
Stream Processing for ROS-based Application
Development

Alexander Grueneberg
Fakultät Informatik

Hochschule Furtwangen University
Furtwangen, Germany

alexander.grueneberg@hs-furtwangen.de

Alexander Mattes
Fakultät Informatik

Hochschule Furtwangen University
Furtwangen, Germany

al.mattes@hs-furtwangen.de

Lukas Mendel
Fakultät Informatik

Hochschule Furtwangen University
Furtwangen, Germany

lukas.mendel@hs-furtwangen.de

Julian Sobott
Fakultät Informatik

Hochschule Furtwangen University
Furtwangen, Germany

julian.benedikt.sobott@hs-furtwangen.de

Abstract—ROS is a middleware platform for integrating dif-
ferent software and hardware components, commonly used in
robotics and the automotive sector. Sensors generate continuous
data streams that reflect the current state of the system and its
environment. While ROS supports message transmission between
nodes, it lacks support for data stream processing. Stream
processing systems are designed to process data streams, but
do not support the integration of different technical components.
This work explores how ROS and stream processing systems can
be connected to leverage their respective advantages.

Currently, there is a lack of research into how ROS can be
integrated with stream processing systems. We have developed
a software platform that maps typed ROS topics to Kafka
topics and automatically converts message types. This platform
increases development speed and reduces system complexity.
Additionally, it greatly facilitates sensor fusion, creating the
potential for increased system reliability. A simple use case is
employed to validate the platform.

Index Terms—ROS 2, Apache Kafka, Apache Kafka Streams,
Stream Processing, Complex Event Processing, Sensor Fusion

I. INTRODUCTION

Robot Operating System (ROS) is a middleware platform
commonly used in robotics and the automotive sector to
connect hardware and software components from different
devices. Messages are transmitted between components based
on the publish-subscribe pattern [1].

Components such as sensors generate continuous data
streams that reflect the current state of the system and its
environment. This information can be published via ROS and
consumed by ROS components to evaluate the data streams
in real time. However, when evaluating the data streams, as is
done in Complex Event Processing [2, 3, 4], the limitations
of ROS become apparent. ROS lacks sufficient support for
the processing of continuous data streams, especially when it
comes to aggregations over multiple events (grouping), over
multiple streams (joining), or over time (windowing).

Using a streaming system to develop robot applications
offers several advantages:

• Sensor fusion: Data from many sensors with overlapping
information content may be fused to evaluate the correct-
ness of recorded data [5].

• Development speed: Business processes can be imple-
mented rapidly in streaming systems like Apache Kafka
Streams.

• Robot collaboration: By dividing robots into groups and
connecting groups across networks via a bridge, commu-
nication overhead can be reduced.

• Decoupled development: By separating business logic
(modeled in the streaming system) and robot control
(modeled in ROS), components can be independently
developed by specialized experts.

We developed a software platform to bridge the gap between
ROS and Kafka. This platform transforms typed ROS mes-
sages into generic Avro messages, which can be transformed
into language-specific objects with minimal effort. These
generic Avro messages are transmitted using Apache Kafka,
a suitable choice as most streaming systems provide Kafka
connectors.

When attempting to pass ROS topics to Apache Kafka and
process them in another system, the primary challenges include
dealing with one-to-many topic mappings and object serial-
ization. It is necessary to have one-to-many topic mappings
because on the Kafka side, it is easier to deal with topics, in
which all robots publish and subscribe, but on the ROS side
every robot typically has its own topics.

We developed several ROS nodes that enforce an archi-
tecture that reduces complexity and communication overhead.
The registration node encapsulates the logic for adding robots
to an existing network, while repeater nodes minimize the need
for redundant messages, thus reducing latency and bandwidth
usage.

A literature search was conducted to explore existing ap-
proaches for combining ROS with streaming systems. Subse-
quently, we defined a simplified use case for an Industry 4.0



scenario, analyzed general requirements for an autonomous
robotic system, and developed a prototype.

In this paper, we present an architecture that captures the
findings and challenges, showcasing a possible approach for
combining streaming applications with ROS, allowing separate
mapping of business logic and robot control.

