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Abstract: In this paper, we derive set constraints for a reduced order model and augment
them into a model predictive control (MPC) scheme to ensure safe operation of the large-
scale ensemble system. For the control feedback, only the aggregated information of the whole
system is required. For the constraint satisfaction, we consider an adaptive tube formulation to
characterize the deviation between the reduced order model and the ensemble system. Employing
the robust control invariant set, we ensure recursive feasibility and initial feasibility under an
easily verifiable condition.
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1. INTRODUCTION

Large-scale systems composed of a huge number of subsys-
tems, can be found in many application areas, e.g. power
systems, quantum systems, mobile robots(Spinelli et al.
(2020), Li and Khaneja (2006), Ito et al. (2020)). Typical
control strategies for such systems can be classified into
decentralized, distributed, hierarchical control and central-
ized control with a simplified system. Such a simplified
system can be obtained by aggregation (Aoki, 1968) or
model-reduction methods (Antoulas, 2005).

Ensemble systems, as one special class of such large-scale
systems, are composed of structurally identical subsystems
driven by the same input. Although there are some related
works, constraints on each subsystem are generally not
considered, which may be prohibitive in safety-critical
applications. Taking such constraints into account is gen-
erally challenging, and tremendously limits the available
control methods. One possible method is tube-based ro-
bust model predictive control with simplified models. It
guarantees the constraints of original systems robustly,
regardless of the deviation between original systems and
simplified models, and demands affordable online com-
putation effort. So far, only a few works, e.g. Dubljevic
et al. (2006), Kögel and Findeisen (2015), Lorenzetti et al.
(2019), consider this approach in the presence of hard con-
straints. However, all these mentioned works either assume
the full knowledge of the original system’s states, which
is normally not available in ensemble systems, or is not
suitable to guarantee the constraints of each subsystem.

⋆ This work has been done as part of the project HZwo:StabiGrid.
The first author thanks the European Social Fund Plus(ESF Plus)
and the Free State of Saxony for financial support of this project.

Recently, Aschenbruck et al. (2023) proposed a set-
theoretic method based on viability theory (Aubin et al.,
2011) to guarantee the safe operation of each subsystem in
an ensemble linear system without access to its full state
and whole model for online implementation. Inspired by
this work, we recast this control problem for the ensem-
ble system as a general moving-horizon control problem
involving a reduced order model and the aggregated infor-
mation of the whole system, and consider adaptive tube
formulations for the state constraint satisfactions. For the
formulation of the tube, we leverage the results in system’s
peak-to-peak norm (Bu et al. (1996), Rieber et al. (2006)).
Based on the adaptive tubes and the constraints of the
ensemble system, we derive adaptive set-based conditions
combined with a robust controlled invariant set to ensure
the existence of a control law, which guarantees the safe
operation of all the subsystems.

The paper is structured as follows: In the next section, the
problem setting is stated in the moving-horizon scheme.
In Section 3, a method used to approximate the reachable
set is presented. Based on this method, the adaptive tube
formulation is derived. Following this, a MPC scheme en-
suring safety is proposed. In the end, some implementation
issues are discussed. In Section 4, a numerical example is
shown followed by the conclusion in Section 5.

Notation: Given a matrix F and a non-negative vec-
tor g, the associated 0-symmetric polyhedral set is denoted
by P0(F, g) := {x ∈ Rn : −g ≤ Fx ≤ g }. The Euclidean
norm of a vector x is denoted by ∥x∥. Suppose P =(

P1 P2

PT
2 P3

)
∈ Rn×n with P3 ∈ R, we denote E(P ) := {x ∈

Rn−1 : ( xT 1 )P ( x1 ) ≤ 0} as a subset of Rn−1 character-
ized by P . The translation of the set X by a vector x is
denoted by X (x). Given a set S ⊂ Rn×Rm, its projection

Safety-Critical Control for Ensemble
Systems

Yang Guo ∗ Felix Petzke ∗ Philipp Rumschinski ∗∗

Stefan Streif ∗

∗ Technische Universität Chemnitz, Automatic Control and System
Dynamics Lab (e-mail: {yang.guo,felix.petzke,stefan.streif}@

etit.tu-chemnitz.de).
∗∗ Hochschule Furtwangen, Faculty of Mechanical and Medical
Engineering(e-mail: philipp.rumschinski@hs-furtwangen.de)

Abstract: In this paper, we derive set constraints for a reduced order model and augment
them into a model predictive control (MPC) scheme to ensure safe operation of the large-
scale ensemble system. For the control feedback, only the aggregated information of the whole
system is required. For the constraint satisfaction, we consider an adaptive tube formulation to
characterize the deviation between the reduced order model and the ensemble system. Employing
the robust control invariant set, we ensure recursive feasibility and initial feasibility under an
easily verifiable condition.

Keywords: robust control, model predictive and optimization-based control, constrained
control, linear systems, feasibility, ensemble systems

1. INTRODUCTION

Large-scale systems composed of a huge number of subsys-
tems, can be found in many application areas, e.g. power
systems, quantum systems, mobile robots(Spinelli et al.
(2020), Li and Khaneja (2006), Ito et al. (2020)). Typical
control strategies for such systems can be classified into
decentralized, distributed, hierarchical control and central-
ized control with a simplified system. Such a simplified
system can be obtained by aggregation (Aoki, 1968) or
model-reduction methods (Antoulas, 2005).

