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Abstract: In today’s surgery, high-frequency electrical currents are often used to achieve various effects,
one important being the heating of tissue to stop bleeding. However, the physical processes of tissue
heating are complex and not fully understood. This complicates medical device approval with the
settings used for such applications. Therefore, a simulation approach can help provide evidence. In
this contribution, we present a modification of a model already presented and described in a previous
investigation. By incorporating continuum mechanics into our model, we were able to simulate the
deformation of the tissue due to electrode displacement. The resulting deformed configuration was then
used to simulate Joule heating by applying a constant direct current voltage and to analyze the effect of
varying the electrode displacement depth on the heat distribution result. Our results show that the contact
area of the electrode to the tissue plays a crucial role in heating the tissue. This is because the tissue heats
up more slowly with a large contact area than with a small one, resulting in significantly greater heat

propagation to deeper tissue regions.
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1. INTRODUCTION

High-frequency (HF) surgery is a common surgical method that
has been used for many years. It uses HF alternating current
to induce hemostasis. This involves the heating of biological
tissue through which the current flows. The heating at the
cellular level is due to Joule’s heating. Despite decades of
use, evidence of the efficacy and safety of HF applications for
medical approval is still lacking. Modeling approaches can eco-
nomically support medical approval processes, but the models
used must reliably represent reality. Therefore, it is necessary
to investigate how reality can be adequately represented using a
modeling approach. For this purpose, multi-physical processes
occurring in the application must be identified and understood.

Different mathematical approaches are already available and
can be used as a basis for our needs. In our first survey, we
built a monopolar coagulation finite element (FE) model of liver
tissue based on Pennes (1948) bioheat equation with adaptions
from Yang et al. (2007) and Chen et al. (2013) as described
in Busch et al. (2022). There, we investigated the temperature
distribution in biological tissue with changing initial values of
temperature-dependent tissue parameters. A limitation of the
presented model was that no tissue deformation due to the con-
tact pressure of the HF electrode on the tissue was considered.
The FE model described in this contribution will take this into
account and overcome this limitation. Different displacement
depths of the electrode perpendicular to the biological tissue
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surface are analyzed. The analysis includes the influence of
different electrode-tissue contact surfaces on the temperature
distribution in the tissue.

2. MATERIALS AND METHODS

Based on our previous work (Busch et al., 2022), we modified
the 2 dimensional (2D) axisymmetric monopolar coagulation
FE model by adding continuum mechanics, i.e., a mechanical
problem. In this approach, we split our simulation into two
study steps. In the first step, we solved the mechanical problem,
whereupon in the second step the results from the first step
were used to solve the electrically thermally coupled problem.
In the end, the simulation reveals the temperature distribution
in the biological tissue. For both simulation steps, we used the
COMSOL Multiphysics® (2021) software and a workstation
with an AMD Ryzen 7 3700x 8-Core processor and 64 GB of
working memory.

2.1 Mechanical Problem

When modeling a continuum mechanics approach for biologi-
cal tissue, the hyperelasticity of the tissue has to be considered
(Wex et al., 2015). However, before we elaborate on the hyper-
elastic material model in more detail, some general definitions
are given first. The tissue in its initial stress-free position at #,
(undeformed or reference configuration) is an open bounded
domain defined as Q) C R? with boundary dQ, whereas Q is
defined as the tissue domain in the current deformed configura-
tion at ¢ with boundary dQ. Therefore, the motion of the tissue
can be described by the mapping function y for y : Qy — Q.
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x maps a particle defined through its position vector X € Qg at
fy to the particles position x € Q at ¢ through x = ¥ (X,?) (see
Fig. 1). The movement of the particle can also be described
by the displacement vector u(X, 7) with x = X+ u(X, t). By
taking the gradient of the mapping function, we get the defor-
mation gradient tensor F = dx/dX = Vx = Vx(X,). Whereas
the Jacobian of the deformation gradient tensor describes the
volume ratio or, in other words, the volume change from Qg
to Q and is defined through J =V /Vjy = det(F), where Vj and
V are the initial volume and the current volume, respectively.
If J < 1, domain compression takes place, whereas J > 1 de-
scribes expansion. If J is equal to 1, no volume change occurs,
i.e., an isochoric process is present. Furthermore, the deforma-
tion gradient tensor can be used to define the right Cauchy-
Green deformation tensor by C = FTF, where T denotes the
transpose.