This paper is structured as follows: In II we present a
selection of publications that address bridging between ROS
and streaming systems, stream processing and cloud comput-
ing in robotics applications, and architectures of ROS-based
applications. Chapter III explains the different components
and concepts used in ROS-Kafka development. Chapter IV
describes a concrete use case for robotics warehouse logistics,
extracting a number of requirements for robotics systems.
In chapter V, we present the implementation of the chosen
scenario before drawing conclusions in chapter VI. Finally,
we outline future research directions in chapter VII.

II. RELATED WORKS

There are some academic papers that overlap with ours.
We categorize them into the following groups: ROS Bridges,
Stream Processing, Cloud Robotics, and Architecture of ROS-
based Applications.

A. ROS Bridges

Given that we are connecting ROS 2 to a streaming system,
it is essential to investigate different types of getting data
in and out of ROS 2. We have limited ourselves to those
works that either provide unique ideas for interoperability or
approaches for dealing with the problem of message typing.

Lourenço et al. [6] use Kafka as a broker between ROS 2
and third-party systems (e.g., e-commerce systems in a smart
warehouse setting). To achieve this, a pair of ROS 2 nodes is
created: 1. the Kafka-ROS bridge node consumes messages
from Kafka and publishes them to ROS, and 2. the ROS-
Kafka bridge node subscribes to a ROS topic and publishes
the messages to Kafka. For QoS profiles with a low depth,
they observed message loss in a lower single-digit percentage
range that could be addressed by increasing the depth.

RAWFIE is a platform for unmanned vehicles (UxV) [7].
RAWFIE uses Kafka as a distributed message bus. The com-
munication between ROS and Kafka is handled via rosbridge
and a Kafka REST proxy. Rosbridge [8] provides a JSON
API to ROS functionality for non-ROS programs. A broad
range of operations such as subscribing and publishing to
topics and calling services are supported. All rosbridge clients
communicate with rosbridge over WebSockets. The Kafka
REST proxy [9] provides a RESTful interface to a Kafka
cluster.

Munro et al. [10] describe a system based on RAWFIE
for unmanned aerial vehicles (UAV), but instead of using the
rosbridge / Kafka REST proxy bridge as described in [7], they
are using a native Kafka bridge implemented in Python, which
is capable of dynamically configuring itself using launch files
and factory parameters.

Kang et al. [11] describe a bridge between ROS 1 and
Open Platform for Robotic Services (OPRoS). OPRoS is a
robot software platform including IDE and simulator. The
system connects OPRoS components with ROS nodes. One
of the key elements of the ROS/OPRoS bridge is the message
translation module (MTM) to translate OPRoS messages to
ROS messages and vice versa. The MTM manager loads MTM
descriptions in a configuration file, and then creates MTM
modules.

B. Stream Processing

This category lists papers that address how data can be
processed in streams. The focus is on drawing conclusions
from robot data.

Heintz et al. [12, 13], describe what stream reasoning is
and how it can be used with ROS. The authors built a new
framework called DyKnow, which is a bridge between ROS
and Kafka. The framework focuses on the problem of dynamic
reconfiguration of the application during runtime.

Erich et al. [14] describe how complex event processing
can be used as an alternative to the publish-subscribe pattern
in robotics applications. They describe the advantages of
complex event processing and how graphs can be used to
model streams.

Wiener et al. [15] describe how the Apache Stream Pipes
framework can be used to build stream processing pipelines.
The framework provides adapters for ROS as source and uses
Kafka internally. A graphical user interface to build pipelines
is provided.

ChoiRbot [16] is a framework whose primary purpose is to
orchestrate robots for a common task. The framework works
without a central coordination unit and instead relies on direct
communication between the robots.

Splash [17] is an extension of ROS 2 that accelerates
development speed through model-based software develop-
ment and code generation. Furthermore, Splash enables stream
processing and provides mappings between ROS components
and Splash entities to enable stream processing at higher
abstraction levels.

C. Cloud Robotics

As indicated in the ROS Bridges category, there are many
systems that connect a messaging system to a Big Data system
[18, 19, 20]. By moving sensor data analysis from the robot
to the cloud, it is expected to gain performance and improve
scalability in systems with multiple robots. However, high
latencies are a problem that can be partially circumvented by
edge/fog computing, i.e., by evaluating data closer to its source
[21].

