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Abstract: This study presents a method for predicting the volume flow output of external gear
pumps using neural networks. Based on operational measurements across the entire energy chain,
the neural network learns to map the internal leakage of the pumps in use and consequently to
predict the output volume flow over the entire operating range of the underlying dosing process. As
a consequence, the previously used volumetric flow sensors become obsolete within the application
itself. The model approach optimizes the higher-level dosing system in order to meet the constantly
growing demands of industrial applications. We first describe the mode of operation of the pumps in
use and focus on the internal leakage of external gear pumps, as these primarily determine the losses
of the system. The structure of the test bench and the data processing for the neural network are
discussed, as well as the architecture of the neural network. An error flow rate of approximately 1%
can be achieved with the presented approach considering the entire operating range of the pumps,
which until now could only be realized with multiple computationally intensive CFD simulations.
The results are put into perspective by a hyperparameter study of possible neural architectures. The
biggest obstacle considering the industrial scaling of this solution is the data generation process itself
for various operating points. To date, an individual dataset is required for each pump because the
neural architectures used are difficult to transfer, due to the tolerances of the manufactured pumps.

Keywords: external gear pump; neural network; data-driven modeling; physics informed machine
learning

1. Introduction

Artificial intelligence has the potential to extract information from data and thereby to
improve a variety of technical applications. The key technology can be seen as targeted
processing of complex data structures. Information can be filtered out from large amounts
of data in order to make future decisions based on the patterns learned. The use of
machine learning methods to solve technical problems is therefore increasingly becoming
a necessity for many industrial applications in order to meet the constantly growing
demands industrial solutions imply. The increasing need for digitalization often requires
high-precision sensors, especially within the context of fluid machineries, to monitor and
to control the underlying systems. However, it is often not possible or not profitable to
install these precise sensors in the application due to economic requirements or a lack of
available mounting space. This study addresses this issue within the context of external
gear pumps, using neural networks. In this publication, a data-driven model variant based
on neural networks is presented, which learns the behavior of the used pumps and makes
the expensive volume flow sensor within the application of external gear pumps obsolete.
Accordingly, the study meets the requirements of Industry 4.0, the highly competitive
demands of the branch and the requirements of the digitalization for industrial pump
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applications. The current variants for modeling such systems break down their behavior as
a function of the operation parameters. They can be roughly divided into two categories.
The so-called lumped-parameter models describe internal leakage based on laminar flows.
Using CFD simulations, turbulence can also be included within the model. Most of the
conventional modeling variants aim to understand the behavior of the pumps to optimize
the design parameters of the underlying positive displacement machines. Accordingly,
based on these studies, the efficiency of the pumps should be optimized or maintained over
the entire operating range. Unlike conventional modeling variants, the presented approach
does not aim to study the behavior of the pump in order to minimize the internal leakage.
The focus thus lies not on improving the pump’s behavior, but rather on optimizing
the higher-level dosing process. However, conventional pump models do not yet allow
the implementation within a running application, as they are either too computationally
intensive or too inaccurate.

The use of neural networks in the context of pump applications has already been
discussed several times in the literature—among other things in the context of electrohy-
drodynamic pumps [1], for operation detection [2] and for monitoring pump systems [3,4].
In this paper, however, the modeling of the pump is used to make predictions about the
behavior of external gear pumps and to control the pumps based on these predictions. This
study aims to model the pumps using neural networks and to map the pump curve fields
over the entire operating range. All effects that influence the pump behavior are estimated
using the data-driven approach with neural networks. The study does not aim to analyze
individual physical phenomena to improve the design of the machine on this basis. Instead,
the data-driven model allows a direct control of the pump based on the predictions of the
neural network, to detect errors during the pumping process, or even to directly replace
the expensive sensors for monitoring and eventually controlling their behavior within the
application. In detail, the main focus here is to predict the volume flow of the pumps to
improve a higher-level dosing process. For this purpose, various operating points are mea-
sured to build a dataset, which allows a neural network to understand the complex leakage
pattern and predict the pump flow rate. The neural network performs a regression task to
correctly calculate the flow rate of the pumps over the entire operating range, including
varying rotational frequencies, changing hydraulic resistances of the powered system, and
within a wide range of temperatures.

In the following sections, we will describe the effects that occur during the application
and have a significant influence on the output flow of external gear pumps. The goal is to
show which aspects are relevant for the modeling and which influences must be considered.
It is essential to have this basic understanding to grasp the technical challenges of the
proposed approach and the neural network to be trained. The paper then discusses the
setup of the test rig and the validation of the results.