When modeling biological tissue for structural analysis as hy-
perelastic material, different hyperelastic material models can
be used (Wex et al., 2015; Holzapfel et al., 2000), resulting in
different characteristic strain energy density functions W;. We
assumed that the tissue is isotropic, whereby the W; only de-
pends on the invariants of the right Cauchy-Green deformation
tensor. For our model, we used the Neo Hookean hyperelastic
material model, which is defined by

A
W= Z0n()P ~ pin() + 5 (1 -3), )
where A and u are the first and second Lamé parameters
respectively, J is the volume ratio, and [ is the first invariant
(trace) of the right Cauchy-Green deformation tensor defined

by I} = tr(C).

We further assume in our model that biological tissue is incom-
pressible so that J/ = 1 holds. So (1) can be simplified to

W, — %(11—3). 2)

The second Lamé parameter in (2) is defined by

p=5-E, 3)

where v is Poisson’s ratio and E is Young’s modulus. The
values used for Poisson’s ratio and Young’s modulus of the
electrode (stainless steel) and incompressible liver tissue are
shown in table 1.

Now that our hyperelastic material model for the tissue is
defined, the second Piola-Kirchhoff stress can be calculated as
W,

- 4
5C “)
which gives the material stress in the reference configuration.

S=2

2.2 Thermal and electrical coupled problem

Once the mechanical problem was solved by a rigid body
displacement of the @ 4 mm ball electrode, the result was used
to calculate the heat distribution induced by Joule heating in the
tissue. The model utilized, which combines the thermally and
electrically coupled problem in a partial differential equation,
is the bioheat equation from Pennes (1948) and is defined by

aT
pceff<T)§ = V-k(T)VT—‘rJ-E—(Dbcbpb(T—Tb), (5)
where p is the tissue density, py, is the blood density, ceg(T)
is the temperature-dependent effective heat capacity, 7" and ¢
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Initial position
at ¢,

Current position
x =x(X, ?) at ¢t

u(x, s

R r

Fig. 1. Schematic representation of a body transformation in-
cluding displacement, rotation, and deformation from the
initial body position at time # to the transformed current
position at time ¢ under the representation of used vector
definitions.

are the temperature and the time respectively, 7y, is the blood
temperature, k(T) is the temperature-dependent thermal con-
ductivity, J is the current density, E is the electrical field in-
tensity, @y is the effective capillary blood perfusion parameter
and ¢y, is the blood heat capacity. The current density is defined
by Ohm’s law J = o(T)E, where o(T) is the temperature-
dependent electrical conductivity and the electrical field inten-
sity is given by the negative gradient of the applied voltage
V, E = —VV. To keep the model simple, we have assumed a
quasi-static approach to solving the electrical problem using
Laplace’s equation, which is defined by

V-o(T)VV =0. ©6)
For determining k(7) we applied the linear approximation
k(T) = kref+k1(T_7}ef)7 (7)

where k; is a control coefficient, k.r is the initial thermal
conductivity at the reference temperature Tof = 25 °C and T
is the current temperature.

For the temperature-dependent electrical conductivity o(T),
we followed Chen et al. (2013) and used a piecewise function
defined by

[ Gutl1 +0.02(T — To)] T < 100°C
o(T) = { 0.01 $/m r>100°c ®

where T is again the current temperature, O is the initial elec-
trical conductivity at the reference temperature Ti.f = 25 °C. As
in Busch et al. (2022), we applied the continuous first derivative
for smoothing o(7T) at the transition point of 7 = 100 °C.
The multiplication of the temperature-dependent tissue water
content W(T) with o(T) for considering the loss of water due
to desiccation was omitted because the water loss is already
considered in ¢(T) due to the decrease of o to 0.01 S/m at
T > 100 °C.