D. Architecture of ROS-based Applications

Some papers are concerned with the way ROS systems are
built. That is, how nodes are connected, encapsulated, and built
to perform complex tasks. These findings are used to inform
the system design in the following sections.

Macenski et al. [1] present the individual concepts and
components of ROS applications and explain how they differ



between ROS 1 and ROS 2. They show robotic systems that
use ROS 2 and provide guidance on how to write and run tests
for ROS-based applications.

Reke et al. [22] describe a ROS architecture for autonomous
vehicles. They emphasize the importance of creating a sepa-
rate node for each available sensor and aggregating sensor
data using a separate node. In addition, requirements for
autonomously moving robots are identified.

Guzman et al. [23] presents a number of projects that use
ROS and describes their architectural components. It is shown
how these robots can be simulated in ROS’ own simulation
environment Gazebo, and how application-specific problems
were solved.

E. Summary

In summary, there are already concepts that connect ROS
with Kafka. We found several papers describing different
approaches to extend ROS and thus obtain added value in
development or data processing.

Kafka is frequently utilized to facilitate data ingestion into
big data systems, like Spark, for batch processing [19, 21, 24,
25, 26]. This is typically a one-way operation, and no data is
channeled back to ROS. With the help of stream processing,
additional knowledge can be gained. This gained information
can be used to improve systems like ROS 2. With the exception
of a few works [15, 17, 17, 27], this aspect has hardly been
discussed in other works and needs further research.

Lourenço et al. [6] developed a simple ROS bridge that
transfers messages as strings between ROS and Kafka. They
provide pseudocode, but do not address the complexity of
converting arbitrary ROS messages to a common format.

The architecture described by Munro and Clayton [10]
contains bridge nodes and Avro serialization supported by
schema registries, but it was designed for ROS 1 and there
is no source code available. Kang et al. [11] introduce a
more abstract Message Translation Module (MTM) instead of
a schema registry.

III. METHODS

This section provides a description of the architecture and
concepts we have developed.

A. Architecture

We have developed a platform that serves as a bridge
between ROS 2 and streaming systems. The architecture of
this project is illustrated in figure 1 and comprises three
components: A ROS 2 application, a streaming application,
and a bridge connecting the two. In the ROS 2 application,
sensor data is published into ROS topics, and commands
from the streaming application are processed. The streaming
application receives event streams from the ROS 2 application,
processes them, and sends commands back to the ROS 2
application in the form of event streams. To facilitate message
exchange between the two systems, a bridge is essential. The
bridge’s role is to relay messages from one system to the other.
Thus, the bridge must translate messages into a suitable format

for the receiving side, akin to the approach employed by the
Message Translation Module in [11].

For seamless communication between ROS 2 applications
and streaming systems, we have opted to utilize a message
broker. Employing a message broker simplifies communication
between the ROS 2 and streaming applications as the applica-
tions do not need to be aware of each other. We have selected
Kafka as our message broker due to its extensive support for
connectors to streaming systems like Apache Beam, Esper,
and Kafka Streams.

Fig. 1. Integration Architecture

B. ROS-Kafka Bride: roskafka

Roskafka serves as a bridge between ROS 2 and Kafka, with
a design similar to the one described in [6]. The / ros kafka
node forwards messages from ROS 2 (via a ROS 2 subscriber)
to Kafka (via a Kafka producer), and the / kafka ros node
forwards messages from Kafka (via a Kafka consumer) to ROS
2 (via a ROS 2 publisher). Configurations for the nodes can be
set through mappings, which include a mapping name, source
topic, destination topic, and message type. Mappings can be
added and removed via ROS 2 service calls.

1) Topic Mapping: In ROS 2, multiple robots are typically
implemented using namespacing, so each robot has its own
set of topics. In stream processing, messages from different
instances of the same type are typically collected in a sin-
gle stream to allow for efficient aggregations. To effectively
bridge between both systems, different types of mappings are
required: one-to-one, one-to-many, many-to-one, and many-to-
many mappings. Many-to-one mappings can be achieved by
including the namespace identifier as part of the message (e.g.,
as metadata). One-to-many mappings can be implemented by
using parameterized destination strings in the mapping, where
the parameter is extracted from the message.