Ensemble systems, as one special class of such large-scale
systems, are composed of structurally identical subsystems
driven by the same input. Although there are some related
works, constraints on each subsystem are generally not
considered, which may be prohibitive in safety-critical
applications. Taking such constraints into account is gen-
erally challenging, and tremendously limits the available
control methods. One possible method is tube-based ro-
bust model predictive control with simplified models. It
guarantees the constraints of original systems robustly,
regardless of the deviation between original systems and
simplified models, and demands affordable online com-
putation effort. So far, only a few works, e.g. Dubljevic
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simplified models, and demands affordable online com-
putation effort. So far, only a few works, e.g. Dubljevic
et al. (2006), Kögel and Findeisen (2015), Lorenzetti et al.
(2019), consider this approach in the presence of hard con-
straints. However, all these mentioned works either assume
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2011) to guarantee the safe operation of each subsystem in
an ensemble linear system without access to its full state
and whole model for online implementation. Inspired by
this work, we recast this control problem for the ensem-
ble system as a general moving-horizon control problem
involving a reduced order model and the aggregated infor-
mation of the whole system, and consider adaptive tube
formulations for the state constraint satisfactions. For the
formulation of the tube, we leverage the results in system’s
peak-to-peak norm (Bu et al. (1996), Rieber et al. (2006)).
Based on the adaptive tubes and the constraints of the
ensemble system, we derive adaptive set-based conditions
combined with a robust controlled invariant set to ensure
the existence of a control law, which guarantees the safe
operation of all the subsystems.

The paper is structured as follows: In the next section, the
problem setting is stated in the moving-horizon scheme.
In Section 3, a method used to approximate the reachable
set is presented. Based on this method, the adaptive tube
formulation is derived. Following this, a MPC scheme en-
suring safety is proposed. In the end, some implementation
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suring safety is proposed. In the end, some implementation
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Notation: Given a matrix F and a non-negative vec-
tor g, the associated 0-symmetric polyhedral set is denoted
by P0(F, g) := {x ∈ Rn : −g ≤ Fx ≤ g }. The Euclidean
norm of a vector x is denoted by ∥x∥. Suppose P =(

P1 P2

PT
2 P3

)
∈ Rn×n with P3 ∈ R, we denote E(P ) := {x ∈

Rn−1 : ( xT 1 )P ( x1 ) ≤ 0} as a subset of Rn−1 character-
ized by P . The translation of the set X by a vector x is
denoted by X (x). Given a set S ⊂ Rn×Rm, its projection

onto the first n coordinates is denoted by πn(S), and its
N -ary Cartesian power is denoted by SN . Given A1 . . . AN

with appropriate dimensions, we use col(A1, . . . , AN ) and
diag(A1, . . . , AN ) to stack matrices vertically and diago-
nally respectively. Finally, let In denote the n by n identity
matrix, and let I and O denote the identity and zero
matrices of appropriate sizes respectively.

2. PROBLEM STATEMENT

Consider an ensemble system denoted by (Si)I, which is
composed of Ne discrete time constrained subsystems

Si :


xi(t+ 1) = Aixi(t) +Biu(t), xi(0) = x0,i,

u(t) ∈ U ⊂ Rm, xi(t) ∈ Xi ⊂ Rn, t ∈ N0,
(1)

indexed by i ∈ I := {1, . . . , Ne}, Ne ∈ N, and driven
by the same input u(t). The system matrix Ai of each
subsystem Si is assumed to be Schur stable. The input
constraint U is a bounded polyhedral set and the state
constraint Xi is a polyhedral set. The performance output
of (Si)I, which is used to formulate an online control
objective, is the output value of the aggregate function

f(x1(t), ..., xNe
(t)) :=

Ne

i=1 βixi(t) with βi ∈ R≥0 andNe

i=1 βi = 1. In this work, we choose w.l.o.g. the function
f to be an arithmetic mean, i.e.

f(x1(t), ..., xNe(t)) =
1

Ne

Ne
i=1

xi(t). (2)

The control task is to find a control law associated with
an online control objective such that the input and state
constraints of all the subsystems given in (1) are satisfied
simultaneously. To carry out this control task, a MPC
optimization problem using a reduced order model and the
performance output is to be formulated, which constitutes
the goal of this work.

For the MPC formulation, we consider a reduced order
model S̄, which is named as aggregation model and defined
by

S̄ :




x̄(k + 1|t) = Āx̄(k|t) + B̄u(k|t),
x̄(0|t) = f(x1(t), . . . , xNe

(t)) ∈ Rn,

u(k|t) ∈ U ⊂ Rm, k = {0, . . . , N − 1},
(3)

with the predicted sequence x̄(·|t) := (x̄(1|t), . . . , x̄(N |t))
and some matrices Ā and B̄, which will be specified later.
The naming is motivated by the initialization of S̄ to
the aggregated states of the ensemble system. Besides
the input constraints U , the model S̄ has to also satisfy
some additional input and state constraints, which will be
defined in the main result.

For a simpler exposition, we introduce the following defi-
nitions in terms of admissibility and reachability.

Definition 1. An input sequence u(·|t) := (u(0|t), . . . , u(N−
1|t)) ∈ UN is admissible for the ensemble system (Si)I if
the resulting state sequence satisfies (xi(1|t), . . . , xi(N |t)) ∈
XN

i for each i.

Definition 2. Given a discrete dynamic system x(t+ 1) =
Ax(t)+Bu(t) with y(t) = Cx(t), where u(t) ∈ U and x(0)
is unknown and lies in X0, the reachable set of y(·) is the
set of all vectors ŷ for which there exist x(0) ∈ X0, T ∈ N0,
and u(t) ∈ U with t ∈ [0, T ] such that y(T ) = ŷ.