1.1. Design and Function of External Gear Pumps

The basic design and the intended application classify displacement pumps into
different classes. The most common designs include externally and internally geared
pumps. These can be of either straight or helical-toothed designs. Due to their tremendously
slim and robust structure, they are among the most frequently used components in materials
handling technology, with a total market share of approximately 11% [5].

The operating principle of these displacement machines is quite simple to understand.
With intermeshing gear wheels, the fluid to be transported is displaced and conveyed by a
rotary motion. Therefore, these types of pumps require very few components to function.
Figure 1 shows the operating principle of external gear pumps. The gears rotate in opposite
directions and transport the fluid mass within the drive chamber to the pump outlet.
The spaces between the teeth transport fluid from the suction side to the delivery side.
The intermeshing of the gears results in an almost form-fitting displacement. The actual
displacement takes place in the center between the two gear wheels. The pump generates
the system flow and the leakage inside the pump flows in the opposite direction. The
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interlocking physically separates the suction chamber from the delivery side and initializes
the delivery of the fluid mass [6].
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Figure 1. Operating principle and system flow of an external gear pumps.

At first glance, the mode of operation suggests an ideal displacement machine. The
system gains power through the energy fed into the motor, which typically drives only
one gear in the external gear pumps. However, the mechanism cannot transfer the con-
sumed power to the hydraulic domain without losses. Depending on the operating condi-
tions, the occurring pressure, and the tooth geometry, leakage currents occur, which can
be nonlinear and heavily depend on the material properties. In addition to the geometric
design of the gears, moving components always require backlash for rotation. Therefore,
displacement machines are always described and rated in terms of their efficiency. In
Figure 2, the entire operational process of an external gear pump is illustrated.
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Figure 2. Energetic chain of effects for the external pumps in use. I—electrical current, U—electrical
voltage, Pel—electrical power, ηel,mech—electrical–mechanical degree of efficiency, Pmech—mechanical
power, M—moment, n—rotation frequency, ηmech, hyd—mechanical–hydraulic degree of efficiency,
Phyd—hydraulic power, pe f f —effectively usable pressure, Qe f f —effectively usable volume flow,
Qloss—leakage losses.

The electric motor absorbs electrical energy in the form of current and voltage and
converts it into mechanical power. The shaft of the driven gear transmits the necessary
torque. The rotating gear wheels cause the desired displacement, and additionally, pos-
sible adiabatic compression occurs. The geometry of the gears primarily determines
the mechanical–hydraulic efficiency. The gear meshing allows the transformation to the
hydraulic domain. Finally, the volumetric flow and operating differential pressure can
be accessed.

Transformation losses occur throughout the entire operational process described
above. The motor heats up and friction builds up on the bearings and in the housing shaft.
Furthermore, within the hydraulic domain, the gap geometries significantly determine the
level of leakage losses [7]. The micro-dynamic and chemical effects of the material system,
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the effects of magnetic and electrical interactions and the heat input due to resulting system
friction are neglected or considered to be stationary.

In view of the DIN ISO 4391 [8] and DIN ISO 4409 [9] standards for hydraulic pumps,
the definition of the overall efficiency ηtotal is as described below:

ηtotal = ηel,mech · ηmech, hyd =
Phyd

Pel
(1)

In Equation (1), Phyd is the hydraulic power delivered and Pel is the electric power
applied for the pumping operation. A detailed model of a gear pump must aim at describing
the losses in the system in a comprehensible way and to break down the efficiency of the
machines based on physical laws. With the aid of these physically based model variants,
the behavior of the pumps can then be simulated. The investigation of the flow processes
of external gear pumps includes the description of the gap flows within the pumps and the
modeling of the unique pulsation pattern [10–13].

1.2. Definition of the Maximal Theoretical Pump Flow Rate

The first step is to determine the displacement volume of an external gear pump per
rotation. The geometries of the gears require a head clearance so that the gears can rotate.
Although the gear meshes with the corresponding tooth space and thus also displaces
volume, it is not possible to displace the entire volume in the tooth spaces due to the
geometric structure of the gears themselves. In [14], H. Tian describes the working cycle
of the gears using a two-dimensional morphological approach. The meshing process is
expressed in a layered pulsation pattern, which is primarily defined by the rotational
frequency n and the number of teeth z of the gears.