2) Message Serialization: Both ROS 2 and Kafka require
typed messages. Since messages are initially created in ROS
2, we have chosen to base Kafka messages on the ones in
ROS 2. Messages are serialized and deserialized using Apache
Avro. Avro can be utilized in two ways. In roskafka, we
utilize the generic approach, where a dictionary containing the
data from the ROS message is passed alongside the schema
to a function. This function serializes the data to Avro. The
dictionary structure must align with the schema, or else an
error will be thrown. The generic approach provides a well-
defined interface with relatively little effort. However, in the
Kafka Streams application, we prefer specific objects rather
than generic ones. Therefore, with the assistance of a plugin,
classes are generated for each Avro schema. These classes can



be used in Java as data classes with getters and setters, while
also internally handling serialization and deserialization.

To ensure a centralized location for storing these schemas,
we employ a schema registry. This approach allows roskafka
and the Kafka Streams application to maintain consistent
schemas, with any necessary changes only needing to be made
in one place.

C. Stream Processing

There are various frameworks available for stream process-
ing, and in this project, we have chosen to utilize Kafka
Streams. Kafka Streams offers both a high-level and low-
level API, enabling faster development without compromising
functionality.

In certain cases, it becomes essential to not only consider
the current value of a sensor but also the state of other robots
or sensors in order to make complex decisions. To store and
access this state information, state stores can be employed.
The state is updated with each new value, allowing retrieval
of the state of other participants as well.

Since individual sensor values may be prone to errors or
inaccuracies, it can be beneficial to aggregate them over a
specific time period. Windowing is a technique that can be
employed for this purpose. It allows the processing of sensor
values within predefined time windows, enabling meaningful
analysis and decision-making based on aggregated data.

D. ROS Nodes

In settings with multiple robots, multiple topics have to be
mapped for each robot. To simplify this potentially tedious
process, we have developed a ROS 2 node that allows for
quick and interactive registration of robots of a particular robot
type. With this node, topic mappings only need to be defined
once, with parameters based on the robot’s name. Additionally,
the node publishes information about newly registered robots
to a topic, enabling potential robot initialization steps to be
triggered in nodes that support the registration system.

Streaming systems not only consume continuous streams
of events, but may also produce them. However, sending
messages multiple times can lead to network congestion and
increased processing by the streaming system. To address this,
we have developed repetition nodes. These nodes enable mes-
sages to be sent only once and then periodically repeated near
the consumers of those messages. This approach helps min-
imize network congestion and reduces processing overhead.
Repetition nodes are also useful in dynamic environments
where robots may join or leave at any time, ensuring that
events are not missed.

E. Availability

roskafka is available at https://gitlab.informatik.
hs-furtwangen.de/ss23-forschungsprojekt-7/roskafka
and the ROS nodes are available at https://gitlab.
informatik.hs-furtwangen.de/ss23-forschungsprojekt-7/
robot registration.

IV. USE CASE AND SCENARIO

A. Concrete Scenario

The use of robotics in industrial and warehouse automation
is becoming increasingly prevalent. To showcase the benefits
of incorporating streaming systems in robot development, we
present the following scenario:

In a warehouse, crates arrive regularly at the goods receiving
area. Robots are responsible for picking up these crates and
delivering them to their designated storage locations within
the warehouse. These robots have the freedom to move in-
dependently throughout the facility, allowing for flexible and
efficient navigation. However, it is important to note that the
warehouse is not solely accessed by robots; human work-
ers, such as maintenance personnel, also frequent the area.
Consequently, robots may encounter obstacles or experience
hardware failures that prevent them from fulfilling their tasks.

The ultimate objective of deploying robots in this scenario
is to minimize human involvement in warehouse operations.
To achieve this, the robots should possess the ability to
autonomously detect error states, that prevent the system from
achieving its goals, and attempt to resolve them without human
intervention. If the problem cannot be resolved independently,
the robots should provide visual information, such as image
recordings, to human operators. This information enables the
operators to remotely control the robots or manually address
the problem.

B. System Requirements

Based on the above scenario, we can extract a set of system
requirements that need to be addressed in the implementation
of custom applications and process flows:

• Collaboration on Shared Tasks: The robot fleet must
be capable of effectively utilizing shared resources to
collectively accomplish tasks. This includes managing
physical robots as well as the paths they traverse within
the warehouse.