3. MAIN RESULTS

3.1 Outer Bounds of Reachable Sets

In this subsection, we propose a generic approach, which
is employed for the tube construction, to over-estimate
the reachable set of the output of a linear discrete system
driven by a pointwise bounded input. In Rieber et al.
(2006) and Bu et al. (1996), it was shown that, under the
assumption of zero initial condition, the reachable set of
the system’s output with a unit-peak input can be over-
approximated with the upper-bound of the system’s peak-
induced norm. The inspection of their proofs shows that
the restrictive assumption on the initial condition can be
readily relaxed to a non-zero bounded initial condition,
which is shown in the following theorem.

Theorem 1. Consider a stable discrete-time system

x(t+ 1) = Ax(t) +Bu(t), y = Cx(t)

and initial condition x(0) ∈
Np

q=1 E(Qq), where Qq’s are

some symmetric real matrices and ∥u(t)∥ ≤ 1 for all
t ∈ N0. Given α ∈ (0, 1), let

V (α) := inf
λ1,...,λNp≥0,P,ν,γ

γ,

s.t. 


P AP B
PAT (1− α)P O
BT O νI


 ≻ 0, (4)


αP PCT

CP γI


≻ 0, γ > ν, (5)

Np

q=1 λqQq + (O O
O ν ) ( αIO )

( αI O ) αP


≻ 0. (6)

Then ∥y(t)∥ < V (α) for all t ∈ N0.

Proof. Suppose the tuple (λ1, . . . , λNp, P, ν, γ) satisfies
(4)-(6) with a given α. Applying Schur complement (Boyd
et al., 2004) and S-procedure (Yakubovich, 1997) on (6),
we obtain

x(0) ∈
Np
j=1

E(Qj) ⊂ E(diag(P−1,− ν

α
)), (7)

where the non-singularity of P follows from the positive-
definiteness of (4). By multiplying (4) from both sides by
diag(I, P−1, I), and then performing Schur complement on
the first row and column, we reformulate (4) into

AT (P )−1A− (1− α)P−1 AT (P )−1B
BTP−1A BT (P )−1B − νI


≺ 0.

Multiplying this inequality from both sides by the vector
col(x(t), u(t)), after rearrangement, we obtain

Vx(t+ 1)− (1− α)Vx(t) + ν∥u(t)∥2 < 0, (8)

where Vx(t) := x(t)T (P )−1x(t). Since ∥u(t)∥ ≤ 1 for all t
and α ∈ (0, 1), (8) implies Vx(t)− ν

α < (1−α)k(Vx(0)− ν
α )

for t > 0, which, together with (7), lead to

Vx(t) ≤
ν

α
, ∀t ≥ 0. (9)

Let us multiply the first inequality in (5) from both sides
by diag(P−1, I). The resultant inequality and the second
inequality in (5) lead to

diag


αP−1 CT

C γI


, (γ − ν)I


≻ 0.
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Performing Schur complement on this inequality, we get
diag(αP−1 − 1

γC
TC, (γ − ν)I) ≺ 0. After multiplying it

from both sides by col(x(t), u(t)), we obtain αVx(t)+ (γ−
ν)∥u(t)∥2 − 1

γ ∥y(t)∥
2 > 0, which implies ∥y(t)∥ < γ for all

t in view of (9) and the assumptions on u and α. In the
end, we minimize γ over all the tuples satifying (4)-(6),
which gives ∥y(t)∥ < V (α).

In the following corollary, which is deduced from Theo-
rem 1, we show that a 0-symmetric polyhedral set can be
applied for the point-wise bounding of the output signal.
This allows for less conservatism and more efficient compu-
tation involving set operation compared to the Euclidean
norm used in Theorem 1.

Corollary 2. Given a stable discrete LTI system

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t)

with x(0) ∈
Np

q=1 E(Qq) and ∥Hu(t)∥ ≤ 1 for t ∈ N0,
where H is non-singular. Consider a matrix F having
Nf ∈ N rows, and denote its s-th row by Fs, with
s ∈ {1, . . . , Nf}. For each s, let

Vs(αs) := inf
λs,1,...,λs,Np≥0,Ps,νs,γs

γs

with a given αs ∈ (0, 1), s.t.


Ps APs BH−1

PsA
T (1− αs)Ps O

H−TBT O νsI


 ≻ 0, (10)


αsPs Ps(FsC)T

FsCPs γsI


≻ 0, γs > νs, (11)

Np

q=1 λs,qQq +
�
O O
O νs

 �
αsI
O


( αsI O ) αsPs


≻ 0, (12)

where
�
O O
O νs


and

�
αsI
O


are partitioned w.r.t. col(x(t), 1).

Then y(t) ∈ P0(F, g) for all t ∈ N0, where g :=
(infα1

V1(α1), . . . , infαNf
VNf

(αNf
))T .

Proof. Let u := Hu. Substituting H−1u for u and then
using the Theorem 1 repeatedly for all the s, we get
∥Fsy(t)∥ < Vs(αs) for all s and t. Since Vs(αs) is the
value of the function Vs at αs, we minimize the value of Vs

over αs for each s, which gives ∥Fsy(t)∥ < infαs
Vs(αs) for

all t. Since Fs is a vector, |Fsy(t)| = ∥Fsy(t)∥, we obtain
|Fsy(t)| < infαs

Vs(αs) for all s, and hence y(t) ∈ P0(F, g).

The vector g in the set P0(F, g) is found by combining
the minimization of γs under linear matrix inequality
constraints for the fixed scalar αs with a line search over
0 < αs < 1 for each s, which can be efficiently solved.