The pulsation pattern of the driven gear is synchronized with that of the second
rotating gear, resulting in the typical pulsation of an external gear pump. This pulsation
pattern not only directly influences the generated volumetric flow but also manifests itself
in a pulsating pressure. However, given high rotational frequencies of about 4000 rpm and a
total of more than 10 teeth, these pulsation patterns quickly become negligible. Instead, we
can determine a mean displacement, which defines the theoretical maximum displacement
volume per rotation of an external gear pump [15]:

Vtheo = m2πb
(

2z +
(

1 +
Z
Z′

)
·
(

1 − π2

48
cos2α

))
(2)

In this equation, the coefficient Vtheo represents the theoretical displacement volume
of the pump, which can be calculated considering the modulus m, the gear width b, the
number of teeth (first gear) z, the number of teeth (second gear) z′, the pressure angle of
the involute gear α and the rotating frequency n. However, the theoretical flow rate can
also be measured based on ISO standard 4359 [16]:

Vtheo = VISO4359 =
1
k

k

∑
i=1

(
Qi
ni

)
where ∆pi < pcritical (3)

Multiple volume flows with a maximum pressure under the critical counter pressure
of pcritical must be measured. The stroke volume is then calculated using the rotational
frequency, as the rotational frequencies n and the volumetric flow rate Q have a linear
dependency based on Vtheo. It should be noted that the so-called drag flow rate Qd is
included in this variant. The drag flow rate represents a linear distribution from zero to
height h of a gap. The velocity v is defined over the gap height h and the width b from the
upper part of the fluid film element concerning the lower part and is calculated using the
well-known relationship given below [17].

Qd =
v · b · h

2
(4)
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Since this drag volume flow also occurs during the rotation of the gears, the mea-
surements contain an averaging of this drag volume flow. Therefore, this value for the
theoretical displacement volume can be slightly bigger. If the system has a small hydraulic
resistance, the pump will always produce the ideal flow rate. However, when pressure
occurs, the flow rate decreases. Therefore, the output of the pump can be formulated
as follows:

Qoutput = Qtheo − ∑ Qloss = Vtheo · n − ∑ Qloss (5)

1.3. Definition and Categorization of the Leakage Losses

The internal leakage and the hydraulic resistance of the pump fundamentally describe
the losses within the hydraulic domain. Besides the so-called lumped-parameter (0D)
models, more complex 1D model variants also invoke the subdivision of geometries into
control volumes to describe the internal leakages [18]. The inlet and the outlet chamber
of the pumps, including the teeth spaces, are subdivided into fixed volumes, which are
connected via the gaps within the pumps.

Consequently, differential equations represent the flows between these control volumes
and model the pump behavior. For this purpose, the leakage losses are subdivided via the
geometry of the pump and the leakage flows. Here, the radial head, the gear face, the bearing
gap, and the meshing process are to be mentioned. Figure 3 illustrates the subdivision of the
gap currents using the example of an external pump with two interlocking gears.
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Since the gaps are thin with a height of about 10–30 µm, the assumption of laminar
drag flow is mostly correct. These model variants are based on the physical law accord-
ing to the Hagen–Poiseuille equation, which describes laminar flow within long tubes.
The cross sections are mostly rectangles. The width b, the height h and the length L of
the cross section form the volume flow Qloss with the differential pressure ∆p that the
pump generates [17].

Qloss =
b · h3

12 · η · L
· ∆p (6)

Depending on the pumped fluid, the corresponding dynamic viscosity η must be
applied as a function of temperature. This model simplification is still primarily used to
simulate external gear pumps. If a high resistance occurs in the system outside of the
pump and a large fluid mass flows through the gaps of the pump in the opposite pump
flow direction, this approach reaches its limit [19–22]. Furthermore, most gaps within the
pump are short distances and not long, thin pipes. Users also need to know the exact
gap dimensions of all pumps, as this model variant requires precise measurements. In an
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industrial context, this circumstance represents an expensive 100% quality inspection. For
this reason, these model variants are not well suited within an industrial context.

1.4. Effect of Operating Conditions on the Gap Geometries

Each pipe network is fully characterized by flow components with and without
vortices. At low velocities, usually called laminar flow, no vortices occur and the streamlines
are fully straight. The laminar portion of the flow is linearly related to the differential
pressure. However, when vortices occur (e.g., in turbulent flows), the linear equation must
be extended by a quadratic term. Therefore, the volume flow rate in complex pipe network
flows represents a second-degree polynomial function [23]:

∆p = ζlam · Qloss + ζturb · Qloss
2 (7)

In this equation, the coefficient ζlam represents the laminar proportion and the coef-
ficient ζturb symbolizes the turbulent or vortex proportion of the flow. It is reasonable to
assume that any leakage flow of the pump represents a complex pipe network flow that
has laminar and turbulent components. Therefore, a parabolic function symbolizes any
losses of a pump. This assumption is valid, supposing the geometries of the gaps remain
constant and the material properties of the fluids do not change over the operating range
of the respective use case.