• Fault Detection: In robotic systems, the occurrence of
faults or errors cannot be completely eliminated. Factors
such as lost network packets or unpredictable environ-
mental influences can impact the robots’ performance.
To enable appropriate system responses, it is essential to
detect deviations from the normal or expected state.

• Automated Problem Resolution: The system should pos-
sess the capability to autonomously resolve fault condi-
tions with minimal human intervention. Ideally, this res-
olution should occur without direct human involvement.
However, if human intervention is necessary, the system
should provide relevant information and remote control
options to expedite problem resolution.

• Decision Support for Human Operators: The system
should provide human operators with access to the overall
state of the system, enabling them to analyze and address
any detected fault conditions. This visibility empowers
operators to make informed decisions and take appropri-
ate actions to optimize system performance.



• Dynamic Robot Replacement: The system should facil-
itate the seamless addition or removal of robots from
the active fleet. This flexibility ensures that the system
remains functional even when individual robots are taken
out of service or new robots are introduced.

• By addressing these system requirements, the integra-
tion of streaming systems into robot development for
warehouse automation can enhance operational efficiency,
fault tolerance, and overall automation capabilities, lead-
ing to improved warehouse performance.

V. RESULTS

As a proof of concept, we focused on developing a specific
part of the use case, which involved detecting a faulty state
of a robot. To carry out the experimentation, we utilized
a TurtleBot 4 due to its compatibility with ROS 2 and
availability. For the streaming framework, we employed Kafka
Streams, as previously discussed.

Kafka Streams supports a pipeline programming model,
which simplifies the code structure compared to a sequential
approach. A pipeline can consist of multiple transformations
such as filter, join, group by, and map, which can be chained.
These pipelines can be used for analyzing data from one or
many sensors, which is called sensor fusion. Pipelines have
the additional advantage, that they support parallelization of
tasks.

To detect a faulty state, the data from different sensors
were aggregated and analyzed. The relevant topics from the
TurtleBot 4 were mapped to Kafka topics using roskafka.
The Kafka Streams application subscribed to these topics and
performed data analysis within a sliding window. The window
allowed us to ensure that a single faulty value did not lead
to faulty actions. Within this window, we analyzed if all
events indicated a failure of the robot. Only when all events
consistently indicated a failure, a command was sent to the
robot to change its LED color. The LED color served as an
indicator of the robot’s state. In the real-world scenario, the
other robots would receive a command to take a picture of the
failed robot and log relevant information such as position and
time.

The architecture of the use case is depicted in figure 2.

Fig. 2. Architecture of the developed use case

To minimize network traffic, we implemented a mechanism
where a single command was sent only when the state of a
robot transitioned from running to failure or vice versa. To
achieve this, we utilized a state store that stored the current
state of each robot. The command was sent only when the

detected state differed from the stored state. In cases where
a robot required repeated data, the repeater node could be
employed.

The code for the hazard detection use case is
available at https://gitlab.informatik.hs-furtwangen.de/
ss23-forschungsprojekt-7/kafka-streams-turtlebots4.

VI. CONCLUSION

In this work, we have presented our implementation of
a software platform that enables developers to leverage the
advantages of stream processing systems when developing
ROS applications.

The design of a bridge between ROS and Kafka described
by Lourenço et al. in [6] has been improved on by adding
dynamic mappings, different mappings types such as one-
to-one, one-to-many, many-to-one and many-to-many, and
Avro serialization, which enables rapid development on the
streaming-side.

By combining ROS 2 with a streaming system, we have
identified several advantages for the development of robotics
systems.

• Sensor fusion: By combining the data of multiple infrared
time-of-flight (TOF) sensors and weight sensors we were
able to reliably predict whether a robot was in a faulty
state.

• Rapid development: By leveraging the high-level API of
Kafka Streams rapid development of streams applications
could be achieved, while the usage of its low level API
guaranteed no reduction of capability was suffered. The
ROS nodes were low in numbers and complexity, since
most of the business logic was shifted to Kafka Streams.

