations, we have implemented a basic pattern recognition data processing [48,49].
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The basic structure of the data processing is shown in Figure 5. After the data acquisition, a first
pre-processing phase is carried out in order to filter data by removing outliers, which means that single
data samples exceeding two times the standard deviation are disregarded. Then a feature extraction for
dimensionality reduction aiming to find a suitable feature sub-space in order to be able to distinguish
between patterns that belong to different classes is realized.
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Because the sampling frequency of the time to digital method used is dependent on the actual
resistivity value and the sensor system lacks a real-time clock (RTC), the readings from the eight virtual
sensors need to be assigned a time. This is done by the smart device connected to the sensing module
by assigning a time stamp to each sample as they are received, thus generating a unique time vector
common for all of the virtual sensor´s data vectors as well as for the data vectors from the temperature
and humidity sensor. After that, all vector values are equally weighted and a normalization is carried
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where xk
S is the kth sample of the response of virtual sensor ‘S’. After that, a linear transformation is

used for visualization, analysis, and classification purposes as well as dimensionality reduction. In this
case, a Fischer linear discriminant is used. This is also known as Linear Discriminant Analysis (LDA)
technique and aims at finding a signal representation that establishes a transformation to maximize the
inter-cluster distances between classes and minimizes intra-cluster distances within a given class [46].

2.2. Validation Experiments

To comply with user requirements, the battery-powered odor sensing component’s runtime
without charging should at least match that of the mobile phone and, therefore, we have performed a
power consumption test by recording the total current usage of a complete measurement cycle.

We have also performed experiments to test our steady-state claim. To this end, we have produced
another sensing chip using CuO and CTO as gas sensitive layer. We have performed an independent
evaluation of the transient behavior of the gas sensitive layer upon temperature change using a Prema
5017 Digital Multimeter (PREMA Semiconductor GmbH, Mainz, Germany) and a data acquisition rate
of eight samples per second. Each temperature step had a duration of 60 s and we have determined
the minimum time necessary to reach steady-state values.

In order to test the robustness of our protocol, further investigate our steady-state approach,
and check a stable operation, we have used the system to record a transient response towards
exposure to varying levels of methylmercaptan from 1 ppm–5 ppm. The device performance of the
prototype has been tested using well-defined gas mixtures produced by our custom-built apparatus to
simulate real-world conditions in the lab [50]. Taking into account typical environmental conditions in
real-world applications, we have opted for a characterization in two humidity regimes at 22% and
47% r.H., respectively.

Next, we have tested further gases according to an analysis of the odorous components
occurring in feces and urine. We measure the response to gas concentrations close to the head
space concentrations detected in real samples [51–53]—i.e., 1 ppm for both methymercaptan and
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dimethlysulfide, and 20 ppm for ammonia to make sure the layers are capable of detecting
these concentrations.

In a final step, we have evaluated whether or not the information collected by the sensor module
is able to distinguish the gas matrices associated with the target odors. We have exposed the system
to atmospheres generated by pure samples of water, urine, and feces. Finally, we have collected data
during the repeated exposure of the sensor module towards 10 min in laboratory air, above a water
reservoir, a urine reservoir, and a feces reservoir.

3. Results

3.1. Operational Validation

The time-resolved evolution of the sensing layer’s resistivity for the different temperatures within
a measurement cycle during the validation experiments is shown in Figure 6.
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Figure 6. (Top) Evolution of the layer’s resistivity at different driving temperatures, which are
associated with the heating power consumption of the chip. (Bottom) Part a) and b) show a more
detailed view of the resistivity evolution after a temperature step. It demonstrates that the new
steady-state is achieved in less than 250 ms, for both, temperature rises and drops.

Even though the baseline resistivity of CuO and CTO differ by more than one order of magnitude
when compared to the layers of the prototype, the results may be applied to the respective layers
used in the prototype device without loss of generality for both, CuO and CTO. As can be seen in
Figure 6, bottom, the new thermodynamic equilibrium of the surface adsorbates is achieved after
less than 250 ms, which is indicated by the constant resistivity at that point. Considering the normal
system operation scheme where the sensor is preheated for not less than 300 ms before measuring the
resistivity, this confirms that the virtual sensor-array approach with reaching steady-state conditions
is valid. CTO shows a slow, slight drift behavior upon temperature change, which we attribute to
diffusion processes. Despite the slight drift, for CTO the states itself are repeatable as can be clearly
seen from the repeated measurement cycles, which use this protocol. The resistivity of the CuO
layer shows a slight drift occurring after several 10 s of seconds, which is, however, non-repeatable.
We attribute this to the inevitable slow changes in the sensing layer, which would occur in a complete
steady-state operation as well and which could be corrected for [53].
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Furthermore, the results obtained in determining the layer’s resistivity with the time-to-digital
conversion are equivalent to that of more sophisticated equipment such as the Keithley 2700, which we
use in our fully automated gas measurement apparatus [50]. As a result of these measurements,
we can assume that the mobile sensor module is capable of correctly determining the resistivity of the
CuO/CTO layers over a wide range of values with high accuracy.