In a real applicational scenario, this model extension is still an inadequate solution. If
the pump operates at a higher rotational frequency, forces occur in the system. The gears
shift towards the inside of the drive chamber, which changes the cross-sectional geometries
of the gaps. As soon as the gap height varies, the hydraulic resistance of the pump changes.
The physical law according to Hagen–Poiseuille suggests that a leakage flow Qloss ∝ h3. For
this reason, various approaches in the literature calculate or estimate the bearing position
of the externally toothed gears during operation. The calculation of cross-sectional areas
relies on this estimation [24–27].

The fluids used for pumping can vary depending on the application. In addition to a
Newtonian fluid, whose viscosity only changes with temperature and the existing pressure,
structurally viscous or shear-thickening materials can also be used within the pumping
process. In this case, the material properties change due to the degree of the shear force.
Such forces are caused by the rotation of the gears and occur within the drive chamber and
bearings. In this case, the viscosity of the conveyed substance cannot be represented as a
pure function of temperature.

With varying temperature rates, expansions of the building material additionally
occur, e.g., depending on the expansion coefficient αm, the head diameter dhead of the gear
varies as the installed metal expands at an increased temperature ∆T [28].

∆l = αm · dhead · ∆T (8)

Considering small gap heights of 10–30 µm, even small absolute expansions of few
micrometers can influence the cross sections and significantly change the hydraulic resis-
tance. CFD simulations are the preferred method for accurately reproducing the behavior
of external gear pumps and realistically modeling the effects of leakage formation for this
very reason. Given the cited references, the error rate of three-dimensional CFD simulations
is within a range of 1–3% [29–32]. The mean percentage error (MAPE) is used as a metric:

MAPE =
1
m

m

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣, (9)

where Yi is the target value and Ŷi is the predicted value of the model. The set m contains
the number of operating points for the predictions. The results of the CFD simulations show
that it is possible to model all physical phenomena of the flow formations and precisely map
the behavior of the pumps. However, instead of relying on complex and computationally
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intensive numerical simulations or inadequate analytical model variants, a neural network
is utilized within our approach to represent the flow patterns of the pumps.

2. Experimental Setup

In the test setup used within this study, the external gear pumps drive a closed
hydraulic circuit, as shown in Figure 4. The placement of sensors on the inlet and outlet of
the pump unit allows us to measure the volume flow, temperature, suction and delivery
pressure. Because the pressure in the pipe system drops over a longer distance, the pressure
sensor is located on the delivery side directly at the pump outlet. In addition, drain valves
and a vent are implemented in the test setup to compensate for unwanted pressure buildup
that could affect the measurement. As also shown in Figure 4, a tank containing 5 L
provides the fluid solution for the closed system. We designed the mounting frame such
that the vibrations of the experimental pumps on the aluminum profiles are minimized.
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The tank is connected to an external heat exchanger, ensuring that the fluid is not
only given the desired temperature but also that this temperature is maintained during the
measurements. The test stand fits into a climatic cabinet, which serves a dual purpose. It
maintains the target temperature and protects the measurement from external temperature
influences. A fabric-reinforced PVC hose with an inner diameter of 8 mm conveys the fluid
mass in the closed system.

Table 1 gives a summary of the experimental setup to allow for reproducible measurements.

Table 1. Experimental setup—devices.

Equipment Specification

validation pump Scherzinger Pumpen—SDU 2876
(Supply systems for urea–water solution up to 60 L/h)

ultrasound flow meter

Sonotec—SONOFLOW IL.52
Range: (30; 3000) mL (water 23 ◦C ± 2 K)
Accuracy: ±1%
Range: (0; 30) mL (water 23 ◦C ± 2 K)
Accuracy: ±0.3 mL/min

pressure sensor (outlet)
STS Sensors—ATM/T
Range: (0; 10) bar
Accuracy ± 0.5%
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Table 1. Cont.

Equipment Specification

pressure sensor (inlet)
IFM Electronic—PT5494
Range: (−1; 10) bar
Accuracy ± 0.5%

thermometer
PT100
Range: (−30; 300) ◦C
Accuracy ± 0.15 ◦C + 0.002 T

The pumped medium is a urea–water solution, popularly known as AdBlue. The
manufacturer BASF specifies a target urea concentration of 32.5%, with a tolerance of
between 31.8% and 33.2%. In Figure 5, the densities and viscosities of the used urea–water
solution are given as a function of temperature [33,34].
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3. Setup and Design of the Neural Network

The regression task of the neural network aims to predict the behavior of the pump.
The network structure interpolates the pump curve and covers the characteristics over
the entire operating range. The so-called universal approximation theorem states that
a continuous function can be well approximated arbitrarily by using a neural network,
provided that the network structure is designed for the complexity of the function in
question. Consequently, the focus of this study lies on the design of the architecture and
the validation of the underlying dataset [35].