If the input u(t) always lies in some bounded convex
polyhedral set, then one can find a smallest ellipsoid
E(diag(HTH,−1)) covering all the vertices of the poly-
hedral by solving a convex optimization problem (Boyd
et al., 2004), so that the setting for the input in Corollary 2
is fulfilled. As for the initial condition x(0), the multiple
quadratic constraints allows us to characterize it more
specifically than a single constraint. If x(0) is exactly
known, the multiple quadratic constraints can be also used
to represent a set containing only one element. It is worth
mentioning that, if x(0) is close enough to the origin, then
all the ellipsoids characterized by (10) and (11) will contain
it, which renders (12) trivial.

3.2 MPC with Simultaneous Constraint Satisfaction

In order to guarantee the constraint satisfaction of each
subsystem of the ensemble system, for each system index i
we use a state-dependent tube which evolves along the pre-
diction horizon and covers the state deviation between the
subsystem Si and the model S̄, i.e. xi(k|t)− x̄(k|t). Based
on these tubes, we derive the state condition for the MPC
employing the aggregation model to control the ensemble
system with simultaneous constraint satisfaction.

As a first step, we consider the approximation of the
reachable set of N−1

e

�
xi(·) − xj(·)


, which can be seen as

the output of a linear system described by

x(t+ 1) =


Ai O
O Aj


x(t) +


Bi

Bj


u(t),

y(t) =
�
N−1

e In −N−1
e In


x(t), u(t) ∈ U , i, j ∈ I.

By applying Corollary 2 to this linear system with the
information about the initial condition of subsystems
and a chosen matrix F , we obtain an outer bound of
the reachable set, say P0(F, gij), which as shown in the
following Proposition, is used to determine the the outer
bounds of the reachable set of xi(k|·)− x̄(k|·) at k = 0.

Proposition 3. Assume that P0(F, gij) contains the reach-
able set of N−1

e

�
xi(·) − xj(·)


for all i, j ∈ I. Then for

each subsystem Si, xi(t)− x̄(0|t) ∈ P0(F,


j ̸=i gij) for all
t ∈ N0.

Proof. From xi(t) =
Ne

j=1 N
−1
e xi(t) and the definition of

x̄(0|t), it follows that xi(t) − x̄(0|t) =


j ̸=i N
−1
e

�
xi(t) −

xj(t)

, which is contained in


j ̸=i P0(F, gij) under the

given assumption. Suppose a ∈ P0(F, g12) and b ∈
P0(F, g13), then −g12 − g13 ≤ F (a + b) ≤ g12 + g13,
i.e. a + b ∈ P0(F, g12 + g13). By induction, we get

j ̸=i P0(F, gij) ⊆ P0(F,


j ̸=i gij), which completes the
proof.

Note that the bound P0(F, gij) turns out to be a zono-
tope, if the matrix F is non-singular. Hence, due to the
properties of zonotopes with Minkowski sums (Kopet-
zki et al., 2017), the bound is tight in the sense that

j ̸=i P0(F, gij) = P0(F,


j ̸=i gij).

Theoretically, we can also apply Corollary 2 on the whole
ensemble system to obtain an over-approximation of the
reachable set of xi(·)− x̄(0|·). However, this is numerically
intractable if the size of the ensemble system is very large.
Furthermore, due to the definition of x̄(0|t), Proposition 3
implies also

xi(k|t)−
1

Ne

Ne
i=1

xi(k|t) ∈ P0(F,

j ̸=i

gij). (13)

Following this, the deviation between the subsystem Si

and the aggregation model S̄ lies in

xi(k|t)−x̄(k|t) ∈ { 1

Ne

Ne
i=1

xi(k|t)−x̄(k|t)}⊕P0(F,

j ̸=i

gij).

Therefore, we consider the bounding for the discrepancy
between the aggregated state of all the subsystems and the
state of S̄ at k ≥ 1, which reads

1

Ne

Ne∑
i=1

xi(k|t)− x̄(k|t) = 1

Ne

Ne∑
i=1

Ak
i xi(t)− Ākx̄(0|t)+

k−1∑
l=0

(
1

Ne

Ne∑
i=1

Al
iBi − ĀlB̄)u(k − l|t).

By exploiting the definition of x̄(0|t), the above expression
can be reformulated as

1

Ne

Ne∑
i=1

xi(k|t)− x̄(k|t) = w̄(k|t) + ∆kx̄(0|t), (14)

where

w̄(k|t) :=
k−1∑
l=0

(

Ne∑
i=1

N−1
e Al

iBi − ĀlB̄)u(k − l|t)+

Ne∑
i=1

N−1
e (Ak

i − Āk)(xi(t)− x̄(0|t))

and ∆k :=
∑Ne

i=1 N
−1
e Ak

i −Āk. Then, using Proposition 3,
we obtain

w̄(k|t) ∈ W̄k :=
k−1⊕
l=0

(
1

Ne

Ne∑
i=1

Al
iBi − ĀlB̄)U⊕

1

Ne

Ne⊕
i=1

(Ak
i − Āk)P0(F,

∑
j ̸=i

gij), (15)

as long as the input is always restricted in U . Finally, the
tube covering the deviation between the subsystem Si and
the aggregation model is given by

xi(k|t)− x̄(k|t) ∈ P0(F,
∑
j ̸=i

gij)⊕ W̄k(∆kx̄(0|t)) (16)

for k ≥ 1. By exploiting (16) together with Proposition 3,
we specify the state conditions on the aggregation model,
under which the constraints on the current and predicted
state of the ensemble system are simultaneously satisfied.

Proposition 4. Assume that the state of the aggregation
model S̄ at time t is constrained by

x̄(k|t) ∈ V ⊖ W̄k(∆kx̄(0|t)) (17)

with V :=
⋂Ne

i=1

(
Xi⊖P0(F,

∑
j ̸=i gij)

)
for k ∈ {1, . . . , N}

and x̄(k|t) ∈ V for k = 0. Then xi(t) ∈ Xi for all
the subsystems and every input sequence u(·|t) ∈ UN

enforcing (17) is admissible for the ensemble system.