• Cooperative robots: While deploying two physical Turtle-
Bot 4 in the same network proved to be impossible due
to constraints of the software, we were able to share
data between two robots that were deployed in different
networks. Another test with simulated robots proved that
data from different robots could be aggregated easily.

• Decoupled development: The decoupling of the applica-
tion into the business logic (Stream Processing) and the
robot control (ROS) enabled us to work in separate teams.
Definition of an adherence to agreed upon interfaces
proved to be simple. This promotes specialization of all
team members and increased productivity.

While our platform greatly aids in application development,
there are some limitations that result from the server-centric
architecture. Many of these problems can be reduced by lever-
aging pre-aggregation or filtering and the proposed repeater
nodes.

• Bottlenecks: A series of potential bottlenecks may present
themselves. The physical device running the ROS-Kafka
bridge must be powerful enough to deal with the number
of messages. Additionally, the central server running the
stream processing must be highly available and powerful
enough to deal with all incoming requests.

• Network traffic: When many sensors produce data con-
tinuously and transmit it via a network, the available



bandwidth will be used up sooner or later. Based on
the number of robots within a network, pre-aggregating
and filtering data, before it is pushed into Kafka may be
advisable.

• Latency: In robotics, time constraints are often critical
[28]. By transmitting data over higher distances, the data
round trip time is increased. Our proposed stream pro-
cessing based decision-making should only be employed
for non-time-critical decision-making. For example, our
platform may check which robots are close enough to
potentially crash within the next 10 seconds, and inform
them that they should check their relative distance regu-
larly to prevent crashes.

Although we have successfully provided a framework for
enhancing ROS development through stream processing sys-
tems, further scalability testing is required to assess the
platform’s performance with a high number of devices and
message loads.

We do not advise using stream processing for all tasks. Cer-
tain tasks such as navigation, and mapping of the environment
are best suited for local execution on ROS nodes.

Our proposed frameworks greatly facilitates multi-robot
collaboration by aggregating data from all robots, even across
different networks. It represents a valuable tool for improving
the capabilities and efficiency of robotics systems.

VII. FUTURE WORKS

In this section, we present several ideas that can be imple-
mented in the future to further enhance the capabilities of our
software platform.

1) Implementation of the complete use case: Due to tech-
nical limitations1 and time constraints, only a portion of
the use case was implemented. Future work should focus
on implementing the complete use case, which requires
at least three robots to be able to collaborate on the same
network.

2) Visualization: A web-based user interface (UI) could be
developed to visualize the configuration of mappings
between ROS topics and Kafka topics. This visualization
would be particularly valuable when multiple robots are
involved, providing a clear overview of the data flow.

3) Configuration via Web UI: Building upon the visual-
ization aspect, the web UI could be expanded to allow
users to configure the mappings between ROS and Kafka
topics directly within the interface. This would simplify
the configuration process and make it more accessible
to users.

4) Monitoring: Building upon the visualization aspect, the
web UI could be expanded to allow users to configure
the mappings between ROS and Kafka topics directly
within the interface. This would simplify the configura-
tion process and make it more accessible to users.

1See https://gitlab.informatik.hs-furtwangen.de/ss23-forschungsprojekt-7/
documentation/-/tree/main/documentation/#multiple-robots for more
information.

5) Testing: A thorough testing strategy should be developed
to ensure the reliability and robustness of the software.
This includes defining test cases, performing unit tests,
integration tests, and potentially exploring automated
testing frameworks for efficient and comprehensive test-
ing coverage.

6) Performance Tests: Conducting performance tests is
crucial before deploying the application in a production
environment. Key areas to evaluate include round trip
time delays, especially for time-critical real-time ap-
plications, and scalability with a significant number of
messages and robots. Comparisons between serialization
formats, such as JSON and Avro, can also be conducted
to assess their impact on system performance.

7) Scalability: Investigating scalability aspects and explor-
ing strategies to improve scalability is an important
avenue for future research. Intelligent filtering of mes-
sages, where not every message is sent to the message
broker, can be explored to reduce network traffic and
improve overall scalability.

REFERENCES

[1] Steven Macenski et al. “Robot Operating System 2:
Design, Architecture, and Uses in the Wild”. In: Science
Robotics 7.66 (May 2022), eabm6074. DOI: 10.1126/
scirobotics.abm6074. (Visited on 04/03/2023).