3.1. The Structure and Architecture of the Trained Neural Networks

The programmed networks are based on the TensorFlow 2.14.0 library and were
created using the Python programming language. The architecture of the fast-forward
neural networks is chosen as follows.

As visualized in Figure 6, all operating parameters of the entire energy chain can
be fed into the neural network. Only the torque on the drive gear is not included as an
input parameter for this application, as the test rig does not provide this measured variable.
The number of perceptrons is fixed to the value x, which must be determined as part of a
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hyperparameter study. All hidden layers simply have the same number of perceptrons in
our analysis. Furthermore, the number y of hidden layers must be determined. The aim is
to check how small the neural network can be in the application while still being able to
predict the volumetric flow Qout of the pump properly. Since computing power is a limited
resource on microcontrollers, where the neural network shall be operated later, such neural
networks must be sparse and small, so that they can actually be placed into the application.
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na—actual rotational frequency, Tin—inlet temperature, U—electrical voltage, I—electrical current,
ρu—density of urea–water solution, ηu—dynamic viscosity of urea–water solution, x—number of
perceptrons per hidden layer, y—number of hidden layers.

The hyperbolic tangent (tanh) activation function is chosen, as we expect a smoother
interpolation of the characteristic pump curve.

tanh(x) =
ex − e−x

ex + e−x (10)

In our considerations, the neural network receives only one type of activation function.
We do not mix activation functions within the hidden layers because we want to keep the
network structure as simple as possible. The input variables are normalized using the
standard normalizer from the scikit-learn library to improve the regression of the neural
network. The input variables are normalized for each input individually using the mean
value and the standard deviation of the training dataset.

The mean squared error (MSE), which is one of the most commonly used functions
for neural networks, is used to calculate the error within the adaptive moment estimation
(Adam) backpropagation training algorithm. We add L1 regularization with a regulariza-
tion parameter λ = 0.001 for each hidden layer to counteract overfitting of the weight
vectors θj within the set of trainable parameters k [36].

Loss(θ) =
1
m

m

∑
i=1

(
Yi − Ŷi

)2
+

λ

m

k

∑
j=1

∣∣θj
∣∣ (11)

The mean absolute percentage error (MAPE) is primarily used as a metric. As this
specific error function reacts more sensitive to very small values, the mean absolute error
(MAE) is also specified as a metric.

MAE =
1
m

m

∑
i=1

∣∣Yi − Ŷi
∣∣ (12)
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The control of the electrical motor driving the gear pump is based on an open or closed
loop. Depending on the type of control, the voltage and current are not available at all
rotational frequencies, as these parameters can be fixed to a specific value depending on
the underlying control system architecture. We therefore recommend case differentiation
as per Table 2.

Table 2. Case differentiation: inputs used for neural networks.

Scenario/Use Case Input Parameters

Approximation of the
volumetric flow rate
based on the whole

energetic chain

pout—outlet pressure
pin—inlet pressure
∆p—pressure difference over the inlet and outlet
nt—target rotational frequency
na—actual rotational frequency
Tin—inlet Temperature
U—electrical voltage
I—electrical current
ρu—density of urea–water solution
ηu—dynamic viscosity of urea–water solution

Approximation of the
volumetric flow rate

based on the hydraulic
domain

pout—outlet pressure
pin—inlet pressure
∆p—pressure difference over the inlet and outlet
nt—target rotational frequency
na—actual rotational frequency
Tin—inlet temperature

We can determine the relationships and relevant input parameters by comparing the
networks. Furthermore, the second use case has another advantage. The interpolated
pump characteristic curve can be easily visualized with this model variant, as the input
parameters are unrelated.

Typically, neural networks are considered black-box models, which provide users
with little or no insight into the mode of action. However, this variant makes it possible
to visualize the regression of the pump characteristic curve over the relevant operating
range. This means that we can plot the regression and easily validate the results from a
human perspective.