The temperature-dependent effective heat capacity ceg(7) as
well as the temperature-dependent tissue water content W (T')
were modeled identically to our previous study and is explained
in Busch et al. (2022). As initial tissue water content, we used
80 %. All model parameters used are shown in table 1.
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Table 1. Model material parameters
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Material parameter Value  Unit Source
Liver tissue
- Poisson’s ratio \7 0.5
- Young’s modulus E; 1.98 kPa Umale et al. (2013)
- density P 1079 kg/m?3 IT’IS Foundation (2022)
- thermal conductivity Kot 052 W/(m-K) IT’IS Foundation (2022)
- electrical conductivity Oref 0.13  S/m IT’IS Foundation (2022)
- control coefficient ki 0.001161  W/(m-K-°C) Valvano et al. (1985)
- water content Weet 0.8
Stainless steel (ball electrode)
- Poisson’s ratio Vel 0.29 Ledbetter et al. (1980)
- Young’s modulus E, 200 GPa Ledbetter et al. (1980)
Blood
- density Po 1050  kg/ m? IT’IS Foundation (2022)
- heat capacity b 3617 J/(kg-K) IT’IS Foundation (2022)
- temperature Ty 37 °C
- capillary perfusion parameter @, 0.0064 1/s Trujillo and Berjano (2013)

2.3 Model setup, boundary conditions, and solver settings

As already mentioned, the FE model utilized for these simula-
tions is based on the model described in Busch et al. (2022),
but with slight modifications to integrate the mechanical prob-
lem. Therefore, the geometry of the @ 4 mm ball electrode
and the liver tissue (2.5 x 2.5 cm) is identical to our previous
investigation. The main difference is that the electrode is not
already inserted into the tissue block, but the two surfaces of
the electrode and the tissue are just touching. The arrangement
of the electrode and the tissue used for the first study step,
as well as the displacement field u of the electrode, which is
perpendicular to the tissue surface, are illustrated in Fig. 2.

To generate the mesh of the electrode and of the tissue, the
meshing generator of COMSOL Multiphysics® (2021) was
used. The tissue block was built as a mapped mesh with a
maximum quadrilateral element size of 0.2 mm, whereas the
electrode was meshed with triangles and a maximum element
size of 0.694 mm. In total, the FE model consists of 16082
elements, of which 15876 are quadrilateral and 206 triangular.

For the initial conditions of the mechanical problem, no dis-
placement field and no contact pressure were set. When con-
sidering the boundary conditions, we defined the upper and
right tissue surfaces, as well as the electrode surface, as free-
movable surfaces. In contrast, the bottom surface of the tissue
was fixed so that u = O applies to this boundary. In order to
perform the contact simulation, we had to define source and
destination boundaries for the contact pair (electrode to tissue).
For this purpose, the surface of the ball electrode was set as the
source boundary and the upper tissue surface as the destination
boundary. The contact friction was neglected in this simulation.
Additionally, we selected the augmented Lagrangian method
with an automatic penalty factor as convergence control for
computing the contact.

The mechanical problem was solved with a stationary study,
where the vertical displacement u, of the electrode was swept
from 0 to 3 mm in 0.05 mm steps. To save computation time and
due to expected large elastic deformations of the tissue, an in-
cremental solution update was used by adding the block Elastic
Predeformation in COMSOL. By storing the deformation his-
tory with the used displacement field u, the total deformation is
calculated from incremental steps (Structural Mechanics Mod-
ule User’s Guide, 2019). The COMSOL Multiphysics® (2021)
linear direct solver MUMPS was used to solve the stationary

study. The computation time of the first study step was 4 h
46 min and 6 s.

The electrically thermally coupled problem was solved by a
time-dependent study with a simulation time of 10 s and a step
size of 0.05 s. The boundary conditions of these two physics
were set as described in Busch et al. (2022). In this second
simulation step, we used the contact simulation results of the
previously solved mechanical problem. Only the results for the
electrode displacements u, with 0.5 mm, 1.0 mm, 1.5 mm,
2.0 mm, 2.5 mm, and 3.0 mm were used for the time-dependent
study. As linear direct solver of the second study step, we used
the PARDISO solver (COMSOL Multiphysics®, 2021). The
computation time of the second study step was 27 min and 41 s.