[2] David C. Luckham. The Power of Events: An Introduc-
tion to Complex Event Processing in Distributed En-
terprise Systems. Boston: Addison-Wesley, 2002. ISBN:
978-0-201-72789-0.

[3] Juergen Dunkel. “On Complex Event Processing for
Sensor Networks”. In: 2009 International Symposium
on Autonomous Decentralized Systems. Mar. 2009,
pp. 1–6. DOI: 10.1109/ISADS.2009.5207376.

[4] Omran Saleh and Kai-Uwe Sattler. “Distributed Com-
plex Event Processing in Sensor Networks”. In: 2013
IEEE 14th International Conference on Mobile Data
Management. Vol. 2. June 2013, pp. 23–26. DOI: 10.
1109/MDM.2013.60.

[5] J.A. Castellanos, J. Neira, and J.D. Tardos. “Multisensor
Fusion for Simultaneous Localization and Map Build-
ing”. In: IEEE Transactions on Robotics and Automa-
tion 17.6 (Dec. 2001), pp. 908–914. ISSN: 2374-958X.
DOI: 10.1109/70.976024.

[6] Luan Lucas Lourenço et al. “Achieving Reliable Com-
munication between Kafka and ROS through Bridge
Codes”. In: 2021 20th International Conference on
Advanced Robotics (ICAR). Dec. 2021, pp. 324–329.
DOI: 10.1109/ICAR53236.2021.9659422.

[7] D4.1 - High Level Design and Spec-
ification of RAWFIE Architecture.
https://www.rawfie.eu/sites/default/files/rawfie - d4.1 -
high level design and specification of rawfie architecture.pdf.

(Visited on 04/12/2023).



[8] Rosbridge suite - ROS Wiki.
http://wiki.ros.org/rosbridge suite. (Visited on
04/12/2023).

[9] Kafka REST Proxy. Confluent Inc. Apr. 2023. (Visited
on 04/12/2023).

[10] Alistair Munro and Gary Clayton. “Drone Swarms,
Communications Performance and Big Data”. In:
2019 IEEE 90th Vehicular Technology Conference
(VTC2019-Fall). Sept. 2019, pp. 1–5. DOI: 10 . 1109 /
VTCFall.2019.8891336.

[11] Jeong Seok Kang, Dong Uk Yu, and Hong Seong Park.
“A Robot Software Bridge for Interconnecting OPRoS
with ROS”. In: 2012 9th International Conference on
Ubiquitous Robots and Ambient Intelligence (URAI).
Nov. 2012, pp. 296–297. DOI: 10 .1109/URAI .2012 .
6462998.

[12] Daniel de Leng and Fredrik Heintz. “DyKnow: A
Dynamically Reconfigurable Stream Reasoning Frame-
work as an Extension to the Robot Operating System”.
In: 2016 IEEE International Conference on Simulation,
Modeling, and Programming for Autonomous Robots
(SIMPAR). Dec. 2016, pp. 55–60. DOI: 10 . 1109 /
SIMPAR.2016.7862375.

[13] Daniel de Leng and Fredrik Heintz. “Towards On-
Demand Semantic Event Processing for Stream Reason-
ing”. In: 17th International Conference on Information
Fusion (FUSION). July 2014, pp. 1–8.

[14] Floris Erich and Kenji Suzuki. “Cognitive Robot Pro-
gramming Using Procedural Parameters and Complex
Event Processing”. In: 2016 IEEE International Con-
ference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR). Dec. 2016, pp. 61–66.
DOI: 10.1109/SIMPAR.2016.7862376.

[15] Patrick Wiener, Philipp Zehnder, and Dominik Riemer.
“Managing Geo-Distributed Stream Processing
Pipelines for the IIoT with StreamPipes Edge
Extensions”. In: Proceedings of the 14th ACM
International Conference on Distributed and
Event-based Systems. DEBS ’20. New York, NY,
USA: Association for Computing Machinery, July
2020, pp. 165–176. ISBN: 978-1-4503-8028-7. DOI:
10.1145/3401025.3401764. (Visited on 04/03/2023).