3.2. Key Features of the Dataset

The specifications of the pumps being used limit the range of the chosen input parame-
ters. The maximum differential pressure does not exceed 9 bar, as the technical specification
of the used pumps suggests. The rotation frequency spectrum covers a range of about
200 to 4000 rotations per minute. A temperature range of 5–50 ◦C is selected as this easily
exceeds the typical operation range of the underlying conceived industrial application. The
low volumetric flow does not exceed a value of 10 mL/min. A total of six pumps from one
production lot are used to demonstrate the functionality of the network architectures. The
pumps all have different gap dimensions, leading to heavily varying pump characteristics
within the same series. Within an applicational scenario, the pump always works against
the hydraulic resistance of the system. Therefore, accurate estimation of the theoretical
volume flow Qtheo is only possible at low rotational frequencies. We take care to include
more than 10 operating points for each pump curve so that the network learns to approxi-
mate the curve correctly. Therefore, at least 10 different valve positions are approached per
pump curve.

To validate the network, we divide the dataset into 80% for training and 20% for
testing with a random seed per pump. The neural network should learn to interpolate
the pump characteristic curves. Consequently, the training of the neural network only
succeeds if the pump curve fields are interpolated over the entire operating range of the
pumps. For this reason, we ensure that the testing dataset contains pump curves that are
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not present in the training dataset. Therefore, the dataset contains operational points which
are not included in the training dataset. This approach makes it possible to differentiate the
datasets significantly from each other and thus to fully test the functionality of the neural
networks. A total of 15,333 operating points were measured for all 6 pumps.

4. Results

This chapter is divided into several sections, which contain polynomial regressions,
the hyperparameter study, the validation of the neural networks and the cross-validation
across the used pumps.

4.1. Benchmarking: First- and Second-Order Polynomial Regression

The presented model is based on our new generated dataset. For this reason, the
first section contains the results of conventional polynomial regressions. The linear re-
gression reflects the lumped parameter model, as the volume flow Qout is proportional
to the differential pressure ∆p at a given rotational frequency n. The hydraulic resis-
tance Rhyd is therefore determined for each individual pump characteristic curve using a
linear regression.

Qout(∆p) = Qtheo −
∆p

Rhyd
= Vtheo · n − ∆p

Rhyd
(13)

The second-degree polynomial regression represents the flow characteristics of complex
pipe networks, which reflect turbulent and laminar flow components. The quadratic formula
for the pressure formation in complex pipe networks forms the basis for this approach.
However, the target variable (volumetric flow) must represent a function of the input variable
(differential pressure). Therefore, the quadratic formula is solved analytically:

Qout(∆p) = Qtheo −

−ζlam ±
√

ζlam
2 − 4 · ζturb · (−∆p)

2 · ζturb

 (14)

The presented regression variants fit the pump characteristic curves individually. This
benchmark approach does not represent a multidimensional regression task. We fit the
individual pump characteristics of the rotational frequencies and temperatures separately
within this benchmark test. A multidimensional regression model, as the neural network
consequently represents, can only be created when the hyperparameters of the regressions,
i.e., the hydraulic resistance Rhyd and the parameters of the quadradic term ζlam and ζturb,
are interpolated over the rotational frequencies and temperatures.

This benchmark approach only intends to enable a comparison. The neural network,
however, learns to approximate the pump characteristics field over the entire range of
rotational frequencies and temperatures (See Table 3).

Table 3. Validation of the first- and second-order polynomial regression.

Pump MAPE (%) MAE (mL/min)

First Order Second Order First Order Second Order
1 15.44 3.27 51.36 9.68
2 21.29 3.01 53.92 8.92
3 16.00 2.99 52.29 9.76
4 13.50 2.85 48.15 8.88
5 14.09 2.56 44.89 8.28
6 18.41 3.72 53.85 12.39

Total Average 16.46 3.07 50.74 9.65

In total, the first- and second-order regressions achieve a total MAPE of 16.46% and
3.07%. The second-order regressions achieve the same accuracy as the cited CFD simu-
lations indicate, as the volumetric vortices are also taken into account in this approach.
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Appendix A contains the exact analysis of the MAPE and MAE over the rotational frequen-
cies as a boxplot diagram for all six pumps.

4.2. Hyperparameter Study: Finding the Right Neural Architecture

The results of conventional regression show that it makes perfect sense to solve the
regression task using neuronal networks. However, the following questions arise. Which
network size should be selected, how much can the network be reduced in size, and does an
enlargement of the architecture benefit the regression? For this reason, the hyperparameter
study incrementally increases the number x of perceptrons and the number y of hidden
layers. The networks are trained over 2000 epochs. The whole energetic chain is used for
the approximation of the volumetric flow rate. No early stopping is applied. The following
Figure 7 contains only the end results of the training process.
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Even neuronal networks with six neurons produce better results than the conventional
regression variants. In principle, networks with more neurons per layer achieve better
results, regardless of the number of hidden layers. However, the architectures converge
at an MAPE of about 0.8–1%. This result corresponds to the accuracy of the dataset, as
the sensors in use have an accuracy of 0.5–1.0% Appendix B contains the hyperparameter
studies of the other five pumps. These show very similar results.