Proof. Following (16) and the anti-extensive property of
opening (Heijmans, 1987), at each step k ∈ {1, . . . , N},
xi(k|t) ∈ Xi for i-th subsystem if

x̄(k|t) ∈ Xi ⊖
(
P0(F,

∑
j ̸=i

gij)⊕ W̄k(∆kx̄(0|t))
)
.

Hence xi(k|t) ∈ Xi for all i ∈ I, if x̄(k|t) is restricted to
Ne⋂
i=1

(
Xi ⊖

(
P0(F,

∑
j ̸=i

gij)⊕ W̄k(∆kx̄(0|t))
))

,

which is exactly (17) in virtue of algebraic properties of
Minkowski operations (Heijmans, 1987), The result for
k = 0 follows directly from Proposition 3 and the anti-
extensivity.

In Proposition 4, with a given x̄(0|t), it is implicitly
assumed that there exists an admissible input sequence,

which is generally not valid without further treatments.
Furthermore, recursive feasibility can not be concluded.
In the following theorem, by imposing tighter constraints
on S̄, we show how to generate an admissible input
sequence recursively for the ensemble system under an
easily verifiable assumption. To this end, let us first define
a feasible set S in terms of the tupel (x̄(0|t), x̄(1|t)) by

S =
{
(x̄(0), x̄(1)) ∈ V × Rn : ∃u(·) ∈ UN−1, s.t.

x̄(k + 1) + ∆k+1x̄(0) ∈ V ⊖ W̄k+1,

x̄(k + 1) = Āx̄(k) + B̄u(k), ∀k ∈ {1, . . . , N − 1}
}

with V ⊂ Rn defined in (17). This feasible set concerns
only the constraints at k ≥ 2. From this set S, we extract
a mixed constraint set on the state x̄(0|t) and the input
u(0|t) as follows
Sx̄,u = {(x̄, u) ∈ Rn × Rm : (x̄, Āx̄+ B̄u) ∈ S, u ∈ U}.

Finally, based on Sx̄,u, we derive a set C̄ for x̄(0|t)
C̄ ={x̄0 ∈ Rn : ∃u ∈ Rm with (x̄0, u) ∈ Sx̄,u,

s.t. ∀d ∈ W̄1, (Ā+∆1)x̄0 + B̄u+ d ∈ C̄},
which is a robust controlled invariant set within πn(Sx̄,u),
see Anevlavis et al. (2021) for details.

Theorem 5. Assume x̄(0|0) is located in C̄. An admissible
input sequence u∗(·|t) ∈ UN for the ensemble system (Si)I
can be generated for time t = 0 and recursively for all
future times by the following MPC scheme

min
u(·|t)

J(x̄(0|t), u(·|t))

s.t. (3), (x̄(0|t), u(0|t)) ∈ Sx̄,u,

x̄(1|t) ∈ C̄ ⊖ W̄1(∆1x̄(0|t)),
x̄(k|t) ∈ V ⊖ W̄k(∆kx̄(0|t)), k ∈ {2, . . . , N},

(18)

where the open-loop cost J is subject to the online control
objective. Furthermore, the resulting feedback control law
µ(x̄(0|t)) = u∗(0|t) ensures the constraint satisfaction of
the controlled ensemble system for all times.

Proof. x̄(0|0) ∈ C̄ implies that there exists u(0|0) ∈ U ,
such that x̄(1|0) ∈ C̄ ⊖ W̄1(∆1(0|0)) and (x̄(0|0), u(0|0)) ∈
Sx̄,u in virtue of (3) and the definitions of C̄. Furthermore,
since C̄ ⊆ πn(Sx̄,u) ⊆ πn(S) ⊆ V, we obtain x̄(1|0) ∈
V ⊖ W̄1(∆1(0|0)). From the definition of Sx̄,u and S,
the aforementioned (x̄(0|0), u(0|0)) ∈ Sx̄,u implies that
there exists an input sequence (u(1|0), . . . , u(N − 1|0)) ∈
UN−1 such that x̄(k|0) ∈ V ⊖ W̄k(∆kx̄(0|0)) for all
k ∈ {2, . . . , N}. Hence there exists u∗(·|0) ∈ UN which
minimizes the control objective J and renders (17) valid
at time t = 0. This yields that u∗(·|0) is admissible for
the ensemble system at t = 0 in view of Proposition 4.
From the definition of x̄(0|t), (14) and xi(1|t) = xi(0|t +
1), it follows that x̄(0|1) − x̄(1|0) =

∑Ne

i=1 N
−1
e xi(1|0) −

x̄(1|0) = w̄(1|0) + ∆1x̄(0|0) ∈ W1(∆1x̄(0|0)). Since there
exists u∗(0|0) enforcing x̄(1|0) ∈ C̄ ⊖ W1(∆1x̄(0|0)), we
obtain x̄(0|1) ∈ C̄ in view of the anti-extensivity. Hence,
there exists an admissible input sequence for the ensemble
system at t = 1. Repeating the above steps recursively,
we show that an admissible input sequence u∗(·|t) exists
recursively for t = 0 and all future times. Since x̄(0|0) ∈
V, and there exists a feedback control law u∗(0|t) ∈ U
ensuring x̄(0|t + 1) ∈ V, the state constraints of the
controlled ensemble system are always satisfied in virtue
of Proposition 4.
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1

Ne

Ne∑
i=1

xi(k|t)− x̄(k|t) = 1

Ne

Ne∑
i=1

Ak
i xi(t)− Ākx̄(0|t)+

k−1∑
l=0

(
1

Ne

Ne∑
i=1

Al
iBi − ĀlB̄)u(k − l|t).