3. RESULTS

Fig. 3 shows the simulation results of both study steps, whereby
Fig. 3A) to Fig. 3F) illustrates the energy stored in the hyper-
elastic tissue due to the electrode displacement via the strain
energy density from the first study step from 0.5 to 3.0 mm in
0.5 mm displacement steps. It can be seen that the larger the
electrode displacement, the greater the strain energy density in
the tissue. For a linear displacement of the electrode in the z-
direction, as shown in Fig. 3A) to Fig. 3F), a nonlinearity of
the resulting strain energy density can be recognized. The total
strain energy density W (o is obtained by taking the volume in-
tegral of the tissue area. Whereby W; (o increases from Fig. 3A)

R r

Z z

Tissue

2.5¢cm

2.5cm

Fig. 2. Schematic of the 2D axisymmetric monopolar coagula-
tion model consisting of a 2.5 cm quadradic tissue block
with a @ 4 mm ball electrode used as reference config-
uration for the first study step - solving the mechanical
problem.
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3. Simulation results from the first and second study steps. A) to F) shows the deformed tissue with the stored strain energy
density (J/ m3) resulting from the six different electrode displacement depths A) 0.5 mm, B) 1.0 mm, C) 1.5 mm, D) 2.0 mm,
E) 2.5 mm and F) 3.0 mm of the first study step. Additionally, W o, the total stored strain energy (uJ), was calculated by
taking the volume integral of W; of the tissue area. In G) to L), the temperature distributions (°C) of the second study step
corresponding to the displacement depths from A) to F) are shown. Here H) to L) shows the temperature distribution at the

time when the boiling point of water is reached.

to 3B) about 1.567 uJ, from Fig. 3B) to 3C) about 3.229 ulJ,
from Fig. 3C) to 3D) about 5.124 uJ, from Fig. 3D) to 3E)
about 7.122 uJ, and from Fig. 3E) to 3F) about 9.113 pJ. The
nonlinear increase in W (¢ resulting from the linear electrode
displacements is also shown in graph A) of Fig. 4. There, the
simulation results are represented by the circular data points.
The dashed line in the diagram illustrates a smoothing spline
curve fit of the simulation data. This nonlinear behavior is
expected when using a hyperelastic formulation due to the
nonlinear relation between strain and stress.

The maximum contact pressures po max resulting from the elec-
trode displacements were also determined and are shown in
graph B) of Fig. 4. Again, the simulation results of po max are
illustrated in the circular data points, whereas the smoothing
spline curve fit of pomax is represented by the dashed line. If
one considers the contact pressure to be applied for the se-
lected electrode displacements, the characteristic of biological
tissue as soft tissue becomes clear. Already 0.21295 N/cm? is
sufficient to result in a displacement of 3 mm, which brings
almost half of the ball electrode surface into tissue contact (see
Fig. 3F). Furthermore, the results in graph B) of Fig. 4 show that
the maximum contact pressure does not increase linearly with
u,. The reason is that the linear electrode displacement leads to
a nonlinear increase in the electrode-tissue contact surface.

A substantial part of this contribution addressed the imple-
mentation of a hyperelastic material model into an existing
coagulation model. It served to obtain a more representative
deformation of the biological tissue at the contact surface to the
ball electrode. Based thereon, we obtained the final results of
interest, which are the heat distributions in Fig. 3G) to Fig. 3L)
representing the actual impact of the electrical current on the
tissue. The figures show the temperature distribution in the tis-
sue at the time when the boiling point of water is reached. It can
be seen that the larger the contact area between the electrode

and the tissue at a constant applied voltage, the longer it takes
to reach 100 °C in the tissue.

The results in Fig. 3G) illustrate that the tissue near the contact
surface (at about 0.125 to 0.25 mm depth below the contact
surface) reaches 100 °C first. At this point, the electrode itself
has only reached about 60 to 70 °C. This leads to a thin layer
of tissue at the contact surface, from about 0.065 to 0.125 mm
depth, where a negative temperature gradient to the electrode
can be observed. This indicates that the electrode cools the
tissue contact area as long as its temperature is lower than
that of the tissue. This is most likely due to the much higher
electrical conductivity and thus, lower resistivity of the stainless
steel. Wherefore, Joule heating is more intense in the tissue than
in the electrode. In Fig. 3H), where the contact area is greater
than in Fig. 3G) and the time until the tissue reaches 100 °C
increases by 1.9 s, the negative gradient from the 100 °C tissue
spot toward the electrode decreases. This is due to the further
increase in the electrode temperature to about 80 °C.