[16] Andrea Testa, Andrea Camisa, and Giuseppe Notarste-
fano. “ChoiRbot: A ROS 2 Toolbox for Cooperative
Robotics”. In: IEEE Robotics and Automation Letters
6.2 (Apr. 2021), pp. 2714–2720. ISSN: 2377-3766,
2377-3774. DOI: 10.1109/LRA.2021.3061366. arXiv:
2010.13431 [cs]. (Visited on 04/11/2023).

[17] Splash on ROS 2: A Runtime Software
Framework for Autonomous Machines.
https://ieeexplore.ieee.org/document/9494646. (Visited
on 04/03/2023).

[18] Irvin Steve Cardenas, Pradeep Kumar Paladugula, and
Jong-Hoon Kim. “Large Scale Distributed Data Process-
ing for a Network of Humanoid Telepresence Robots”.
In: 2020 IEEE International IOT, Electronics and

Mechatronics Conference (IEMTRONICS). Sept. 2020,
pp. 1–9. DOI: 10 . 1109 / IEMTRONICS51293 . 2020 .
9216366.

[19] Rihab Chaari et al. “Towards a Distributed Computation
Offloading Architecture for Cloud Robotics”. In: 2019
15th International Wireless Communications & Mobile
Computing Conference (IWCMC). June 2019, pp. 434–
441. DOI: 10.1109/IWCMC.2019.8766504.

[20] Supun Kamburugamuve, Leif Christiansen, and Geof-
frey Fox. “A Framework for Real Time Processing of
Sensor Data in the Cloud”. In: Journal of Sensors 2015
(Apr. 2015), e468047. ISSN: 1687-725X. DOI: 10.1155/
2015/468047. (Visited on 04/03/2023).

[21] Junwon Lee et al. “Design and Implementation of Edge-
Fog-Cloud System through HD Map Generation from
LiDAR Data of Autonomous Vehicles”. In: Electronics
9.12 (Dec. 2020), p. 2084. ISSN: 2079-9292. DOI: 10.
3390/electronics9122084. (Visited on 04/03/2023).

[22] Michael Reke et al. “A Self-Driving Car Architec-
ture in ROS2”. In: 2020 International SAUPEC/Rob-
Mech/PRASA Conference. Jan. 2020, pp. 1–6. DOI: 10.
1109/SAUPEC/RobMech/PRASA48453.2020.9041020.

[23] Roberto Guzmán et al. “Robotnik—Professional Ser-
vice Robotics Applications with ROS (2)”. In: Robot
Operating System (ROS): The Complete Reference (Vol-
ume 2). Ed. by Anis Koubaa. Studies in Computational
Intelligence. Cham: Springer International Publishing,
2017, pp. 419–447. ISBN: 978-3-319-54927-9. DOI:
10 . 1007 / 978 - 3 - 319 - 54927 - 9 \ 13. (Visited on
04/12/2023).

[24] Leigh Duggan et al. “A Rapid Deployment Big Data
Computing Platform for Cloud Robotics”. In: Inter-
national journal of Computer Networks & Communi-
cations 9.6 (Nov. 2017), pp. 77–88. ISSN: 09752293,
09749322. DOI: 10.5121/ijcnc.2017.9606. (Visited on
04/03/2023).

[25] Marc A. Riedlinger et al. “Concept for a Distributed
Picking Application Utilizing Robotics and Digital
Twins”. In: 2022 IEEE 27th International Conference
on Emerging Technologies and Factory Automation
(ETFA). Sept. 2022, pp. 1–4. DOI: 10.1109/ETFA52439.
2022.9921659.

[26] ZEKERİYYA DEMİRCİ. Building A Structured
Streaming Data Pipeline. Mar. 2023. (Visited on
04/03/2023).

[27] Fredrik Heintz. “Semantically Grounded Stream Rea-
soning Integrated with ROS”. In: 2013 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems.
Nov. 2013, pp. 5935–5942. DOI: 10.1109/IROS.2013.
6697217.

[28] Christian Lienen and Marco Platzner. ReconROS Execu-
tor: Event-Driven Programming of FPGA-accelerated
ROS 2 Applications. Jan. 2022. DOI: 10.48550/arXiv.
2201 . 07454. arXiv: 2201 . 07454 [cs]. (Visited on
04/05/2023).