By exploiting the definition of x̄(0|t), the above expression
can be reformulated as

1

Ne

Ne∑
i=1

xi(k|t)− x̄(k|t) = w̄(k|t) + ∆kx̄(0|t), (14)

where

w̄(k|t) :=
k−1∑
l=0

(

Ne∑
i=1

N−1
e Al

iBi − ĀlB̄)u(k − l|t)+

Ne∑
i=1

N−1
e (Ak

i − Āk)(xi(t)− x̄(0|t))

and ∆k :=
∑Ne

i=1 N
−1
e Ak

i −Āk. Then, using Proposition 3,
we obtain

w̄(k|t) ∈ W̄k :=
k−1⊕
l=0

(
1

Ne

Ne∑
i=1

Al
iBi − ĀlB̄)U⊕

1

Ne

Ne⊕
i=1

(Ak
i − Āk)P0(F,

∑
j ̸=i

gij), (15)

as long as the input is always restricted in U . Finally, the
tube covering the deviation between the subsystem Si and
the aggregation model is given by

xi(k|t)− x̄(k|t) ∈ P0(F,
∑
j ̸=i

gij)⊕ W̄k(∆kx̄(0|t)) (16)

for k ≥ 1. By exploiting (16) together with Proposition 3,
we specify the state conditions on the aggregation model,
under which the constraints on the current and predicted
state of the ensemble system are simultaneously satisfied.

Proposition 4. Assume that the state of the aggregation
model S̄ at time t is constrained by

x̄(k|t) ∈ V ⊖ W̄k(∆kx̄(0|t)) (17)

with V :=
⋂Ne

i=1

(
Xi⊖P0(F,

∑
j ̸=i gij)

)
for k ∈ {1, . . . , N}

and x̄(k|t) ∈ V for k = 0. Then xi(t) ∈ Xi for all
the subsystems and every input sequence u(·|t) ∈ UN

enforcing (17) is admissible for the ensemble system.

Proof. Following (16) and the anti-extensive property of
opening (Heijmans, 1987), at each step k ∈ {1, . . . , N},
xi(k|t) ∈ Xi for i-th subsystem if

x̄(k|t) ∈ Xi ⊖
(
P0(F,

∑
j ̸=i

gij)⊕ W̄k(∆kx̄(0|t))
)
.

Hence xi(k|t) ∈ Xi for all i ∈ I, if x̄(k|t) is restricted to
Ne⋂
i=1

(
Xi ⊖

(
P0(F,

∑
j ̸=i

gij)⊕ W̄k(∆kx̄(0|t))
))

,

which is exactly (17) in virtue of algebraic properties of
Minkowski operations (Heijmans, 1987), The result for
k = 0 follows directly from Proposition 3 and the anti-
extensivity.

In Proposition 4, with a given x̄(0|t), it is implicitly
assumed that there exists an admissible input sequence,

which is generally not valid without further treatments.
Furthermore, recursive feasibility can not be concluded.
In the following theorem, by imposing tighter constraints
on S̄, we show how to generate an admissible input
sequence recursively for the ensemble system under an
easily verifiable assumption. To this end, let us first define
a feasible set S in terms of the tupel (x̄(0|t), x̄(1|t)) by

S =
{
(x̄(0), x̄(1)) ∈ V × Rn : ∃u(·) ∈ UN−1, s.t.

x̄(k + 1) + ∆k+1x̄(0) ∈ V ⊖ W̄k+1,

x̄(k + 1) = Āx̄(k) + B̄u(k), ∀k ∈ {1, . . . , N − 1}
}

with V ⊂ Rn defined in (17). This feasible set concerns
only the constraints at k ≥ 2. From this set S, we extract
a mixed constraint set on the state x̄(0|t) and the input
u(0|t) as follows
Sx̄,u = {(x̄, u) ∈ Rn × Rm : (x̄, Āx̄+ B̄u) ∈ S, u ∈ U}.

Finally, based on Sx̄,u, we derive a set C̄ for x̄(0|t)
C̄ ={x̄0 ∈ Rn : ∃u ∈ Rm with (x̄0, u) ∈ Sx̄,u,

s.t. ∀d ∈ W̄1, (Ā+∆1)x̄0 + B̄u+ d ∈ C̄},
which is a robust controlled invariant set within πn(Sx̄,u),
see Anevlavis et al. (2021) for details.

Theorem 5. Assume x̄(0|0) is located in C̄. An admissible
input sequence u∗(·|t) ∈ UN for the ensemble system (Si)I
can be generated for time t = 0 and recursively for all
future times by the following MPC scheme

min
u(·|t)

J(x̄(0|t), u(·|t))

s.t. (3), (x̄(0|t), u(0|t)) ∈ Sx̄,u,

x̄(1|t) ∈ C̄ ⊖ W̄1(∆1x̄(0|t)),
x̄(k|t) ∈ V ⊖ W̄k(∆kx̄(0|t)), k ∈ {2, . . . , N},

(18)

where the open-loop cost J is subject to the online control
objective. Furthermore, the resulting feedback control law
µ(x̄(0|t)) = u∗(0|t) ensures the constraint satisfaction of
the controlled ensemble system for all times.