4.3. Evaluation of the Neural Network

We choose an ideal network size of 64 perceptrons with six hidden layers each for fur-
ther processes, even though we could use a smaller network. This architecture corresponds
to a total number of 21,569 trainable parameters, which nevertheless corresponds to a very
small network in the domain of machine learning. The validation of the network over the
entire training epochs can be seen in Figure 8.

The results of the test dataset do not differ significantly from those of the training
dataset. This shows that the neural network does indeed learn to interpolate the pump
characteristics correctly and that no overfitting occurs. The neural network eventually has
almost the same accuracy of the sensors used to collect the dataset. It should be noted that
the network shows a fluctuation of approximately ±1% over the entire training. Again, this
error can be explained by the accuracy of the underlying dataset.

Because of the different control loops mentioned above, it is necessary to check whether
the network can also predict the behavior of the pump based on the differential pressure
alone. Table 4 compares the two scenarios in a summarized form.
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Table 4. Case differentiation: validation of the best results of the test dataset over the epochs.

Pump MAPE (%) MAE (mL/min)

Use Case 1 Use Case 2 Use Case 1 Use Case 2
1 0.83 0.97 1.31 1.56
2 0.93 0.96 1.11 1.12
3 0.83 0.86 1.21 1.22
4 0.93 0.96 1.57 1.61
5 0.75 0.70 1.09 1.17
6 0.82 0.77 1.31 1.16

Total Average 0.85 0.87 1.27 1.31
Use case 1—approximation of the volumetric flow rate based on the whole energetic chain, use case
2—approximation of the volumetric flow rate based on the hydraulic domain.

The neural networks can already predict the behavior of the pumps very well based on
the rotational frequency, temperature, and differential pressure alone. Although there is a
known correlation between the electrical current and the volumetric flow rate in the control
of the pumps, the results show that it is not necessary to include the electrical current or
voltage in the algorithm.

The visualization of the approximation from the trained neural network provides
valid insights. Figure 9a shows the characteristic curve field of pump 1 at a temperature
of 20 ◦C. The dotted black lines represent the predicted pump curves where no operating
points were measured. Notice the extreme points at the edges of the axes. The network
appears to have approximation problems here.

The theoretical flow rates, which represent the intersection points with the x-axis,
are not optimally approximated at higher rotational frequencies. However, this error is
negligible, as the pump can never reach the theoretical volume flow at higher rotational
frequencies, as the inflows and outflows of the pump alone create hydraulic resistance. At
higher rotational frequencies, the neural network does not succeed in accurately mapping
the pump curve. The distance between the pump characteristics is formed via the rotational
frequency n. The difference ∆n is too large, which is why the network has difficulties. The
operating points are not optimally selected either, which results in fluctuating and wavy
approximated pump curves.

A further conspicuous feature occurs at the extreme points on the y-axis. The maximum
differential pressure of the pump is not reproduced correctly either. As the dataset contains
operating points of Q > 10 mL/min, the neural network is also only valid for this range.
In particular, the temperature deviations shown in Figure 9b, which include the changes in
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the leakage gap and the changes in the material properties, appear to be correctly mapped
by the network. Appendix C contains the pump curve fields of the other remaining pumps.
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Figure 10 compares the conventional regression variants and the results of the trained
neural network. The MAPE and MAE are displayed over the entire rotational frequency
range. The varying differential pressures and the temperature spectrum cause the scatter
within the box-plot diagram. At low rotational frequencies, the network appears to have
more outliers, which are visualized as black dots within the box plot. These specific outliers
are very small volume flow values, which stand out in particular due to the metric of the
percentage error. The superiority of the neural network becomes extremely clear with
higher rotational frequencies in particular.
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Appendix D contains the visualization of the MAPE and the MAE over the rotational
frequencies for the remaining pumps.

Although the results show that neural networks are suitable for modeling the behavior
of pumps, there are still some weaknesses in this approach. It is indeed possible to map
the characteristic curve fields of the pumps. However, an individual dataset is required for
each pump because the neural architectures used are difficult to transfer due to mechanical
tolerances of the manufactured pumps. The following cross-validation makes this instance
clear within Table 5. Here, a meta-network is first trained with the data from five test
pumps and is then validated using the remaining sixth pump. The architecture of the
network remains the same with six hidden layers and 64 perceptrons for each layer. The
validation method makes it possible to verify whether the network learns to interpolate
between the pump characteristics.