The total current consumption of the device during a complete measurement cycle is visualized
in Figure 7. On average, the device consumes 113.85 mW, i.e., 30.77 mA at 3.7 V. We therefore estimate
the total autonomy time of the odor sensing module according to Equations (2a) and (2b) to be
2.000 mAh/30.77 mA = 65 h, i.e., more than 2.5 days without recharging the battery:

Energy[Wh] = Capacity[Ah]·Voltage[V] (2a)

Battery Li f e[h] =
BatteryCapacity[mAh]

LoadCurrent[mA]
. (2b)

The total current consumption of the device exceeds that of the individual hotplate chips, which is
due to the electronics design, which dissipates large parts of the excess current in other parts of the
electronics. Because of the electronic circuitry, a considerable share of the total current consumption is
lost in individual components of the electronics. Most notably, we have to employ an IC component to
step-up the battery voltage due to the requirements of the sensor´s heater.
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3.2. Gas-Sensitive Characterization of the Metal Oxide Layers

Figure 8 presents the gas sensitive reaction towards methylmercaptan for two humidity levels for
both, CTO and CuO layers operated at the described temperature modulation protocol. This trace gas
probably reacts with the oxygen species adsorbed on metal oxide surface and stepwise dehydrogenates.
In [31,54] the net reaction is proposed to be:

2 CH3SH + O2−(ads) → CH3SSCH3 + e− + H2O (3)

Accordingly, the resistance of the p-type semiconducting metal oxides increases upon exposure
towards CH3SH.
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Figure 8. Recorded sensing resistance using the operational protocol for both metal oxide layers CTO
(a) and CuO (b) for four temperatures, increasing CH3SH concentrations of 0.25, 0.5, 1, 2.5, and 5 ppm
and two different humidity levels of 22% and 47% r.H. at 25 ◦C, respectively. The CuO layer shows
poising effects upon exposure to methylmercaptan, especially at increased humidity levels, which is
indicated by the non-returning baseline.

The assessment of the capabilities of both layers to detect low levels of the most relevant trace gases
with high reliability has been done by exposing the prototype system to head space concentrations
reported in literature. The results also highlight the important influence of water vapor on the surface
processes, which effects the layer’s response even though the influence is much weaker as compared
to n-type semiconducting layers. We define the limit of detection towards a specific gas species as the
concentration that causes a response RG/R0 exceeding 1.05, i.e., RG/R0 > 1.05, thus taking into account
the baseline stability and noise of the resistivity reading. From the measurement data presented in
Figure 9, we can assume a limit of detection of the system is well below headspace concentrations
of real samples, i.e., one ppm for methylmercaptan and dimethylsulfide, and well below 20 ppm for
ammonia [27,51,52]. While these performance data are above the recognition threshold of the human
nose, they are in principle suitable to detect the different situations addressed here.

Analysis of gas sensitive performance also highlights the potential for an increase in selectivity by
using different temperatures. The changes in sensor response as a function of the layer’s temperature
are as high as 80% in our experiments and Figure 9 summarizes the sensor response for a fixed
concentration of 1 ppm for the sulfidic molecules and 20 ppm for ammonia of each layer for the four
different temperatures employed. So, the thermal modulation and steady-state read-out approach
adopted here does allow for extracting additional information about the gas matrix and an increase in
selectivity for distinguishing malodorous gas matrices.
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Figure 9. The gas sensitive reaction of the metal oxide layers towards test gas concentrations of 1 ppm
of either dimethlysulfide or methylmercaptan and 20 ppm of ammonia. These concentrations are close
to the head space concentrations reported in real samples, thus demonstrating detection limits are
below these concentrations. The graphs also highlight the increase in selectivity achieved by using
different temperatures to operate the metal oxide layers. On the right hand panel, again, no CuO
reaction is shown, because the response was negligible.