Proof. x̄(0|0) ∈ C̄ implies that there exists u(0|0) ∈ U ,
such that x̄(1|0) ∈ C̄ ⊖ W̄1(∆1(0|0)) and (x̄(0|0), u(0|0)) ∈
Sx̄,u in virtue of (3) and the definitions of C̄. Furthermore,
since C̄ ⊆ πn(Sx̄,u) ⊆ πn(S) ⊆ V, we obtain x̄(1|0) ∈
V ⊖ W̄1(∆1(0|0)). From the definition of Sx̄,u and S,
the aforementioned (x̄(0|0), u(0|0)) ∈ Sx̄,u implies that
there exists an input sequence (u(1|0), . . . , u(N − 1|0)) ∈
UN−1 such that x̄(k|0) ∈ V ⊖ W̄k(∆kx̄(0|0)) for all
k ∈ {2, . . . , N}. Hence there exists u∗(·|0) ∈ UN which
minimizes the control objective J and renders (17) valid
at time t = 0. This yields that u∗(·|0) is admissible for
the ensemble system at t = 0 in view of Proposition 4.
From the definition of x̄(0|t), (14) and xi(1|t) = xi(0|t +
1), it follows that x̄(0|1) − x̄(1|0) =

∑Ne

i=1 N
−1
e xi(1|0) −

x̄(1|0) = w̄(1|0) + ∆1x̄(0|0) ∈ W1(∆1x̄(0|0)). Since there
exists u∗(0|0) enforcing x̄(1|0) ∈ C̄ ⊖ W1(∆1x̄(0|0)), we
obtain x̄(0|1) ∈ C̄ in view of the anti-extensivity. Hence,
there exists an admissible input sequence for the ensemble
system at t = 1. Repeating the above steps recursively,
we show that an admissible input sequence u∗(·|t) exists
recursively for t = 0 and all future times. Since x̄(0|0) ∈
V, and there exists a feedback control law u∗(0|t) ∈ U
ensuring x̄(0|t + 1) ∈ V, the state constraints of the
controlled ensemble system are always satisfied in virtue
of Proposition 4.
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It is worth mentioning that if the difference among the
dynamics of subsystems is large, the set C̄ can be quite
small or even empty, which renders the proposed method
non-applicable.

3.3 Discussion

In the following, we discuss some issues appearing during
applying the proposed approach.

Computation of S for large N The computation of the
feasible set S in a patch way entails the projection from the
subspace of V ×Rn ×UN−1 onto the first 2n coordinates,
which is numerically difficult if the prediction horizon is
large. A remedy is to compute the set S in a recursive way,
which is illustrated in the following.

Algorithm: Iterative computation of S
Initialize SN+1 = {(x̄0, x̂, ) ∈ V × Rn}.
For k = N to 2:

Sk = {(x̄0, x̂) : ∃u ∈ U , s.t.
Āx̂+ B̄u+∆kx̄0 ∈ V ⊖ W̄k, (x̄0, Āx̂+ B̄u) ∈ Sk+1}.

Return
S = S2.

Consequently, the subspace, in which the projection is
performed in each step, is just the subspace of V×Rn×U .

Choice of the aggregation model S̄ As defined in the
problem setting, the aggregation model is initialized to the
aggregated states of all the subsystems at the beginning of
each horizon. Hence, if the prediction horizon is not large,
the choice of S̄ will not exhibit a major influence on the
restrictiveness of the constraints in Theorem 5, as long as
the dynamic of S̄ differs not tremendously from that of the
subsystems, which implicitly requires a certain degree of
similarity of all subsystems. In practice, a sensible choice
of the dynamic of S̄ can be

Ā =
1

Ne

Ne∑
i=1

Ai, B̄ =
1

Ne

Ne∑
i=1

Bi, (19)

which turns out to be the model derived by aggregation
in Aoki (1968). If the prediction horizon is large, then
the deviation between the ensemble system and S̄ chosen
as (19) may be large, especially when S̄ is unstable.
In such a case, we can exploit Theorem 1 to find a
stable linear model, whose trajectory is similar to that
of the aggregated state of the ensemble system. Since
the order of S̄ is restricted to n, a nonconvex constraint
arises. By imposing some convex structure constraints
on some decision variable matrices, we can get rid of
the aforementioned nonconvex constraint, however, with a
compromise of larger suboptimality. The obtained system
has then maximal n observable states, which ensures the
requirement on the system order. In the end, the system
corresponding to the minimal V (α) over all the α can be
chosen as the aggregation model. A similar idea can be
found in Geromel et al. (2005).

4. NUMERICAL EXAMPLE

In this section, we demonstrate the proposed MPC scheme
in a numerical example, which is taken from Aschenbruck
et al. (2023). The ensemble system (Si)I is modeled by:

x1(t+ 1) =

(
0.92 0.09
−0.09 0.87

)
x1(t) +

(
0.0195
0.44

)
u(t),

x2(t+ 1) =

(
0.93 0.09
−0.09 0.86

)
x2(t) +

(
0.02
0.46

)
u(t),

x3(t+ 1) =

(
0.94 0.09
−0.09 0.85

)
x3(t) +

(
0.02
0.44

)
u(t),

with the state constraints given by Xi = {xi ∈ R2 : −2 ≤
xi,1 ≤ 2} for i ∈ I = {1, 2, 3} and the input constraint
U = {u ∈ R : −1 ≤ u ≤ 1}. In oder to let the subsystems
approach the target x̄T , we choose the open-loop cost in
MPC to be

J(x̄(0|t), u(·|t)) =
N∑

k=1

∥x̄(k|t)− x̄T ∥2

with a prediction horizon N = 10. For each prediction
horizon, x̄ is updated according to the aggregation model
chosen as (19). The matrix F in Proposition 3 is chosen to
be the identity. The employed MPC scheme with S̄ chosen
as (19) reads

min
u(·|t)

J(x̄(0|t), u(·|t))

s.t. (3), (2), (x̄(0|t), u(0|t)) ∈ Sx̄,u, x̄(1|t) ∈ C̄ ⊖ W̄1,

x̄(k|t) ∈ V ⊖ W̄k(∆kx̄(0|t)), k ∈ {2, . . . , N}.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Simulation results of S̄ in (a), (c) and (e) as well
as (Si)I in (b), (d) and (f). Scenario (I): (a) and (b);
Scenario (II): (c) and (d); Scenario (III): (e) and (f).
x̄(1|t) (black plus), C̄ ⊖ W̄1 (gray).