4. DISCUSSION

The electrode temperature increases the longer the tissue is ex-
posed to the current and the larger the contact surface becomes.
Since in our modeled case, the thermal and electrical conduc-
tivity of stainless steel is larger than those of the biological
tissue, the increase in electrode temperature from Fig. 3G) to
Fig. 3L) is expected to be primarily due to heat transfer between
the tissue and the electrode. Thus, this depends on both, the
electrode contact area and the application time. Furthermore, a
larger contact area also means the contact resistivity between
the electrode and the tissue becomes lower. Consequently, the
current density at the contact surface decreases, resulting in
slower tissue heating until 100 °C is reached. Slow tissue heat-
ing leads to better heat distribution not only in the tissue but also
in the electrode. Therefore, the cooling effect of the electrode
is almost undetectable at the contact surface. This can already
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Fig. 4. The simulated total strain energy density Ws (o in 1J and

the maximum contact pressure po max in N/ m? are shown
in circular data points over the electrode displacement
depth u, in mm in graphs A) and B), respectively. In both
cases, a smoothing spline curve fit was performed, which
is represented by the dashed line.

be discerned at an electrode displacement of u, = 2.0 mm in
Fig. 3]). In Fig. 3L) the cooling effect is no longer visible.

The results indicate that the depth of tissue heat distribution is
related to the current density, which in turn, is associated with
the electrode contact surface. If the contact surface becomes
larger, whereas the applied voltage is constant, it takes longer
to reach 100 °C in the tissue, and therefore, the temperature
has more time to distribute in deeper tissue regions. If deep
coagulation is needed, this can be achieved by reducing the
HF generator’s output power or by just applying a higher
electrode pressure to the tissue. (Whereby in this context, deep
coagulation is understood as a deep temperature distribution.)
In both cases, slower heating occurs due to the lower current
density and longer current application time.

In contrast, a smaller contact surface (caused by less pressure)
leads to faster and superficial tissue heating at the same constant
voltage. The faster heating leads to a highly resistive tissue re-
gion near the electrode contact surface when 100 °C is reached.
As soon as the tissue has exceeded the boiling point, it is
assumed that the water in the tissue has desiccated, resulting in
a high resistivity in this area. It is then difficult for the current to
flow through this tissue area because the electrical conductivity
of the tissue without water is very low. The highly resistive
tissue area reduces the current flow and tissue heating in deeper
regions. It has to be noted that the implemented model and the
temperature-dependent tissue parameters considered in it are
valid only below the boiling point of water. Therefore, valida-
tion tests are required to investigate the assumptions made for
this application and confirm their validity.

These findings show that the pressure of the electrode on the
tissue is one of the decisive factors for the desired tissue heating
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effect. It can be seen that with a constant applied voltage, the
energy input, and thus the heat generation in the tissue, is highly
dependent on the contact area of the HF instrument to the tissue.
Likewise, it can be deduced that the choice of the electrode
can significantly influence heat distribution through its size and
geometry. That is, by its contact area with the tissue.

5. CONCLUSIONS

By adding continuum mechanics and tissue deformation to
our simulation model, we are one step closer to the goal of
representing multiple physical processes in biological tissue.
However, there are still some unknown processes as well as
physical limitations in the current model that have not yet been
considered and require further investigation and analysis.

We have shown that the contact area between the electrode and
the tissue plays an important role in Joule heating and heat
distribution in the tissue when the applied direct current voltage
is kept constant. This leads to a decrease in the current density
at the contact area and thus slower heating of the tissue when
the contact area is increased. By adapting the applied voltage
as a function of tissue resistivity, it would be possible to take
the contact area into account, since the contact area is directly
proportional to the contact resistance (electrode to tissue). Also,
no alternating HF current has been considered in the model so
far. Adding this to the model might make it possible to model
different heating effects due to modulation of the alternating
HF current. One effect of HF current-induced heating that has
been frequently mentioned is tissue desiccation. Although the
evaporation of water in the tissue is already taken into account
in the temperature-dependent tissue parameters, shrinkage of
the drying tissue has not yet been integrated.

These simulations provide a basis to better understand physical
processes during tissue coagulation. However, a quantitative
evaluation of our simulation results might be possible only after
the validation of the model. Therefore, it is necessary to clarify
how appropriate validation can be implemented, performed,
and analyzed.
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