3.3. Laboratory Validation with Real Odor Emitting Samples

The collected data during the repeated exposure of the sensor module towards laboratory air,
above a water reservoir, a urine reservoir, and a feces reservoir is shown in Figure 10. The urine and
feces samples have not been pre-treated or stored prior to the experiments but rather have been used
as is with a waiting time of 15 min at most.
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Figure 10. Sample sensor module raw data obtained after the exposure towards 10 min of humid
laboratory air, above a urine reservoir, above a feces reservoir, and in laboratory air. (a) CTO and
(b) CuO resistivity response (c) temperature and humidity.

It shows, as expected, that humidity levels play a pivotal role in the resistivity of the metal oxide
layers. The sensor data form the device have been treated according to the description in Section 2.1
and Figure 11 shows the result of projecting original data to the three largest discriminants, using data
collected by all sensors (four virtual sensors per each sensor chip and the digital humidity sensor)
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on the device. It demonstrates that the four situations produce separate clusters. Still, the feces and
laboratory air clusters are not well separated, which is probably due to the use of toilet paper with the
feces and laboratory air samples as well as the generally lower volatility of components in non-liquid
samples. However, this in turn means that the approach chosen here is essentially capable of detecting
situations affecting end-users.
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a runtime of more than two days has been achieved, which is about the utilization time of current 
smart devices without intermediate charging. The gas sensitive layers employed are capable of 
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close to the target gas concentrations as encountered in real world samples. So, while the human odor 
threshold is still several orders of magnitude away, employing a device based on the technology 
presented here as an aiding device for stoma patients or elderly people suffering from incontinence 
seems possible.  

However, in order to successfully test the device in the field, we estimate that the sensor 
response needs to be improved by about one order of magnitude, which is feasible when using, e.g., 
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(a) Shows the linear transformation of the raw data, which use the three largest discriminators (LD1,
LD2, LD3), namely the eigenvectors with largest eigenvalues for the in-between-class and within-class
scatter matrices. (b–d) show the LD1 vs. LD2, LD1 vs. LD 3, and LD2 vs. LD 3, respectively.

4. Discussion

We have presented the design, development, and characterization of a portable, battery-powered
odor sensing module that may be connected via Bluetooth low energy to any mobile device.
Using low-power consuming MEMS devices with a metal oxide sensing layers placed on a hotplate, a
runtime of more than two days has been achieved, which is about the utilization time of current smart
devices without intermediate charging. The gas sensitive layers employed are capable of detecting
relevant trace gases such as NH3, CH3SH, and (CH3)2S in relevant concentration ranges. An LDA
shows that in near real-world situations the detection of target situations appears possible. Still,
important issues need to be resolved prior to a field deployment. Currently, the detection limit is
close to the target gas concentrations as encountered in real world samples. So, while the human
odor threshold is still several orders of magnitude away, employing a device based on the technology
presented here as an aiding device for stoma patients or elderly people suffering from incontinence
seems possible.
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However, in order to successfully test the device in the field, we estimate that the sensor response
needs to be improved by about one order of magnitude, which is feasible when using, e.g., catalysts.
Additionally, the necessary detection limits will crucially depend on the location of the sensor in
respect to the odor-producing source. To this end, one may place the device next to possible odor
sources or employ pumping systems to provide the device with samples with high concentrations
of the analyte. In this regard, we suggest that the mobile device will allow for a positioning close
to the origin of the odor, thus providing relatively high target gas concentrations. Furthermore,
the use of pre-concentrators is a possibility to increase the sensor signal and lower the detection limit.
Adding highly selective elements, such as low-power consuming, room temperature electrochemical
cells [55] or implementing novel methods for selective detection of hydrogen sulphide [39] may further
increase the system’s capability to detect target situations.

The signal analysis may also have the potential to be considerably improved beyond using LDA
and employing advanced, non-linear techniques such as multilayer perceptron (MLP). The employed
algorithms will also have to be able to cope with the issue of changes in concentration associated with
positioning of the device.

Furthermore, the reproducible performance and calibration of various sensor modules will have
to be investigated. We aim to deal with these issues based on the results presented in this paper. On top
of that, non-technical issues such as user-acceptance, privacy concerns, and trust in new technologies in
ambient assisted living settings will have to be investigated. Our current results constitute promising
intermediate results aimed at addressing the issue of personal care and demonstrates the feasibility of
employing low-cost, metal oxide-based sensing technology in a demanding measurement situation.
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