In the simulation, the target state is changed from
(1.69, 1.15)T to (−0.72, 0.49)T after 33 second. Further-

more, the following 3 scenarios are considered: (I) all
xi(0)’s are close to x̄(0|0) = (−0.6, 4.5)T and their exact
position is available for Corollary 2. (II) all xi(0)’s are close
as in (I), but only known to lie in Xx̄(0|0) := {x : ∥x −
x̄(0|0)∥ ≤ 0.25} for Corollary 2. (III) all xi(0)’s are more
separated with the same x̄(0|0), and their exact position is
available for Corollary 2. The respective simulation results
are shown in Fig. 1, where x1(t), x2(t) and x3(t) are de-
picted in red, blue, and green respectively and marked ad-
ditionally with a circle at t = 0. For comparison purposes,
a nominal MPC with full model and state is designed.
The resulted system trajectories are shown with dashed
lines in scenario (III). For other scenarios, the results are
not shown due to minor differences. The target states
and x̄(0|0) are marked with magenta asterisk and black
circle respectively. The set Xx̄(0|0) in (II) is depicted in
purple. The algorithm from Anevlavis et al. (2021) is used
to compute C̄. For the other set computation and MPC
design, the toolbox MPT3 (Herceg et al., 2013) is used.
Fig. 1 shows, that all subsystems stay in their own safety

Fig. 2. The set for x̄(0|0) (yellow), in which the set of
constraint for x̄(1|t) derived with the Xx̄(0|0) contains

the set (gray) derived with x̄(0|0) = (−0.6, 4.5)T

(black circle)

area when approaching the target. Furthermore, the closer
the initial conditions xi(0)’s, and the more specific the
position of xi(0)’s, the larger the set of constraint for
x̄(1|t). This makes sense, since the output bound deter-
mined by Corollary 2 tends to be larger with a larger set
characterizing the initial condition. Fig. 2 indicates that
a larger set of constraint for x̄(1|t) in case of uncertain
initial conditions can be achieved with other aggregated
initial conditions, which illustrates the robustness of the
approach against the change of initial conditions.

5. CONCLUSION AND OUTLOOK

In this work, we propose a MPC scheme using an aggre-
gation model to enforce the safety operation of each sub-
system in a large-scale ensemble system. To this end, we
adopt an adaptive tube formulation to cover the deviation
between the simplified model and the ensemble system.
Furthermore, by exploiting the controlled robust invariant
set, the formulated MPC scheme is recursively feasible and
initially feasible. In practice, process and measurement
errors are often not negligible, and the subsystem may
be nonlinear and not exactly known. These issues will be
considered as the focus of future research.
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more, the following 3 scenarios are considered: (I) all
xi(0)’s are close to x̄(0|0) = (−0.6, 4.5)T and their exact
position is available for Corollary 2. (II) all xi(0)’s are close
as in (I), but only known to lie in Xx̄(0|0) := {x : ∥x −
x̄(0|0)∥ ≤ 0.25} for Corollary 2. (III) all xi(0)’s are more
separated with the same x̄(0|0), and their exact position is
available for Corollary 2. The respective simulation results
are shown in Fig. 1, where x1(t), x2(t) and x3(t) are de-
picted in red, blue, and green respectively and marked ad-
ditionally with a circle at t = 0. For comparison purposes,
a nominal MPC with full model and state is designed.
The resulted system trajectories are shown with dashed
lines in scenario (III). For other scenarios, the results are
not shown due to minor differences. The target states
and x̄(0|0) are marked with magenta asterisk and black
circle respectively. The set Xx̄(0|0) in (II) is depicted in
purple. The algorithm from Anevlavis et al. (2021) is used
to compute C̄. For the other set computation and MPC
design, the toolbox MPT3 (Herceg et al., 2013) is used.
Fig. 1 shows, that all subsystems stay in their own safety

Fig. 2. The set for x̄(0|0) (yellow), in which the set of
constraint for x̄(1|t) derived with the Xx̄(0|0) contains

the set (gray) derived with x̄(0|0) = (−0.6, 4.5)T

(black circle)

area when approaching the target. Furthermore, the closer
the initial conditions xi(0)’s, and the more specific the
position of xi(0)’s, the larger the set of constraint for
x̄(1|t). This makes sense, since the output bound deter-
mined by Corollary 2 tends to be larger with a larger set
characterizing the initial condition. Fig. 2 indicates that
a larger set of constraint for x̄(1|t) in case of uncertain
initial conditions can be achieved with other aggregated
initial conditions, which illustrates the robustness of the
approach against the change of initial conditions.

5. CONCLUSION AND OUTLOOK

In this work, we propose a MPC scheme using an aggre-
gation model to enforce the safety operation of each sub-
system in a large-scale ensemble system. To this end, we
adopt an adaptive tube formulation to cover the deviation
between the simplified model and the ensemble system.
Furthermore, by exploiting the controlled robust invariant
set, the formulated MPC scheme is recursively feasible and
initially feasible. In practice, process and measurement
errors are often not negligible, and the subsystem may
be nonlinear and not exactly known. These issues will be
considered as the focus of future research.
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