Table 5. Cross-validation: validation of the neural network using multiple pump datasets.

Validation
on Pump Dataset MAPE (%) MAE (mL/min)

Training Testing Training Testing
1 2, 3, 4, 5, 6 2.24 10.91 2.64 12.69
2 1, 3, 4, 5, 6 1.71 37.33 2.56 34.69
3 1, 2, 4, 5, 6 1.89 9.46 2.12 14.59
4 1, 2, 3, 5, 6 3.73 15.95 3.08 27.45
5 1, 2, 3, 4, 6 2.44 9.24 2.83 13.02
6 1, 2, 3, 4, 5 2.41 2.59 19.01 25.58

Training dataset contains the operation points of five pumps; testing dataset contains the remaining pump to
validate the regression task for new unknown pumps.

The previous accuracy cannot be achieved within this experiment. This circumstance is
not surprising, as the neural network does not receive any information about the variations
of the gap geometries within the pumps. Therefore, the neural network does not receive
any knowledge about how it must interpolate between the pump characteristic curves.

5. Conclusions

In this study, we introduce an alternative data-driven model based on neural networks
to precisely predict the behavior of the used external gear pumps. The presented methods
include the entire rotational frequency range, a large temperature spectrum, and various
hydraulic resistances. Based on the presented results, the following conclusions were drawn.

1. The differential pressure from the suction to the delivery side of the pump, the
rotational frequency, and the fluid temperature alone make it possible to predict the
flow rate of the used external geared pumps. Adding the measurements of the current
and voltage as input to the neural network shows only negligible improvements in
the accuracy of the network, as it already produces very precise predictions based on
the differential pressure, temperature and rotational frequencies.

2. Even neural networks with just six perceptrons are more accurate than conventional
physically based regression variants. Very sparse neural networks with only a few
hidden layers can generate an average flow rate accuracy of less than 1%.

3. The accuracy of the sensors limits the quality of the regression. The neural networks
are not more accurate than the underlying dataset dictates.

4. As soon as the pump characteristic curves within the dataset are too far apart,
i.e., the rotational frequencies of the pumps are too far apart within the dataset,
the neural network has difficulties in generalizing the pump characteristic curves.
These instabilities only get noticeable at higher rotational frequencies within the
presented approach.
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6. Discussion

The networks are difficult to use in the context of a transfer task. This result confirms
the common impression of neuronal networks, as meta-learning is still a well-recognized
research field. The accuracy suffers when the behavior of several pumps is approximated
simultaneously, as the neural networks have no understanding of the gap geometries and
cannot distinguish well between the pumps. This fact is probably reinforced when different
pump types and varying fluid systems are taken into account. Since this study solves an
industrial production problem, the impact of this circumstance on the scalability of the
solution must be highlighted. However, this circumstance does not limit the architecture of
our presented approach itself, but rather points to the need for the acquisition of new data
in case of scalability to new pump designs. It is therefore primarily of economic relevance
for the users. It is precisely this circumstance that generates further research interest and
indicates possible potential for further studies.

The first optimization option is to investigate the extent to which it is possible to
generate the same results using fewer data points. Furthermore, the transferability of the
network across different production tolerances must be analyzed. However, it should
be noted that the effects of different manufacturing tolerances are very significant in the
case of the used external gear pump presented here, as the used pumps have very small
gaps. In the case of other pump systems, whether the presented approach is still valid
and whether the neural networks make equally good predictions in these cases must be
checked. The chosen approach allows users to visualize the regression of the networks and
to get a good understanding of the approximation. This circumstance is rather rare in the
field of neural networks and therefore worth mentioning. Finally, varying pump designs
and several fluid systems must be included within further studies to analyze and overcome
challenges. Combining conventional modeling approaches with the presented data-driven
model represents another promising field of interest for further research.
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Appendix A

This appendix contains a detailed visualization of the MAPE and MAE for the poly-
nomial regression. The boxplot indicates the errors over the rotational frequency. The
different pressures and temperatures cause the scattering within the boxplot.
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Appendix B

Appendix B contains the detailed validation of the hyperparameter study for all
remaining pumps.
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Appendix C

Appendix C contains the detailed visualization of the pump curve fields given by the
neural network at a temperature of 20 ◦C for all remaining pumps. The approximation is
generated by neural networks trained under case use 2 (approximation of the volumetric
flow rate based on the hydraulic domain).
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Appendix D

This appendix contains a detailed visualization of the MAPE and MAE for the neural
networks with use case 1. The outliers in the MAPE error include measurements with a
high hydraulic resistance and small corresponding volumetric flow rate.
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